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Abstract— We define and study the scheduling complexity in ~ The measure that captures and quantifies this equilibrium
wireless networks, which expresses the theoretically achievablejs time More specifically, assume that we are given a set
efficiency of MAC layer protocols. Given a set of communica- ¢ directed links between pairs of nodes that indicate com-

tion requests in arbitrary networks, the scheduling complexity icati ts. H h ti - ired t hedul
describes the amount of time required to successfully schedule munication requests. How much time IS required to scheaule

all requests. The most basic and important network structure all these requests? In this paper, we define and study this
in wireless networks being connectivity, we study thescheduling scheduling complexity wireless networks. Like, for instance,

complexity of connectivity, i.e., the minimal amount of time re-  the notion ofnetwork capacity12], the scheduling complexity
quired until a connected structure can be scheduled. In this pape expresses a fundamental law that governs communication in

we prove that the scheduling complexity of connectivity grows . : . .
only polylogarithmically in the number of nodes. Specifically, we wireless multi-hop networks. While roughly speaking, the

present a novel scheduling algorithm that successfully schedules acapacity of a wireless network describes the maximum amount
strongly connected set of links in timeO(log*n) even in arbitrary ~ of information that can be transmitted in the network, the

worst-case networks. scheduling complexity indicates the minimum amount of time

ch(‘jl}{i‘r? Ot:‘;’éé‘oal‘;‘%a‘r’l"e ee;g;’; :;‘Séhsbi‘g?saerdp';"rﬁgul':%’era%r required to transmit over a set of communication links. As it

protocol tr?a? either empIO)E)s uniform or linear (a node’s tra%/lsmity trns out, studying .the scheduling complexity of erelee.s'n.
power is proportional to the minimum power required to reach ~WOrks reveals previously unknown aspects of communication
its intended receiver) power assignment has a Q(n) scheduling in wireless networks.

complexity in the worst case, even for simple communication  In order to obtain results that capture the inherent char-
requests. In contrast, our polylogarithmic scheduling algorithm  5cteristics of wireless networks, much care has to be taken
allows many concurrent transmission by using an explicitly choosing the communication model. Multi-hop wireless

formulated non-linear power assignment scheme. ks h ft b deled hs. Th q
Our results show that even in large-scale worst-case networks, networks have often been modeled as graphs. € noades

there is no theoretical scalability problem when it comes to Of this communication graph typically represent the phgisic
scheduling transmission requests, thus giving an interesting devices, two nodes being connected by an edge if and only if

complement to the more pessimistic bounds for theapacity in  the respective devices are within mutual transmission eéang
wireless networks. All results are based on thephysical model | this graph-theoretic model a node is assumed to receive

of communication, which takes into account that the signal-to- ty if and v if th de | |
noise plus interference ratio (SINR) at a receiver must be above a message correctly It and only I no other node In close

a certain threshold if the transmission is to be received correctly. Physical proximity transmits at the same time. It is therefo
not surprising that in graph theory, interference-free awon

|. INTRODUCTION rent transmissions typically boil down to solving variarmts
coloring or independent set problems (e.g. [25]).

A most important lesson in wireless multi-hop networking Clearly, this graph-theoretic notion of interference is a
is that concurrent transmissions may cause interferencte.tlemendous simplification of the physical reality faced in
a network, if too many devices transmit simultaneously, theireless networks [10], [2]. Particularly, the interfemen
interference caused by these transmissions will prevent eaused by different transmitters may accumulate and is not
intended receiver from receiving the signal, i.e., the ragess binary, i.e., does not stop at a any specific border. Morgover
lost. On the other hand, if too few nodes transmit at the saméaen transmission powers are properly assigned, a node
time, valuable bandwidth is wasted and the overall throughpmay successfully receive a message in spite of being in the
may suffer. Hence, the classic problem faced by any MA&ansmission range of other simultaneous transmitterfadt
layer or scheduling protocol is that neither selecting taamgn a message is successfully received by a node if rdim®
nor too few devices for concurrent transmission is accdptabbetween the received signal strength on the one hand and
Instead, it is necessary to find the subtle balance, in whithe ambient noise plus interference from other nodes on the
a large number of devices transmit in parallel and yet, tteher hand exceeds a certain hardware-specific threshbkl. T
interference does not cause messages to be lost. communication model adopting this notion of signal-tosesi



plus-interference ratio (SINR) is also known as tbigysical In this paper, we show that the result of both of these
model[12]. power assignment schemes can be disastrous. In a network

In this paper, we adopt this physical model of communic&onsisting ofn nodes, we prove that any scheduling approach
tion and study the scheduling complexity, i.e. the questibn that uses auniform or linear power assignmermgotentially
how much time is required in order to successfully transmiequires up to time©(n) in order to schedule links that
messages over a given set of communication links. Formalbgnstitute a connected structure. This is exponentiatiyet
we are given an arbitrary (i.e., not randomly distributedj-n than the scheduling complexity achieved by our polyloga-
work, and a set of directed links representing communicatisithmic algorithm. In fact, we even show thany protocol
requests. For each such link we assign a time slot and a poweat usesuniform or linear power assignmentay need up
level such that all simultaneous transmissions are sutdessto time ©(n) until every node has been able to transmit
i.e., not violating the signal-to-interference plus noiado at successfully once. This holds even if the receiving node for
any receiver. In particular, we want an assignment that asesevery sender is selected best-possible, e.g. when each node
few time slots as possible, which is precisely the task facé@nsmits to its closest neighbor. Note that this resultgda
by MAC layer or scheduling protocols. a strong lower bound on the amount of time requiredaloy

In practical scenarios, it is often not known in advanc®AC layer protocol (even an imaginary MAC protocol that
where and when communication requests arise. Certain fundatimally schedules the communication requests) if itgssi
mental types of network structures, however, play a vité rotransmission powers uniformly or linearly.
in many applications of wireless networks. Most basicdtly, Besides being of theoretical interest, the bad scheduling
is typically required that a message can be routed betwemwmplexity achieved by uniform and linear power assignment
any pair of nodes in the network. That is, all nodes shoulths practical relevance: It shows that in order to obtainsa fa
be connected by eommunication backbonsuch as a tree or scheduling of sending requests in wireless networks, MAC
any other suitable network topology. layer and scheduling protocols should adopt neither umifor

In the main part of this paper we therefore study theor linear power assignment. Instead, the remedy agaiisst th
scheduling complexity ofonnectinga given number of nodes loss of efficiency is a highly non-linear assignment of power
located at arbitrary positions by some communication trelevels. That is, our polylogarithmic scheduling algoritluses
For this basicconnectivity problemwe present an algorithm an explicitly defined power scheme that lies “in between”
which constructs a spanning tree, and assigns power lendls aniform and linear power assignment. Particularhany dif-
time slots to each link of the tree such that in polylogarithm ferent power levelare required in order to achieve an efficient
time, all transmissions are received correctly, i.e., with schedule.
violating the signal-to-interference plus noise ratio @y a The rest of this paper is organized as follows. In Section I,
receiver. In other words, we prove that for the most basidlof ave formally introduce and define the communication model
network properties, connectivity, the scheduling comityeids and thescheduling complexityrespectively. The limitations
polylogarithmicin the number of network nodes. This resulbf uniform and linear power assignments are studied in subse
is astonishing because it shows that even in the harsh SIN&ent Section Ill. We then propose an efficient polyloganith
model and in large-scale networks, scheduling commurmigatischeduling algorithm in Section IV. The performance of a
requests (even if they must result in a connected strugturelmple and natural, but worst-case inefficient linear power
can be achieved efficiently. Hence, theoretically, therads assignment algorithm is analyzed in Section V. An overview
fundamental scalability problem in wireless networks witen of related previous work is given in Section VI and finally,
comes toschedulingcommunication requests. Section VIl concludes the paper.

Our upper bound is intriguing because standard MAC layer
protocols and power assignment schemes can perform much
worse. In particular, two different power assignment sceem We consider the network nodes = {z,...,z,} to be
have typically been studied and adopted in wireless netsvorkocated arbitrarily (even worst-case) in the Euclideamela
In uniform power assignment schemak nodes transmit with The Euclidean distance between two nodgsz; € X, is
the same transmission power [11].linear power assignment denoted byd(xz;,z;). For a (directed) linkf;; = (z;,z;),
schemesit is assumed that if a node wants to transmit /(f;;) = d(z;,z;) denotes the distance between its endpoints.
a message to a node that is located in distadicéhen =  Finally, theball B(z;,r) of radiusr around noder; contains
should send with a transmission power Bf = p - d“, for all nodesz; € X for which d(x;,z;) < r. For simplicity and
some constanp, wherec is the so-called path-loss exponentwithout loss of generality, we assume that the minimal dista
In other words, the strategy of most MAC layer or powebetween any two nodes is and we defineA = log(4az),
control protocols (e.g. [26], [20], [22], [32], [30], [1],2R]) where/,,.. is the largest distance between two nodes.
is to either let all nodes send at the same power, or to adjusWith what power level should nodes send in a certain time-
the transmission power level of a packet to be proportional slot? Intuitively, if the power level is large, more nodes dze
Pynin, Where P,,,;,, is the minimum power required such thatovered, at the same time causing an increase in interferenc
in the absence of interference from other nodes, the SINRfated by other nodes. In the following, we formally define the
the intended receiver is just enough for decoding the packetotion of a power assignment.

Il. SCHEDULING COMPLEXITY



As in [12], we assume without loss of generality thascheduledat time-slott if x; successfully receives a message
transmissions are slotted into synchronized slots of equdedm z; according to the SINR Inequality (1).
length. In each time-slot, a nodex can either transmit | ot F, pe the set of all successful links in time-siat
or not transmit a message. power assignmendetermines e want that after as few time-slots as possible, the union
the power level chosen by each node in a certain time-sigf. 5| |ink-sets E, forms the desired network topology, e.g.,
Formally, a power assignmen is a functiong, : X — R connectivity. We therefore define the scheduling problem fo

which maps every node in the network to a power level. We gien network property as follows.

denote by¢;(x;) the power level of noder; in time-slotz. _ ] .
If a node is not scheduled to transmit in this time-slot, then Definition 2.2: The scheduling problem for a network prop-

o¢(xz;) = 0. In case it is clear from the context which time-sloferty Vs to f|nq a scheduleS of minimal Ie'ngth T(S)’

t is meant, we also use the notational short-But= ¢, (z,). suTC(f;)that the_ qnlon of all successfully transmitted links=

A scheduleS = (¢1, ..., ¢1(s)) is @ sequence 6f (S) power =1 Ly satisfies propertyy.

assignments, wherg; denotes the power assignment in time- As an example, the scheduling problem wheris connec-

sloti. Finally, we callT'(S) thelengthof scheduleS. That is, tivity translates to finding a schedufe of minimal length in

a scheduleS of length 7'(S) determines the power levgy, which all successfully transmitted links strongly connéue

for every noder; € X for T'(S) consecutive time-slots. network, i.e., there exists a path between all pairs of nodes
A major aspect of the model is the description of the ciFinally, we define the scheduling complexity of a network

cumstances under which a message is received by its intengeeperty V.

recipient. As mentioned in the introduction, in this paper Definition 2.3: The scheduling complexityof a network
we adopt thesignal-to-interference plus noise rat(SINR) property ¥ is the minimal number of time-slotd’, such

model physical model[12]) in order to determine whetherthat there always exists a valid scheddlefor ¥ of length
a transmission is successfully received. In this model, the— T(S).

successful reception of a transmission depends on thevegtei
signal strength, the ambient noise level, and the intenfaze
caused by simultaneously transmitting nodes. Petbe the
signal power received by a node. and let I, denote the
amount of interference generated by other nodes. Finaly,
N be the ambient noise power level. Then, a noedeeceives
a transmission if and only ify%= > 3, where 3 denotes

the minimum signal to interference ratio that is requireddo complexity complements the notion ofapacity in wireless

m?is\;;\llﬁiléos: E;ztl\J/\(/:c():reksssfl#:)é r\(/aeflﬁgegf. received signal Owenretworks that has been studied in the past. Whapacity
. . ” ) 9 P Captures the amount of information that can maximally be
P, is a decreasing function of the distandgr,, x,.) between

transmitter noder. and receiver node... More specificall sent in abest-casescenario (i.e., without assuming worst-
y " P Y c%se restrictions on the network topology over which messag

g;gt;ﬁg;'zv(ed &g)n:ls powler caght;esrg_c():gﬁf dd Zséh(?licszy:ar:(g c\)’%ust be sent), thecheduling-complexityf a wireless network
nento is axééﬁgtant db(éﬂf\}\fégl.an 46 and de erF: ds on exterFr)laldescribes how fast information can be transmitted imcast-
cond?;ions of the medium, as well as the eF;(act sender-relcei\(/:ase scenario, i.e., If communication links must satisfy a
distance. As customary \;ve assume that 2 [12] certain property such as connectivity. Hence, the schegluli
Let P, be the power level assigned to nagdein a time-slot. complexity describes the theoretically achievable efficieof

A message transmitted from a node € X is successfully any MAC layer or schedull_ng protocol. . .
) : Note that we could define the scheduling complexity of
received by a node,. if

wireless networks in an alternative, but equivalent way- Pa

With regard to a scheduling algorithtd, we also refer to
the scheduling complexity ofl as the number of time-slots
required by this algorithm in the worst-case to schedule the
Pesired network property.

The scheduling complexity in wireless networks is a fun-
damental measure that indicates how quickly communication
requests can be established. In this regard, dtigeduling-

d(f;l)a ticularly, the scheduling complexity also captures theimad
Nty P = @) humber of non-interfering frequenciabat are required in
i €X\{zs} d(ws,am)®

order to schedule a desired network property isirggle time-

As for notation, I,-(z,) = MW denotes the amount of slot Throughout the paper, we will focus on ttime aspect of
interference encounteredat caused by a node, that is con- the scheduling complexity, but all our upper and lower bound
currently transmitting. Finally, the total interferenéeexperi- results immediately apply to frequencies as well.
enced by a receiver, is the sum of the interferences created
by all nodes (except the intended sendeg) in the network, [11. LIMITATIONS OF UNIFORM AND LINEAR POWER
i.e., thetotal interferenceat =, is I, = }_, c x\ (4.y I (i) ASSIGNMENT

Definition 2.1: Consider a time-slot and a power assign-

In this section, we prove the deficiency of the power
ment ¢,. We say that a directed linkz;, z;) P 4 b

is successfully assignment schemes that have been widely studied in the field
INote that all our results can directly be generalized to thgedn which of wireless networks (and that have also been adOpted_ by
nodes can use multiple non-interfering frequencies simatiasly. most standard MAC layer protocols). We study the scheduling



Xg message at,., which yields the contradiction. Because at most
% + 1 links can be simultaneously scheduled in any time-

. slot, the algorithm requires at least- (2QT“’)—1 time-slots
fig- 1. Example with nodes; being located at position; = 2, i = g schedule all nodes at least once, from which the theorem
et follows. O
The other intuitive and frequently adopted way of assigning
power levels when scheduling a set of nodes is the following:
complexity of the following property¥,,,;,: Every noder € |ntended senders transmit at a power level thaprispor-
X can send at least one message successfilyte that tional to the minimal powerequired for transmitting over
property ¥,,,;,, does not restrict tavhich other node a node the wireless link (e.g., [20], [29], [1]). In other words, rfo
must send, i.e., nodes can for instance select their neargspair of senders; and receiverr;, s; sends with power
neighbors as receivers. In other words, we investigate the — ;. d(s;,r;)*, wherep is a constant which depends on
following simple and fundamental problem: How much timehe values ofy, 3, and the ambient nois&. Sinced(s;,r;)®
is required until every node can successfully transmit on€ the minimal amount of power necessary to reachrom
message, when the receivers for each sender are selected §est seems natural to let nodes send with a power that is
possible. proportional tod(s;,r;)®. We call such a power assignment
Because of its simplicity, achieving good solutions folinear, because the power assigned to a node depends linearly
this problem (i.e., good scheduling complexity for properton the minimal power required for its link.inear power
U.in) S€EMS to be easy and intuitively, one would expegksignmentshave been assumed in many papers written on
that simple MAC layer protocols achieve a good performancgpology control (e.g. [24]), in papers that study the isefie
Surprisingly, however, the opposite is true. We prove irs thienergy efficiency in wireless networks (e.g. [29], [1]), a@nd
section that generally accepted power assignment schemessame MAC layer protocols [20]. However, like in the uniform
incapable of achieving a reasonable scheduling complexisse, protocols using linear power assignment can perform
even for the simple problend,,;,. In the worst case, suchpadly even for the basic requiremett,, ;.
protocols have the same asymptotic performance as a pmtocorheorem 3.2:Assume that every node; that intends to

that schedules ea_ch ;mgle network ngde |nd|y|dually. . send a message over a link of lengthtransmits with power
One way of assigning power levels in a radio network is t?’S — p- 42, for an arbitrary constant which may depend on

let every node transmit at the same power. Surcifiorm power a, B, or ]if The scheduling complexity for probles,,.;,, in

assignmenschemes have been widely studied [26], [11], [13] ;-4 3 |inear power assignmentsis min{1, 3/2°} € Q(n),

and adopted in practical systems. However, the foIIowin&,en in the absence of ambient noise.

theorem states that even for propemy,,;,, the scheduling

complexity of a uniform power assignment algorithm is linea  Proof: Consider again the example given in Figure 1.

in n. Let z; be a transmitting node in an arbitrary time-stotin
Theorem 3.1:Assume that every node; has the same & linear power assignment, it transmits at least with power

— . . . «@
transmission power. The scheduling complexity for problerﬁ; ;_p (i, xi-1)", folrl sorge copstanﬁ. As a cpnse;cquence
W, In such a uniform power assignment is at leas2 ¢ of this transmission, all nodes;,j < i face an interference

R S 8 .15// 7777777 o... Which is not sufficiently high for a correct reception of the

Q(n), even in the absence of ambient noise. of at least
Proof: Consider the example given in Figure 1, in Li(z;) > M - ﬁa
which nodeszy, ..., z,_; are placed on a straight line with (2d(zi, zi-1))" 2

exponentially increasing distances between them. We proygcause the distancé(z;, z;) is at most2d(z;,z; 1) in

that in each time-slot, at most- + 1 nodes can send the exponential line. Because at least the same amount of
successfully if the transmission power is uniform. AssuM@terference is caused by all simultaneous senders node

for contradiction that there aré = Z- + 2 nodes sending x; faces a total interference of at least> R - £, whereR
successfully in the same time-slot, andaetbe the right-most s the number of sending nodes to the rightagf Now, let

of these transmitters. Further, assume thgs transmission is ;. pe the left-most node that sends a message in timeslot

successfully received by node. On an exponential line, if,  ang letx, be its receiver. Because the SINR at everymust
is to the left ofxz,, it holds thatd(z;, z,) < d(z,,z,) for each g 4t leasts, i.e.,

simultaneously transmitting node. If =, is onz,’'s right, it

holds thatd(z;,z,) < 2d(zs, z,) for each suchz;. Because % P20
all transmission power$ are equal anc:, is the right-most NJ;R' 7 < 2aN 1 R > B
. * 3a p.
sender, the SINR at, is therefore at most
P N N From this, it follows that the maximum number of simul-
(@, z,)° <22 < 3 taneous senderf,,,. can be at mostR,,.. < % and
N+ (L1 gaaiaye  L—-1 2040 consequently, the algorithm requires at leastnin{1, 3/2%}



for scheduling all nodes. Note that this result holds even Afgorithm 1 Polylogarithmic Scheduling Algorithm
there is no noiséV. [ Input: An arbitrarily located set of node¥

In reality, botha: and 8 are small constant values. HenceQutput: A scheduleS satisfying strong-connectivity
Theorems 3.1 and 3.2 show that even in the most basi¢ A:=X; ¢t:=1; v >4N; u =34 25t a/gg_:é;
s_chedulmg pr_oblemlfmm, only a small constant nu_mbeof_ 2: while |A| >1 do {* Phasep x}
links can be simultaneously scheduled when adopting umifor ,. F, = 0;
or linear power assignment schemes. &or 4 and = 7dB, 4. for each z; € A do

for instance, at most links can be scheduled in parallel. It . choosez; € A\ {z;} minimizing d(z;, z;);
follows that any MAC layer or scheduling protocol that assig ¢, fij = (s, 25);

transmission powers according to either of these two pesici . it fi; &F, then F, :=F,U fi;; fi
performs disastrously in the worst-case. In the subsequert ond for

section, we show how aon-linear power assignmenfields 4. | gt £ — Lo, ..., La_1, such thatL is the set

much more efficient schedules. Specifically, we prove that in- of links f;; of length2* < ¢(f;;) < 2++1;
every network (including the one shown in Figure 1), no fewef,. pelete alljempty Iength?lassé[sﬂ and rename’

than Q_(n/ log™n) links can simultaneously be scheduled in such thatl.;, is the &' largest non-empty length-class:
each time-slot. 11:  for each z; € Awith fi; € 7, do A:=A\ {z;};
V. THE COMPLEXITY OF CONNECTIVITY 12:  for j =0tolog(4fn)—1do B
In this section, we present an algorithm which, for every3: Schedule allf;; € F, N g o thog(4ﬁn)+j)
possible placement ofi nodes in the plane, successfully using subroutinéSchedule()

schedules atrongly connected subgragh O(log*n) time- 14:  end for
slots. This proves that in wireless networks, the schedulins: end while
complexity of strong-connectivity is at most polylogarittc ~ 16: ¢, (z;) := NG - £, for x; € A

in the number of nodes. 17: S = {1, ..., Pt—1};
Theorem 4.1:The scheduling complexity of strong-
connectivity in wireless networks is at maStlog*n). Subroutine Schedule():

This theorem captures a fundamental characteristic ofl@sse _
networks: scheduling a strongly connected topology theore 1: Let 7 be the set of links to be scheduled,
cally remains efficient in every wireless network, even when  classified in at mosp = [ 77155 — 1] length classes

n becomes large. As shown in Section llI, this is in contrast £’ = L7,.. .,L;;
to the)(n) scheduling complexities achieved by uniform and2: for each f,, € FNL; do 7(x,):=p—k+1;
linear power assignment protocols. 3: while F # () do

Algorithm 1 proceeds iphaseseach phase corresponding 4:  for each z; € A do ¢ (z;) :=0; end for
to an iteration of the outermost loop. The purpose of thiss: F; :=F; E;:=10;
outer loop is to gradually reduce the numberaative nodes 6:  while 7 # ) do

z; € A. Initially, the set of active noded contains all nodes, 7: choose the linkf;; € F; of minimal length;

and whenever a node becomes passive (by being discarded By = E U{f5} Fo=FA\ALG)

from A), it does not transmit in any subsequent time-slot.o: oi(x;) = u(45n)7(ﬂ”i)é(fi§)“; {*Schedulef;;+}
At the outset of a phase (line 5), every active node:; 10: for each fi, € 7; do

chooses its closest active neighbor, sgy and the directed 11: dir = 1(x;) — 7(z1);

link f;; = (x;,z;) becomes designated to be scheduled ir: if 0;b=0 and xz; € B(:cq;,ué( ;;)) then
phasep. After breaking cycles of length (i.e. two nodes that 13: Fii=Fe \{fre};

are mutually closest neighbors) in Line 7, is the set of 14 else if xy, € B (x;, (4n5)5““% U ;})) then
all selected links that are scheduled in phasef, forms a .. Fii=F\ {fuck;

nearest neighborhood foresbnsisting of a set of trees, from , . end if

each of which only the root remains active in the next phase,. end for

p+1. This process is repeated until there remains only a singlg. g while

active node. At _thls point, the _scheduled links formieected 5. £ ._ F\E; t=t+1;

treetowards a single node, which can then complete the strong. o

connectivity requirement in a single additional time-slot
The main challenge is how to efficiently schedule the forest

F». As we have seen in Section Ill, neither standard linear nor

uniform power assignments lead to acceptable solutions. SoThe links in 7, are classified into at most different

the problem is: How do we choose the sending nodes andnan-empty length classek;, such that the length of links

what power levels should they send? As we will see, both of the same class differ by at most a factor Df(Lines 9

these subproblems are strongly interrelated. and 10). The algorithm schedules these links usieg4/5n)

nd while




Of particular interest is the power assignment adopted in
Line 9 of the subroutine. In comparison to a linear power
assignment, the transmission power assigned to an intended
senderz; is scaled by a factor of/(43n)7(*), thus dispro-

f3 f ‘ portionally favoring short links over long ones! That is,des

transmitting to close nodes “overpower” their receiverscmu
more than transmitters of a long link. Note, however, that

fS% f, the scaling factordoes notdirectly depend on the length of

£ ! /"' f; relative to other links. Instead, the power level depends

6 ‘ y:\.x ‘ ‘ on thelength-classto which f/; is assigned. Because empty
S

length classes were deleted froth before the subroutine,
Fig. 2. lllustration of Algorithm 1. In the example, link , f4, andf5 are @ node’s power scaling factor does not depend directly on
dropped fromZF;. Note thatfs is not dropped because its receiver is outsidéts Iength Rather, it depends on thelative position of its

the critical ball, even though its sender is close fram length classL), in £’. This somehow counter-intuitive power
assignment in combination with the greedy procedure for
selecting transmitters is the key to our algorithm. It ketpes

calls to aschedule()subroutine, which lies at the heart OfSINR high for all intended receivers, while still allowing t

our algorithm. In the first call to the subroutine, it schesiul schedule many I|nk§ n parallgl. . .
. . . As shown in Section lll, neither linear nor uniform power
all links in length classeg., Liog(4pn), L210g(48n); - - -» IN the

assignment schemes result in an efficient schedule. Inasintr
second call,L1, Liog(48n)+15 L21og(4pn)+15 - - -» @and so forth. 9

. our algorithm’s power assignment liés betweenthese two
In other words, the length classes scheduled in the sam 9 b g

. extreme cases. Unlike in linear power assignment schemes, i
subroutine call are always separatedlby(45n) — 1 length P 9

. ; . f hort link I in th hat th i
classes. The idea is that the length of simultaneously stbéd avors s ortlinks over long ones in t © sense that t eymnan;
; ; g at a higher power than actually required to reach the receive
links should be either similar (same length class) or ve

. . But unlike in uniform power schemes, nodes having long links
different, but not in between. : . o
still use a higher absolute transmission power than shas.on

At the outset of the subroutine, the = [m — 1] _ _ )
received length classes are renamed4oL, ..., L, and the Analysis: We now show that Algorithm 1 is both correct

set F denotes the links that must be scheduled. Schedulifgd efficient. We start with a simple lemma that characterize
this forestF is done as follows. Each outer-loop iteration of1€ length ratio between two links that are to be scheduled in
the subroutine corresponds to a time-gidh which a subset the same execution of the scheduling subroutine.

of the links of F (denoted byE}) is chosen to be scheduled Lemma 4.2:Let f,, and f,, be two links that are consid-
simultaneously. The selection af; from F proceeds as ered in the same subroutine call, and 1€t) > 7(u), where
follows. Starting from the shortest link, the algorithm gddy = andu are the intended transmitting nodes. Then, the length
picks links f;; (Line 7) from F;, a set denoting the links from of f., is at least/(f.,) > L(4AnB)0= - U(fuy).

]_-‘that are s_tl_II eligible to be selected in time st(_)lmtlally, all Proof: By Line 13 of the algorithm, only links in length
links are eligible,7; = 7, but whenever a link is selected, ag,,sqeq,.

L i L ;,...are considered in the
. . . . . j» Hlog(4B8n)+j5 H2log(48n)+75

shpw_n in Figure 2, links Whoséistance—to.-recelver VS. IengthSame execution of the subroutine. The valuesgf denotes
ratio is too small are removed fro#; (Lines 12-15). Such

the number of non-empty length classes that separate links
links become eligible again in the next time-slot. pty 'eng b

fzy and f,,,, each incurring at least a doubling of the length.
As we show in Lemma 4.8, this distance-length threshoighking into account that lengths can differ by at most a facto

avoids that too many links are discarded frdfin any time-  of 2 within a length-class, it follows that(f,,,) is at least

slot. The specific distance-length ratio of a lifik depends on 1

the valuer(z;), which expresses that length class containingt(f,,) > £(fu,) - 2= W=t — g(f, Y. ~(4ng)%=.

fij is the 7(x;)*™® shortest length-class of the phase. For 2

two intended senders; and z,, the valued,;, denotes the

difference between(z;) andr(z,,), i.e., the number of length

classes separating; and x,,. When scheduling the link*

]
We now show that the schedule obtained by Algorithm
1 is correct In particular, we prove in Theorem 4.6 that
with senderz, and y. in a time-slot, larger linksf; are all transmissionsE; scheduled in a time-slot during the
deleted from7, if the intended receiver is located in the balf!90rithm are received successfully by the intended recsiv
Blas, (4n) Ssit1 .¢(f*)). The intuition is not to schedule aMore specifically, we show that the SINR at every intended
link in F if its receiveris in physical proximity of a much receiver is high enough, i.e., larger than In the following

shorter, concurrently scheduled link. Note that the radius cﬁe”efs of Lemmag 4'36 4.4, and _4.5,hwe bound th; thtal
the ball depends exponentially on the two linkefative length 'Mererence experienced at a receiverthat was caused by
clgsses Using a simple dlsta_nce function instead would eitherzy, tact it can be shown that any power assignment that depdineistly

ruin the schedule’s complexity or correctness. on the relative length of links cannot lead to an efficientestiie.




simultaneously scheduled links from smaller, the same, imtended receivers are within distaneé( f;.) of the sender are
larger length classes, respectively. deleted fromF; in line 13 of the scheduling subroutine. More
Lemma 4.3:Consider a scheduled link, with intended precisely, around each transmitting noge there can be no
senderz, and receiverz,. Let I be the total interference other scheduled sendgf from the same length class within
caused at,. by simultaneously transmitting nodgsfor which  distance at least((f;) — £(f;) = (1 — ) (fi) > “520(;).

7(y;) > 7(x). It holds that This means that diskd; of radius “‘ L f:) centered at
v all transmitting nodegy; from the same length class do not
I7 < 757(15)—1(4”)7(15)_ overlap. The area of each such dlsk4|(sD ) = (B224(f:)) %

Proof: Bounding the interference caused by substantrale/oconSIder ringsRy, of width 5(u — 3)¢(fa) ‘around .

1 —
shorter links is tricky, because our algorithm’s non- I|nea nsrstrng ofkaﬂ 1r)12)desyz) ]Z)fr )ngle::auskefl:he (i)sigfcze from
power assignment scheme assigns such nodes a dlSpI’OpOI’tI(S Zt’o Tan_ scheduled transmgrctter (in the same length class)
ately large sending power. Consider a lifikwith transmitting y g

, . . : _ exceptycS is at leastl (u — 3)¢(f,), the first such layetR,
nodey;. We begrn by showing that the interferente(y;) at does not contain any other scheduled sendeConsider all
x, caused byy; is at most

transmittersy; in Ry. All corresponding disksD; must be

L(y:) < v(4pn)7") 71 (2) entirely located in an “extended” ring of area
Assume for contradiction that inequality (2) does not hoId A(Ry) (k4 1)(n—3)e(f:) n (1w —2)(f;) ?
i.e., assume that F 2 4
P (‘W")T(yl)f(fy) ! 2)—1 k(p — 3)e(f; — )\
I.(y;) = — 4 @s)=1, p=3)(fi)  (w—2)fi)
(y ) d(y“xr) d(y“ xr) ( 6 ) — ( 2 — 4 T
Simplifying the above inequality and definingto be the ratio 1 3\ 2 N2
X = d(@é’ T)T) it must hold that < 3 (k + 2) - <k - 2) ] (1 —2)%0(fi)*r
(46n)7 (yi)=7(zs)+1 o e 1
| = (k) 2P
and consequentl;(zlﬂn) = > x. This means that the
distance betweep; andx, is upper-bounded by Each transmittey; in Ry has distance at leagt(u —3)((f.)
Siatl from z, and sends with a power at most(44n)"(¥:)
d(yi ) < Lfy) - (46n) 7 (2¢(f.)). Using the fact that the disk®; do not overlap,

However, this establishes a contradiction to the definitgbn we can bound the interference at from nodes in ringRy
Algorithm 1. In the iteration of the innermost while-loop inusing a standard area argument.
which f, was scheduled o, would have been deleted fro

o - o PR = 3 L)

if d(yi,z,) < L(fy)- (4ﬂn) = in Line 14. Hence/f, and f,

Yi € Ry
would not have been scheduled in the same time-slot, which
m(yi) o
establishes the contradiction. < A(Ry) . V(416n) (%(f’”i)
Because the number of transmitting nodes is at magst A(Di) (2 =3)l(fz))
the total interference caused by transmitters of substiynti - 16(k + 3)v (48n)7(@s) . 92
smaller links is = ke (u—3)
ID= ) Lly) < nev@Apn)y 0 U Rk
yir (y:)>7(2s) ket (p — 3)”
from which the lemma follows. (1 Summing up the interferences over all rings yields
The next Iernma similarly bounds the interference from . > 2Up(4fn)T@) . 220 ]
nodes that are in the same length-class. I, < ZIT( k) < = 3) =)
Lemma 4.4:Consider a scheduled link, with intended o) o2 k=1
senderz, and receiverr,. Let I be the total interference < 241’(45”) -2 a—1
caused at,. by simultaneously transmitting nodgsfor which (1 —3)~ -2
7(yi) = 7(xs). It holds that < 257(%)—1(471)7(%)’
I < ZﬁT(I*") ()T, where the second-to-last inequality follows from a staddar
Proof: By Lemma 4.2, we know that for each link, bouno_l for Rleman_n_s_ zeta-function and the last one from
plugging in the definition ofi. O

fi # fz, with transmitting nodeyi and 7(y;) = 7(xg), it
holds that2¢(f,) > ¢(f;) > 2
scheduling a linkfy, all links in the same length-class whos

Finally, we bound the interference created by links that are
). In the algorith ft
£(f2). In the algorithm, after dn higher length classes thafy.



Lemma 4.5:Consider a scheduled link, with intended Lemma 4.7:Consider a diskC' with radiusr., and disks
senderz; and receiverz,. Let I 7 be the total interference D; with centersc; and radiusr;, r; > r. for all i. Let x be
caused at;,. by simultaneously transmitting nodgsfor which  the maximal number of such disk3; such that both of the

7(y;) < 7(xs). It holds that following properties hold:
I+ o< EBT(IS)*(M)T(“) o Every D; overlaps withC' in at least one point.
T4 ' « No disk D; contains a centeg; for i # j.

Proof: In F, every sender has a link to its closestrhen, it holds thak < 12.
neighbor and hence,(f,) < d(y;,z,) for all links f, with

intended transmittey;. The interference at, caused byy; is Proof: The proof follows a standard geometry argument.
therefore at most Assume for contradiction that there ateg disks D; that

_ fulfil both properties stated in the lemma and consider the
P, - u(4ﬁn)7(y'l)£(fy)“

IL(yi) = < corresponding centers;. There must be a cone of angle
d(yi, ) U(fy)> centered at, that contains at least such centers:;, cs, cs.
= v(4Bn)" W) < p(4fn)T@IL Consider the two senders that are closesttcsayc; andc,.

Because the cone’s angle sandr; > r. for every disk,c3
must be closer to either; or ¢, than to any point irC. Hence,

v N ‘ D3 either violates the lemma’s first or second property.[]
I+ _ Ir ) < - T(zs)—1 4 T(a:a). 3
" Z () = 45 (4n) Using Lemma 4.7, we can derive the following key lemma
that establishes the bound on the algorithm’s progress.

Summing up over all nodes concludes the proof, i.e.,

yirT(yi) <7 (2s)

|

. . . . Lemma 4.8:Consider an arbitrary time-slat during the
Having thus bounded the interference caused by links ecution of Algorithm 1 and leF be the set of links that
all different length classes in Lemmas 4.3, 4.4, and 4.3 9

S . . rémain to be scheduled at the beginning of time-&ldtet the
establishing the correctness of the algorithm is now easy. | : :

. . constants be as defined in Lemma 4.7. It holds that for some
particular, we can show that every transmitted message IS

successfully received throughout the algorithm. constanty > 0,

Theorem 4.6:Consider an arbitrary time-slat All sched- E| > 7] >y 7 .
uled transmissions®, in ¢ are received successfully by the (logon +2)K + 4(p + 4)? log,n
intended receivers. That is, the computed schedule isaorre  Proof: The proof is based on a geometric argument. We
show that for every link selected in steps 7-9 of the scheduli
and receiverz,, that is scheduled for transmission in timeStProuting, there can be at most a logarithmic number of

slot , i.e., ¢,(x,) > 0. The transmission power of, is longer communication links that are deleted frdfn i.e., not
P —,u(.4én)tf(x:)€(f )oj By Lemmas 4.3, 4.4, and 45 weScheduled in time-slot. On the other hand, when choosing
xr xT . 9y 1y Dy

know that the total interference faced st is at most a link, the algorithm removes no previously selected shorte
links from F;. From this observation, the lemma then follows.

I, < I-+I10+1I' < 3_ng(zs)—1(4n)7<rs). Consider an arbitrary iteration of the inner-most whilegoo
4 in which the link f* is selected for transmission in time-slot
Hence, definingX := f7(=)~1(4n)7(=:) > 1, the SINR at t, i.e., Ex = Ey U {f*}. Assume thatz; is the transmitting

Proof: Consider a link f, with intended sender:,

the =, is lower-bounded by node of f*. Because the algorithm considers the links#An
o) . in increasingorder, only links that ardonger than f* can
W 46X be dropped fromF; in steps 12-15 of the same while-loop
SINE = N + ?Zl_vgf(m:)q(M)T(%) = 1+3X > B iteration. When bounding the number of longer links that can

be dropped due to the scheduling ff, we distinguish two
In view of Inequality (1), this proves that every transmigsi cases. First, we boun#&®(f*) which denotes the number of
scheduled by Algorithm 1 is successfully received. [0 dropped links that are in the same length classfagLine
Proving correctness (i.e., the absence of collisions) ef th3). Secondly, we conside?(f*), i.e., the number of links

computed schedule is only one side of the story. In order @ higher length classes erased frofa in the same iteration
obtain an efficient schedule, we must also guarantee thay ma the while-loop (Line 15).

links can simultaneously be scheduled, such that all commu+ne start with PO(f*). For each dropped linkf,, with
nication requests can quickly be satisfied. In Lemma 4.8, We ) = 7(fu), it holds that20(f*) > ¢(fu) > L(f*).
derive a lower bound on the amount pfogressachieved in - consider for evenyf,, a diskD,, of radius((f,.,) around its
every single time-step of the algorithm. Specifically, wesh transmitterz,. Becausef; C F, and becausé, is a nearest

that at each time, at least &2(;5;) fraction of the links in neighbor forest, disksD, do not overlap. Furthermore, the
F that remain to be schedulede indeed scheduled. area of each such disk is

Before proving this claim in Lemma 4.8, however, we
require the following geometric helper lemma. A(D,) = %g(fw)% > %g(f*)%,




By the condition given in step 12 of the scheduling subraytinaround each corresponding sendgrNotice that there are at
a link f,, with 7(f*) = 7(f.,) is dropped only ifz, € leastk+ 1 disksD, each of which overlaps with disk' in at
B(zs, nl(f*)). Hence, the transmitting node, must be least one point (where; is located) and no disl; contains
located within distanceu/(f*) + ¢(fuw) < (1 + 2)¢(f*) of the center of another disk;, because the linkg; form a
zs. That is, all disksD,, corresponding to removed links arenearest neighbor forest. However, the possibility of pagki
entirely contained in a diskD* centered atr; with radius « + 1 disks D; in such a way contradicts Lemma 4.7 and
(u+ 4)¢(f*). Thus, the number of dropped links iR°(f*) hence, it follows that there can be at mastinks f; with

is bounded by 0g; = 1.
(i + 4)20(f*)?n Next, we bound the remaining number of dropped links
Po(f*) < 'ul— :4(u+4)2. fi whose receiversr; are situated inC3. Each of these
al(fr)Pm remaining links has length at least(43n)%¢(f*) because

We now turn our attention to the more complicated cases > 2. Moreover all receivers are located @k, that is,
P*(f*). Recall that the sending node §¢f is =, and denote d(zs,7;) < (48n)al(f*) < $(4Bn)2e(f*). Again, it follows
by f1,..., fr all links that are dropped fronF; in Lines 14 by Lemma 4.7 that the number of dropped links with > 2
and 15 of the schedule subroutine for whiehf*) > 7(f;), in Cs is upper-bounded by. O
i.e., d;; > 0. For each such linkf;, s; and r; denote its | emma 4.10:It holds for alli that if 7; € Ry, k > 3, then
intended sender and receiver, respectively. The lifksre < R, for h > a(k — 1). That is, for anyk > 3, there

ordered according to the distandéz.,r;), where f1 is the can be at most dropped receivers in ringy. . .., Rogs1)-
link whoser; is the closest intended receiver fram.

By the definition of the algonthm a link; is dropped if and
only if r; € B(zs, (406n) a+16(f )). Turning this argument
around, we observe that a link; whose receiver; is at
distance more that3n)= £(f*)) from z,, is only dropped if
ds; +1 > ¢ and consequentlyi;; > . In combination with

Proof: It follows from equations (3), (4), and the defini-
tion of a ring, that every dropped link with receiver in rings
Ri,...,Ro—1) must be of length at least(43n)"¢(f*)
(otherwise, it would not be dropped). On the other hand, the
distance between a receiver in these rings ands at most

Lemma 4.2, this yields the fact that for a dropped lipkwith gz, r,) < (45 YEEEE ) = (4Bn)R R
d(xs,rs) > (4Bn)5L(f*), ®) < (4ﬁn)k€(f) < Uf),

the length/(f;) of the link must be at least where the second to last inequality holds for> 1, a >
Ufi) 2 1(4[3”)%00 5 ) 421,9anv(3ekcin3orgviogogzugha\/tvi!clrll(era:3iJZj(zr)oc;fro(ﬂnloleenargﬁ

In the following, consider an exponentially growing serie§enders; having its receiver; in rings Ry, . ..., Ro(r—1)- Each
of disksC;, j = 1,2, ... of radiusr; — (4577) ¢(f*) centered of these disks must overlap with the disk centered: atof
Jrd = L4 J

radius (46n)F 1+ ¢(f*) and no diskD; contains the center
of another disk. Hence, as illustrated in Figure IV, it fol®
_ by Lemma 4.7 that there can be at mestiropped links with
(ABn) 5 0(f*) < d(zs,2s) < (48n)"= £(F*). receiver in ringsky, ..., Ro(r—1). O

A key observation for the proof is that there cannot be man tHIavmgg roven dLemmglsl_ 4l'<9 anc(ij ‘:'hlo’ we c?n dnotvnl boundfth]e
links dropped from rings which are close to one another. Thjgtal number of dropped links and thus conclude the proof o

intuition is formalized using two helper lemmas. Lemma 4. bemma 4.8. By Lemma 4.9, we know that at most the est

shows that there can only be a constant number of recervé?gelvsrs?’ : 't dr% can be I?ca]'iei I:;CSB Al otrer reLcervers
in the first three rings. In Lemma 4.10 we then prove that ust be located in a ring;. for y applying Lemma

for an arbitraryi, the receiver; is located inR;,, k > 3, there 10, it follows that the receivers,.,, cannot be closer ta;

cannot be more than other intended receivers from droppecman n r'ngé%a(kfl) = (f?ouf retﬁe';ergiwrl cannot Ibe C|C’|S?r
links in the subsequent(k — 1) — 1 fings. anin ringRy,:_,, and so forth. By thus recursively applying

] ) Lemma 4.10, it follows that receiver ;.1 cannot be
Lemma 4.9:1t holds thatrs,; is located outside of’s, closer than in ringR,,, where); is
i.e., at most2« links with receiver inC5 are dropped from '

Fi.
! = 207 — Za > o,

Proof: First, consider all linksf; for which d,; = 1.
Each such link has length at ledsf;) > 5(45n)((f*). Since 5. <o there are at moetdlfferent length classes, the last
?r%g from which a receiver (and its link) can be droppedis.

fi was dropped, its receiver must be located within distan
1/a i

(46n) /LS ) of .. For 3 > 1 anda > 2, it holds that Consequently, the total number of links that can be dropped

when selecting linkf* is at most(j,, + 2)x, where

at z,. Furtnermore, define gng R; as the area’; 1 \ Cj,
e., it holds for every node; € R; that

(48n)'/* < 1(48n). Now, assume for contradiction that-1
or more Imksfl with é,; = 1 exist. Also, draw a dislkC' of _
radius(48n)/*¢(f*) aroundz,, and disksD; of radius/( f;) odm < n = j, < log,n,



Theorem 4.12:For every network, Algorithm 1 produces a
correct schedulé that induces a strongly connected subgraph.
Furthermore, the length of the schedule7i&S) € O(log*n).

Proof: As for the scheduling complexity, we start by
showing that every subroutine call requires at m@stogn)
time-slots. Letm denote the total number of links that are
to be scheduled during a subroutine call, i.e., initighy] =
m < n. By Lemma 4.8, at least @(@) fraction of the
links in F that remain to be scheduled are scheduled in each
time-slot in the subroutine. After the first time-slot, aas

nodes have been scheduled. Generally, by repeatedly

Xlogzn
SR applying Lemma 4.8, it follows that after the" time-slot,
Xs R Rut-1) for £ = Inm - log,n, the number of links that have not yet
been scheduled is at most

Fig. 3. lllustration of the proof of Lemma 4.10. Because thegthrof links

. A e ; : k
«, fb, and f. is larger than the radius of the disk in which all receivers
far fo fe g m - < X ) < m.efxlnm < 1.

must be Iocate_d, at most such |in|§s can exist. In the e)_(ample, the closest - log..n
neighbor ofs. is s, and notr., which yields the contradiction. @
That is, each invocation of thechedule()subroutine requires
at mostO(log®n) time-slots. The number of subroutine calls in
which implies P*(f*) < (log,n + 2)k. each phase of th_e algorithm (lines 12-14} is cIeM@(M@.
In summary, for every link that is selected in the inner- All that remains to be done to derive the algorithm’s

most while-loop of the schedule subroutine for schedulimg §chedul|ng complexity is to bound the number _Of phases.
a time-slot¢, at most By Lemma 4.11, the number of active nodes is at least

halved in every phase. Therefore, at mastn phases are
PU(f) + PY(f*) < 4(u+4)*+ (log,n + 2)k required until there remains only a single active node upon

which the algorithm terminates. Putting everything togeth
communication links are dropped frok;. Therefore, the the algorithm’s scheduling complexity is

number of communication link$E,| that are scheduled in

time-slot¢ is at least T(S) < Inm-log,n -log(46n) - logn € O(log'n).
By > |7 By Theorem 4.6, every transmitted message is successfully
T 4+ 4)2 + (log,n+2)k + 17 received. Furthermore, observe that the union of all scleedu

from which Lemma 4.8 follows links F, forms a directed tree towards a single node (the
L 48 id ’ 'th' | bound on th one node that remains active at the end) in the network. This
emma 4.8 provides us with a lower bound on the amouphje -4 then connect the network with a single transmission

lc.)f kprogrlesst 3ch|eved ?1y thel algor!['ghn: wh_ten Ifcheduhn? tr|1faence, the union of all scheduled links is strongly conrgcte
Inks selected In onephase In particular, 1L alows Us 10 o "there exists a path between all pairs of nodes. [J
derive a bound on the time required to schedule the nearest

neighbor forest in this phase. However, we also need to V. LINEAR POWERASSIGNMENTALGORITHM
bound the number of phases that the algorithm executesebefor

o o s . learly, MAC layer pr I n uniform or linear
termination. This is done in the following lemma. Clearly, C layer protocols based on uniform or linea

power assignment strategies have the practical advantage t
Lemma 4.11:Let A, denote the set of active nodes at theheir implementation is particularly simple. The lower Inolu

beginning of phasg during the execution of Algorithm 1. For of Section Il for uniform or linear power assignment prodte

eachp, it holds that|A, 1| < [A,|/2. is based on a network in which some communication links

Proof: In line 11 of Algorithm 1 all nodes that have an@'® €xponentially longer than others. This raises the qrest
outgoing link (i.e., that transmit during this phase) ammosed Whether the performance of uniform or linear power assign-
from A. Consider the connected components of forgst Ment approaches may also deteriorate as badly in case the
In each such connected component, there is at maside length of the communication link is less varied. If, for iaste,

that has no outgoing link, because each connected comporlBfi@" power assignment strategies perform well in rangoml
forms a directed tree with a unique sink. The claim followd€Ployed average-case networks, heuristic protocolsifiet

because each connected component consists of at least W'e linear power a_ssignmen_ts may be employed in non-
nodes. critical networks in spite of their bad worst-case schedyli

Finally, we are ready to prove the main theorem of this seEOMPIexity.

tion containing the claimed correctness and efficiencyltesu !N this section, we propose and analyze an algorithm that
of Algorithm 1. adopts dinear power assignmenSpecifically, we show that

this algorithm performs poorly only in scenarios in whicleté



Algorithm 2 Linear Power Assignment Algorithm Proof: The proof follows exactly along the lines of the

Input: An arbitrarily located set of node¥ proof of Theorem 4.4 (only using different constants) and is

Output: A scheduleS in which every noder € X therefore omitted from this paper. O
can send successfully to its closest neighbor.

1: For eachr; € X, let f; be the link to its closest neighbor;
2. Let L= Ly,...,La_1, such thatL, is the set 1 2 1 2 1 2
of links of length2 < ¢(f;) < 2~+1; <

3 p=06{/2e s ps AN =1 “Zk} 3.74 13143 4

4: for each L; # 0 do

5. Partition the plane in squares of width- 2*; 1 2 1 2 \ 1 2

6: for j=1to 4 do ~ ;

7 Select a maximal independent set of squgres 73 4 3| 4 3 4

(cf. Figure 4); —
8: repeat u2"
9: For each selected squafg pick one link
fi € L;, whose intended sendet. is in R; Fig. 4. Inline 7 of Algorithm 2, the algorithm picks all sqearnumbered

10: ¢t(Ii) = f(fi)a; py_g. The example shows an inner-loop iteration for Iength-cl_ﬂasand
j = 3. The algorithm schedules one unscheduled communicationfiark

11: Do not consider linkf; in future iterations; each selected square (if there exists one).

12: t=t+1;

13: until all links in active squares have been picked;

14:  end for Theorem 5.2:The scheduleS obtained by Algorithm 2 has

15: end for length at mostl’'(S) € O(g(V)) and fulfills property¥,,,;,,

16: S :={¢1,..., -1} i.e., each node can send successfully at least once.

Proof: Correctness follows directly from Lemma 5.1 and
from the observation that for every sender there is a time-
are links belonging to many different orders of magnitudglot ¢ for which ¢, (z;) > 0. As for the length of the schedule,
For simplicity of presentation, we again consider the semplye first observe that there are at mastg(V)) non-empty
network propertyWV,,;,, i.e., we want that every node canength classes, i.e., iterations of the outermost loop.dden
transmit successfully at least once. By applying a tecteiqit only remains to prove that a single phase requires only a
similar to the one in Section IV, strong connectivity can bgonstant number of time-slots.
achieved at the cost of an addition@(logn) factor in the  consider the phase in which length-clas is scheduled.
scheduling complexity. We first show that the number of potential transmitters in a
The diversity g(V) of a set of nodes is the number ofcell can be at most a constant. Because every transmitting
magnitudes of distances [19]. Formally,V') is defined as  node has a link to itslosestneighbor, the disks; of radius
10(f;) = 2*=1 around each transmitter; do not overlap.
g(V) = {m | Jwi,x; € X+ [log(d(wi, x;))] = m}|. Consider all nodes located in a céll The disksD; belonging
to these nodes are completely contained in a square of side-

In our case,g(V) denotes the number of non-empty IengtrI]efngth (u+ 1) -2*. Hence, it follows from the standard area

classes of the nearest neighbor forest links. In the exam%gcking argument that the number of links dh is at most
shown in Figure 1, for instance, the diversity ¢&V’) = 4(p +1)2 € O(1) in each cell. The proof is now concluded

log (2™) = n. In the sequel, we show that Algorithm 2b - : :
. . : y observing that in a grid, always one fourth of the cells can
achieves a scheduling complexity B(5) € O(g(V)). be scheduled independently as shown in Figure 4. O]

Tesnct A s Sneosy et L oy compren i

buffer distance betweén each pair of - Lflsed in Section 1V, the following theorem can be derived.
pair of transmitting nodes. In

each phase of the algorithm, only links belonging to the sameTheorem 5.3:Algorithm 2 can be adapted to obtain a

length class are scheduled. In order to schedule one susk ptgheduling algorithm for the strong-connectivity propestith

for links of length2* < ¢(f;) < 2¥1, the algorithm partitions Scheduling complexity) (min(n, g(V) - logn)).

the plane into grid-cells of width: - 2¥. In each time-slot, it Proof: If g(V)-logn < n, we combine Algorithm 2 with
chooses a maximal independent set of cells and selects ane technique of merging clusters iteratively in each phase

link in each such cell for scheduling. _ as done in Algorithm 1. Using Lemma 4.11, it requires at
In the follqwmg, we again establish the claimed Correwneﬁ]OStO(logn) phases (each taking tim@(g(V))) until the
and scheduling complexity results. scheduled links form a directed tree towards a single node.

Lemma 5.1:Every node can send successfully in the uniqué g(V) - logn > n, the algorithm can simply schedule each
time-slot¢ in which ¢, (z;) > 0. node individually. O]



It is interesting to compare the result of Algorithm 2 withnetworks. Moreover, the proposed algorithms do either not
the solution given in Section IV. Since the diversigyV) yield provable worst-case guarantees or are based onuduti
can be as large as, the O(log4n) schedule by Algorithm 1 to complex optimization problems that can only be solved
improves the scheduling complexity by an exponential facton exponential time in the number of links or nodes in the

network.
VI. RELATED WORK Not surprisingly, the study ofonnectivityin networks has

Our work has connections to several different areas that haalways been of great interest to the networking community.
been the focus of attention in the networking community. Ibsing results from percolation theory, [11] investigatég t
this section, we want to highlight some of these connectioritical power level that is necessary forandomly deployed

It is clear that our work has ties tooloring problems and wireless network to become connected under the assumption
more specifically, MAC layer protocols. The scheduling cormthat all nodes transmit at the same power level. Ever since,
plexity of a wireless network expresses the number of timeiuch research effort has been directed towards studying
slots that are required until a certain set of communicati@symptotic connectivity requirements in randomly disitél
requests can be satisfied. A multiplicity of MAC layers haveireless networks, e.g. [31], [8]. What these papers do not
been proposed for wireless multi-hop networks [5], [26D)]j2 consider, however, is the complexity of actualgheduling
[22], [14], some of them particularly designed for energythe communication links that form the connected network.
constrained networks such as sensor networks [30], [33], [2 While the above papers study connectivityrandom net-
The results obtained in Sections Il of our paper place stromvorks the study oftopology controlhas typically focused on
lower bounds on the amount of time required by most of thesebitrary, possibly worst-case networks. In topology coint
MAC protocols in order to schedule a set of requests in thibe idea is that instead of each node transmitting at a marimu
physical model. On the other hand, the algorithm in Sectibn Ipower level, the nodes collaborate to determine a trangoniss
theoretically constitutes a close to optimal way of schiedul power that results in a network topology which exhibits
requests, even when these requests are constrained ty satés/orable properties. Not surprisingly, the first topologyn-
the connectivity property. trol protocols focused on guaranteeing the most basic of all

The traditional graph-theoretic way of studying schedwlinnetwork properties [24], i.econnectivity Subsequently, a lot
problems results ircoloring problems. When modeling theof effort has been made in developing more subtle network
network as a grapl? = (V, E), the design of a collision- structures that combine desirable properties such as levggn
free MAC layer boils down to obtaining 2-hop coloring of paths, low node degrees, planarity, or sparseness, eg,, [2
the nodes in the interference graph [25]. The efficiency ¢27], [18] or to study heterogenous networks [17].
such a MAC layer protocol then depends on the number of The problem of topology control is that it assumes a
colors used in the process. Scheduling and coloring prablestatic network model, i.e. without considering the factttha
of this kind have been studied in a variety of papers, e.§), [1 the selected communication links may not be scheduled in a
[21], [25], [15]. Algorithmic aspects otapacityin wireless reasonable amount of time. In this regard, topology control
networks have also been studied in various graph models, ésga theoretic notion that abstracts away physical regrist
[16]. caused by interference. A recent step in the evolution of

One shortcoming of these and related graph-theoreti¢apology control has been to explicitly take into considiera
models is that they ignore the accumulated interference tbie issue ofinterference Although again based on static
a large number of distant nodes. Even more severely, thegaph-theoretical communication model, [6] proves that al
models imply that simultaneous transmissions on proximat&ssic topology control algorithms fail to actually reduc
links necessarilyinterfere with each other, which is not trueinterference in wireless networks.
in a SINR environment. Specifically, a nodge may receive
a message from, in spite of being in thetransmission- VII. CONCLUSIONS
range of other simultaneous transmissions, if the transmission Clearly, our results in this paper are not directly compbrab
powers of the different senders are properly adjusted. As results on the capacity of wireless networks. Nonetlseles
shown in this paper, such highihon-linear power assignmentsit is intriguing to discuss the connections between these tw
are in fact indispensable ingredients of any fast schedulicomplementing approaches. The results on the capacity [12]
algorithm. Studying scheduling in graph-theoretical nisdeof wireless networks essentially give a negative answeh¢o t
simply abstracts away this crucial aspect. possibilities of wireless networks by limiting the throymh

Integrated scheduling-power control problems in the SINfat can be achieved per node as the number of nodes in the
model have been studied in various papers, e.g., [7], [9], [4etwork grows. In contrast, our result is of a more positive
[3]. In [4], [3], the impact of power assignments to nodes onature. Specifically, our result shows that when using prope
the achievable throughput capacity is studied, wherea§q9y] MAC layer protocols and power assignment schemes, complex
study the problem of finding a schedule and power controbmmunication requests can theoretically be scheduled effi
policy that minimizes the total average transmission powerently even in large-scale worst-case networks. This iespl
in the wireless multi-hop network. None of the above papetsat unlike for the capacity, there exists only little thetr
provides a bound on the scheduling complexity in wirelessal limitation to scaling as far as the actusthedulingof



transmissions in wireless networks is concerned. Intewglst [12]
however, such a fast solution cannot be achieved using t[rlwsg
intuitive uniform or linear power assignment schemes tlaaeh !
been widely adopted by standard MAC layer and scheduling
solutions. Instead, we have shown that a more subtle, néH!
linear handling of the transmission powers at nodes is requi
in order to achieve efficient and scalable solutions. [15]
Our work opens a wide range of directions for future
research. Most obviously, it would be interesting to inigege
the scheduling complexity of other network properties. Btor [16]
over, it would be intriguing to gain a deeper understandihg o
the connections between the notionaapacity interference
and thescheduling complexitpf wireless networks. We are [17]
convinced that a thorough understanding of these notionlslco

help in designing better network protocols. (18]
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