








shown for three genes in Figure 4. A heat map of the genes
expression profiles appears in Figure 4. In the heat map,
the top genes are those that change once, the rising genes
first, and falling genes second. Lower, there is a group of
genes that go up then down, and last, the genes that go
down then up. Each of these groups is sorted by the time
of first change. The ordered response of genes to stimuli is
immediately evident when so depicted. The heat map also
makes apparent two discontinuities, at 8.25 h and 9.25 h.
These correspond to observed changes in the growth rate
of the yeast around 9 h.

The genes are then automatically collected into five
generic gene sets: ‘up’, ‘down’, ‘up then down’, ‘down then
up’. The generic gene sets are further divided into specific
gene sets based on the position and the direction of the
transition. This process resulted in 80 different generic and
specialized gene sets, which were analyzed using GO-
TermFinder with a P-value cutoff of 0.001. A table of the
120 low P-value GO annotations, in ascending order, is
included in the Supplementary Data S3. Many of the GO
annotations are directly related to metabolism.

The GO annotations and FDR-corrected P-values
for the clusters reported in Brauer et al. were recomputed
with the latest yeast gene annotations from the Gene
Ontology Consortium website (6). To compare with the
results of Brauer et al., Table 1 shows the GO annotations
from that article that had low P-values, and shows the
corresponding P-values from the StepMiner groups. The
annotations that had the lowest P-values in Brauer et al.

had even lower P-values in the StepMiner groups.
Further, the GO annotations are obtained fully auto-
matically using StepMiner — it is not necessary to select
interesting clusters manually. In most cases, the P-values
in the reanalysis are lower than Brauer et al.’s, which

Figure 4. Application of StepMiner to real microarray time course data. Comparison of StepMiner to hierarchical clustering for the analysis of
diauxic shift time course microarray data on glucose-limited budding yeast. The expression level of each gene in StepMiner is centered around the
midpoint of the step to display the transitions clearly. Fitted steps for three example genes are shown on the right.

Table 1. GO annotations of different groups and P-values according to

GO-TermFinder perl module

GO Annotations Group P-value P-value1

Protein biosynthesis Down-9.25 3.4E–51 9.7E–33
Ribosome biogenesis
and assembly

Down 1.2E–39 1.4E–33

Generation H of M precursor
metabolites and energy

Up 7.4E–24 6.1E–14

Oxidative phosphorylation Up 4.9E�14 6E�08
Amino acid and derivative
metabolism

Up-Down 1.7E�11 6.2E�25

Amine biosynthesis U-D-9 1.7E�12 1.1E�24
Hexose catabolism U-8.25-D 0.00046 0.044
Monosaccharide catabolism U-8.25-D 0.0012 0.091
Siderophore transport – – 0.013
Intracellular transport – – 1.6E�08
Secretory pathways – – 1.5E�06

‘P-value1’ is the P-value using the list of genes from the clusters
reported by Brauer et al. ‘Down-9.25’ uses all the genes that turn off
significantly at 9.25h time step. ‘Up’ uses all the genes that turn on at
some time step. ‘U-D-9’ uses the list of genes that turn on at some
point before 9 h but turn off at 9 h. ‘U-8.25-D’ genes turn on at 8.25 h
and turn off later.
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suggests that grouping by time-of-change is at least as
effective as hierarchical clustering at identifying relevant
genes.
Four GO annotations had significant results in Brauer

et al.’s analysis, but not in the StepMiner analysis:
‘siderophore transport’, ‘intracellular transport’, and
‘secretory pathways.’ Interestingly, these GO annotations
were associated with clusters that, in the words of Brauer
et al. were ‘less interpretable in terms of diauxic shift’.

DISCUSSION

Comparing StepMiner to other tools

Even though many tools are available for analyzing
microarray time course microarray data, StepMiner is the
only one that directly identifies the time and direction of
step-wise temporal transitions in a statistically rigorous
manner. While other tools may be more suitable for their
intended purpose, they do not identify expression-level
transitions as conveniently as StepMiner.
Other tools developed for the analysis of time course

microarray data can be classified broadly as being either
clustering or model based. In time course studies,
clustering-based techniques partition genes into sets
based on their proximity according to some measure of
distance between gene expression profiles (7–15). Some
of these methods take into account the temporal ordering
of measurements, but most do not. A user may be able to
select clusters of genes that appear to be up- or down-
regulated at a particular time, but doing so is a hit-or-miss
process that requires additional effort and is likely to yield
uncertain results. Unlike StepMiner, these methods do not
directly identify the time and direction of step-wise
changes in the gene expression temporal profile.
Many tools are based on matching models of gene

behavior to time-course data. For example, the models
could be piecewise linear models(16), rising/falling (17),
transition intervals (18) or hidden Markov models
(HMMs) (19,20), differential equations(21), Bayesian
models (22), or Boolean models (23).
StepMiner is also a model-based method, but the one-

and two-step patterns are different from the models of
other methods. The transition interval method from
Hottes et al. (18) is perhaps the most similar, but their
models have a transition interval segment between
constant-level segments. The transition interval in their
model is defined as the change from 25 to 75% of the
maximum. The Boolean model proposed by Shmulevich
et al. (23) binarizes genes without considering the time
component. These methods do not provide P-values, FDR
or other statistically justifiable measures of confidence.
Other methods for analyzing time courses are not easily

categorized, including identification of differentially
expressed genes (24–28) and alignment of time series
(29,30). It is unclear how these methods could be used to
identify the direction and times of expression level
transitions.
For a more concrete view of the differences among

tools, StepMiner and four other widely used publicly
available programs were run on the same publicly

available microarray time course, tracing the response of
fibroblasts to the addition of serum (31,32). The time
course consists of 13 arrays, taken at the time 0, 1, 2, 3, 4,
6, 8, 10, 12, 16, 20, 24 and 36 h. The data for all of
the 5,289 genes with no missing time points were used.
The time course was analyzed using hierarchical cluster-
ing (8), SAM (2), EDGE (25), STEM (12) and StepMiner.
There is a more detailed discussion, with examples, in the
Supplementary Data S1, including figures showing the
results of each program on the above mentioned data set.

A side-by-side comparison of these algorithms does not
necessarily show one to be superior, since the algorithms
were developed for different purposes, but it does clarify
the differences between them. For example, it is tempting
to try to use SAM to find transition points in genes by
looking for significant differences in average expression
before and after a specified time point. However, many of
the genes selected by this method do not, in fact, have a
transition at the specified time point.

Hierarchical clustering sometimes finds clusters of genes
that seem to transition at the same time point. However,
using hierarchical clustering to find transitions involves
subjective and time-consuming manual search through the
clusters, and the selected clusters only imperfectly capture
the genes with transitions at a particular time. EDGE
retrieves the list of differentially expressed genes over the
time course, which answers a question that is different
from finding the seems to be totally unrelated to finding
direction and times of transitions. STEM provides model
profiles and their significance; but the profiles generally
look nothing like step functions, and are not helpful for
locating transitions.

Strengths and limitations of StepMiner

StepMiner is an appropriate tool for users who are
interested in binary models of gene expression time
courses. Although a binary model abstracts away from
many complexities of gene expression, it has several
advantages: it is easy to understand; it has few parameters;
and, in many cases, the details of the behavior between
transitions may not be as biologically interesting as the
transition. Moreover, StepMiner is very fast. It can
process 15 microarrays of 40 000 genes each in 5 15 s.
(The optional FDR calculation in StepMiner for this
microarray data using 100 permutations takes � 12 min.)

Even when the gene expression level over time is only
approximately binary, we find that the results produced by
StepMiner are sensible. For example, consider the
measurements for the genes in Figure 4. In each case,
the behavior of the gene may be complex or noisy, but
StepMiner reports reasonable (and objective) results
about when each gene becomes up-regulated.

The P-value for an individual gene captures the degree
to which the binary model fits the temporal variation in
gene expression. Large variations in the supposedly down-
regulated and up-regulated intervals will lead to worse
P-values than approximately constant behavior. Signals
that transition between two levels, but transition slowly,
will have worse P-values than signals that transition
rapidly. For a slowly transitioning signal, the best
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placement of the transition is not obvious; StepMiner will
tend to put it in the middle of the transition. In the
extreme case of purely linear behavior, StepMiner will
place a transition in the middle—but the P-value will be
poor and the gene is likely to end up in the ‘other’ category
depending on the user-specified P-value cutoff.

The current version of StepMiner is most appropriate for
experiments that measure the transcriptional response to a
stimulus, and for time courses with 10 – 30 measurements
(however, a time course of five time points with three
replicated arrays at each time point gives the confidence of
15 measurements).

There are two ways that a low P-value match can occur:
(1) there could be several consecutive points that are
consistently low or high, or (2) there could be one or two
measurements that deviate greatly from the others. In
practice, a low P-value from multiple points is more
trustworthy than a low P-value from large differences,
because a single deviant measurement could be an outlier
resulting from non-Gaussian measurement error.

Very short time courses are problematic, because
reliable low P-value matches are unlikely to occur. There
is simply too little evidence to support the matching of
steps, even when steps exist. On the other hand, very long
time courses are problematic because the data may
actually have more than two steps, and neither the one-
step nor two-step patterns will match well. There is
currently an upper limit of two steps in StepMiner because
the running time of adaptive regression algorithm
increases exponentially with the number of steps.

The StepMiner algorithm can deal gracefully with
missing measurements, which are common in microarray
data. Omission of one or two measurements for a gene
simply degrades the confidence in the results for that gene.
However, in practice, it is probably better to fill in missing
data points using one of a variety of existing imputation
algorithms for microarrays (33).

Optimizing time course experiments for StepMiner

Simulations suggest several guidelines for experimental
design that can lead to more meaningful results with
StepMiner. There should be enough time points, spaced
closely enough, so that there will be multiple points during
the constant segments of the step patterns. In particular,
there should be several time points before a transition that
is expected—otherwise, there will be little evidence to
distinguish the first responses to a stimulus from noise.

Replicated measurements at the same time point should
not be averaged. Instead, they should be handled using the
same matching algorithm as sequential measurements,
except that the algorithm should not try to put a step
between simultaneous measurements. With this proces-
sing, they can directly improve the P-values of extracted
signals.

If the only concern is getting the most accurate results
from a given number of microarrays, it is better to take
more frequent measurements than to follow the common
practice of repeating several microarrays at the same
time, if the results are to be analyzed with StepMiner.
For example, given 10 h time course, it is better to use

30 arrays by using one every 20 min than to use three
arrays simultaneously every hour. Since StepMiner tries
inserting steps between every pair of transitions, the time
resolution of the results nearly triples, at the cost of
a small loss of accuracy in recognizing the correct kind
of step.
This conclusion is supported by simulation results

shown in Table 2. Each of the four different step types
was simulated, with time of each step ts from a uniform
distribution over the entire interval. As discussed above,
the measurements at each time point were taken, and
Gaussian noise was added so that the step height is 5�.
When a step is found between time points ti and tiþ1, the
time of the step is estimated to be ðti þ tiþ1Þ=2. The ‘time
error’ of the step is jts � ðti þ tiþ1Þ=2j. The number of
correctly classified steps is shown.

Combining StepMiner with other tools

Once StepMiner is run on a given data set, the genes that
are identified as undergoing binary transitions can easily
be partitioned into sets based on the number, direction,
and timing of transitions. Using other tools, these sets can
be merged at the user’s discretion (e.g., the set of one-step
genes that rise at time 3 could be merged with the two-step
genes that rise at time 3).
The sets can be placed in a specific order for visualiza-

tion in a heat map using a tool such as TreeView (34).
First, genes are categorized by the direction of change and
number of steps into five generic gene sets: ‘up’, ‘down’, ‘up
then down’, and ‘down then up’ and ‘other’. The one-step
sets are further subdivided into more specific sets by time of
change, and the two-step categories were divide by time of
the first change, and, secondarily, by the time of the second
change.
The resulting gene sets also facilitate analysis by other

tools that can compare different kinds of gene sets for
unexpectedly large overlaps. Many programs perform this
kind of analysis (5,35–38).
The basic gene sets found by StepMiner can be

combined into larger sets of genes with common
characteristics. For example, a user might be interested
in the set of all genes that contain a step up during a range
of time points, regardless of how many steps there are.

Table 2. Identification of steps and average deviation from the true

step positions by StepMiner with replication versus the addition of

more time points

Type True Missed False Average
Step Step Step Deviation(Min)

Addition 99% 1% 8% 11
Replication 100% 0% 8% 34

The Addition method uses 30 different time points. The Replication
method uses 10 time points with three replicates. The analysis was
performed on artificial data for 1000 genes with 500 single steps (Step
height ¼ 5� ) placed uniformly randomly across the time-course of 10
h. ‘True Step’ is the number of correctly identified steps. ‘Missed Step’
is number of steps missed. ‘False Step’ is the number of steps detected
in random data.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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