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Abstract
In this paper we present results of experiments that were performed to quantify the effects of
retries in an asynchronous resource allocation protocol that is employed for end-to-end service
provision. A major finding from our experiments is that an application class may be penalized
by experiencing delays in accessing a shared resource as a result of overload on resources used
by other application classes, which are unknown to this class. In turn, these delays may cause
under-utilization of other resources used by this application class. Moreover, we illustrate how
such effects emerge simply by varying the relative occurrence frequencies of application
classes, but without changing the overall request arrival process. It is shown that such changes
can lead to undesirable performance effects for all classes that share a number of resources.
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1. Introduction

With the number of resources and users connected to the Internet rising rapidly, we
are about to witness a shift from best-effort systems to architectures that support QoS.
Typical applications, which already require end-to-end QoS to achieve a satisfactory
performance, are video-on-demand and teleconferencing. In the near future, many
more applications with similar resource allocation requirements will emerge, such as
telemedicine, advanced digital libraries, globally distributed computing, real-time
remote laboratories and monitoring stations, and virtual classrooms. Thus, it will be
often the case that a single application involves multiple services, requiring
coordinated allocation of several different resources.

It is unlikely that a single authority will ever be responsible for managing the vast
number of resources made available through the global network. Resources will be
controlled by independent service-providers, as this is the case today for bandwidth
and web server capacity. However, the autonomy of resource providers limits the
control that external entities have over the resources owned and managed by these
authorities. This, in turn, imposes restrictions on coordinated resource allocation,
thereby making it a potentially complex process.

To relieve applications from this task, special middleware services called resource
brokers can act as intermediaries for the resource offerings of multiple resource
manager authorities, and take upon themselves the responsibility to provide their
clients (applications) with the resources that they require in a bundled fashion. In
other words, brokers access each resource manager independently, and, following an
acquisition strategy, reserve resource access with the client-specified QoS guarantees
at each service point.

In this paper we investigate the performance-related effects of multi-resource
allocation in a dynamic and open environment, using our prototype of a market-based
brokerage service [LaNiPaMa98]. Assuming complete autonomy of the resource
providers, we do not allow direct access to their internal allocation tables nor direct
locking of their resources. Instead, resource acquisition is done on a simple trial-and-
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error basis, until all the resources required for application execution are acquired
successfully.

A major finding from our experiments is that an application class may be penalized by
experiencing delays in accessing a shared resource as a result of overload on
resources used by other application classes, which are unknown to this class. In turn,
these delays may cause under-utilization of the other resources used by this
application class. Moreover, we illustrate how such effects emerge simply by varying
the relative occurrence frequencies of application classes, but without changing the
overall request arrival process. It is shown that such changes can lead to undesirable
performance effects for all classes that share a number of resources.

The rest of the paper is organized as follows. Section 2 briefly describes the system
configuration with focus on the acquisition protocol employed to coordinate
allocation of resource bundles. The experiments that have been conducted using this
system are presented in Section 3. In Section 4, our work is put in perspective with
respect to a broader classification of resource acquisition protocols, pointing out
future research directions. Section 5 gives an overview of related work, identifying
parallels and differences with our approach. Finally, Section 6 concludes the paper.

2. System Architecture

The experiments are conducted using a prototype system. The system has several
independent primitive services with guaranteed quality of service, which exhibit
reliable performance behavior. It also features a brokerage mechanism for negotiating
allocation of resources at the various underlying services according to application
requirements.

The configuration used for the experiments comprises three main components: the
session manager, the broker, and the QoS managers. Figure 1 shows the system
architecture. A brief description of these components is given in the following.

2.1 The QoS Managers

The QoS managers are independent entities controlling the resources of services. Each
service is represented via its own QoS manager. In order for a service to be
accessible, the corresponding QoS manager must first register with the broker. This is
done via a sell request, which contains information about the service type and the QoS
supported. A service can remove itself from the system by letting its QoS manager
send a cancel request to the broker. There is no limitation regarding the arrival and
departure of services, thus the system is truly open.

To invoke a service, a request along with a description of the desired performance
characteristics is sent to its QoS manager. Before accepting a request, the QoS
manager verifies that the desired service can be provided at the requested quality. If
this is not possible, the corresponding request is rejected.

In the configuration used for the experiments presented in this paper, there are three
QoS managers, one for the network (there is a single network provider) and one for
each server (two different servers are used). Servers are stream transmitters that
continuously send data, at a rate specified by the application. The network is an ATM
switch connecting the server machines to client workstations.
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2.2 The Session Manager

The session manager is primarily responsible for converting application requests into
primitive service requests. Also, the quality/performance terms of applications are
mapped into QoS specifications for each of the requested services. Having identified
the required service types, the session manager constructs a list containing the
services (resources) required to implement the application request, and sends it to the
broker in order to determine the actual service instances to be used. Upon receiving a
response, the session manager invokes the selected services in the appropriate order.

In our experiments, the applications running on top of the system are elementary. A
single request type is introduced, demanding that data is generated by a stream server
and transferred over the network, at a certain rate and for a given duration. Hence, the
session manager converts each application request into a pair of orders, one for a
server and one for the network, and forwards this list to the broker. In order for the
application request to be serviced, both orders have to be satisfied simultaneously.
Then, a connection is created and data transmission is initiated with calls to the
corresponding components. When the specified duration elapses, transmission is
stopped and the connection is closed.

Each application is endowed with a budget for acquiring resources, which reflects its
priority relative to other applications. Since we focus on the resource acquisition
policy, rather than the competition among different priority classes, in our
experiments, all requests have the same budget.

2.3 The Broker

The broker acts as an intermediary between the session manager seeking service
instances of a certain type and the QoS managers advertising the processing
capabilities of underlying services. It encapsulates the resolution process that is
activated to provide the session manager with the list of concrete service instances to
be used for a particular application request. Binding application tasks to resources is
dynamic, allowing the architecture to accommodate variations in service availability.
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The broker uses an economic paradigm to match offerings and demand for a given
service type. Service providers are sellers advertising their resources to applications.
Applications are buyers requesting resources that they purchase from the sellers. Sell
and buy orders are matched using continuous double auction, which allows buyers to
make offers, and sellers to accept those offers, at any particular moment. The market
price is determined by the interplay of supply and demand and is always between the
highest buy and the lowest sell price. Trading takes place within autonomous market
objects that are dynamically created as orders and offers regarding various resources
arrive at the broker. In our case, there are three markets, one for the network and one
for each server.

Since the markets operate independently from each other, there is a chance for
applications requesting both resources to get a match in one market and fail to do so
in the other. In order to achieve the desired bundling of resources without imposing
any synchronization among the underlying resource providers, the broker employs the
following non-blocking, iterative acquisition protocol (Figure 2):

1. For each incoming request, the budget is equally divided among the resource
types needed. By this simple strategy each application has a predetermined highest
value to bid for each resource. Each buy order is then forwarded to the
corresponding market in order to be matched against available service offers.

2. When the markets clear, they return to the broker a list of contracts, i.e. pairs of
matched sell and buy orders. These are inspected to determine which requests can
be satisfied atomically, i.e. whether respective matches have been established for
the server and the network.

3. If both buy orders of a request have been matched successfully, the corresponding
contracts are validated by sending an acknowledgement to the markets. Also, a
reply containing the addresses of the service providers to be invoked is sent to the
session manager (as a response to its request).

4. Else, if only one buy order has been matched, the respective contract is aborted
and the buy order is retried, i.e. it is re-issued in the market. Notably, the other
buy order remains pending. If both buy orders of a request are pending, nothing
needs to be done. Then, the broker waits until the next clearing of the markets, i.e.
the bundling process restarts from step 2.

Pending orders are results of overload. On the contrary, retries occur as a side effect
of the asynchronous acquisition protocol. Retries not only impose a processing
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overhead to the system; they may also result in lost opportunities for the service
providers and thus lower utilization of their resources.

3. Experimental Observations

We investigate the performance-related effects of uncoordinated multi-resource
allocation in a dynamic and open environment, using our prototype of a market-based
resource allocation service described in the previous section. Our aim is to quantify
the effects of canceling contracts for resources on end-to-end service provision, for
workloads consisting of application classes with overlapping resource requirements.

A simple system configuration and workload scenario where two application classes
share a network resource while each accesses a different class-specific
computation/data server is used. It turns out to capture essential performance-related
aspects on dynamic and open environments, and serves to highlight the effects caused
by resource dependencies among application classes. These dependencies are studied
by correlating measurements collected by independent resource managers. This
allows us to accurately track the sequence of events leading to interference from one
class' resource consumption pattern to the resource consumption pattern of another.

Furthermore, we study the impact of changes in the workload due to variations in the
relative occurrence frequency of application classes. Such changes, which are
common in open systems, affect the load level of class-specific resources and, through
the dependencies among classes due to shared resources, may lead to undesirable
performance for all classes.

3.1 Configuration and Performance Parameters

The system configuration is defined, in accordance to the model of our prototype as
presented in the previous section, by the capacity of the computation/data servers and
of the network connecting client applications with the servers. Two application
classes with overlapping resource requirements are introduced. Both classes require
access to the shared network resource NET. Class C1 requires access to server SRV1,
while class C2 requires accesses to server SRV2.

For both application classes, each client requests one “capacity-slot” on each of the
resources. The capacity of NET is assumed to be 30 slots, while the capacity of each
of SRV1 and SRV2 is assumed to be 15 slots. As described in Section 2.3, for each of
the resources NET, SRV1 and SRV2 there is an independent market. Since we ignore
the issue of resource pricing, all resources are priced in the same way, and
applications are given the same budget.

Each request, regardless of the application class that it belongs to, occupies resource
slots for a duration that is uniformly distributed in the interval from 8 to 10 seconds.
Thus the average service duration for a request is 10 seconds. Further, the inter-arrival
time between requests, which determines the request arrival process, is exponentially
distributed with a mean value of 0.4 seconds, leading to an average of 2.5 arrivals per
seconds. It should be noted that the exponential distribution results in occasional "load
spikes", during which the number of arrivals per second can be much higher than the
average. This behavior models bursts in the request arrival processes of open systems.
Finally, the time interval between successive clearings of the resource markets is set
to 0.1 seconds.

We report results for two different settings for the relative occurrence frequencies of
classes C1 and C2, so as to enable an evaluation of the impact of changes in the
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quality of the workload. In the first setting, the relative frequencies of C1 and C2 are
60% and 40%, respectively, and in the second setting, the relative frequencies of C1
and C2 are 70% and 30%, respectively. While in both cases the aggregate arrival rate
remains unchanged, there is a crucial difference in the relative loads of the class-
specific resources SRV1 and SRV2. In the 60-40 workload both SRV1 and SRV2 can
sustain the incoming load, whereas in the 70-30 workload SRV1 becomes overloaded.
Notably, NET can sustain the aggregate load in both workload mixes.

3.2 Performance Metrics

In the experiments presented in the following, the load generator of our prototype
forwarded to the session manager a series of 500 requests, according to the
aforementioned workload characteristics.

The behavior of the system is studied by collecting measurements of the number of
pending requests and the number of retries, for each application class and resource.
These measurements are collected by the broker at the end of each market clearing,
after determining the resource acquisition contracts that have to be cancelled. The
results are presented as time series for successive clearings of the resource markets.
Thus, in all subsequent figures, the horizontal axis represents successive points in
time when market clearing took place, and the vertical axis represents the number of
retried (bold line) and pending (gray line) requests.

Furthermore, we measure the time required to acquire all resources (setup delay), for
each application class. The setup delay is a function of the average pending requests,
but it is also affected by the average number of retries for each resource, per class.
Therefore we explicitly report statistics on the number of retries experienced for each
class and resource.

3.3 Alternative Policies for Resource Acquisition Retries

As described in Section 2.3, the broker cancels resource acquisition contracts when it
cannot simultaneously acquire slots for all the resources required for servicing a client
request. Then, it attempts to acquire the resources needed from scratch, by re-issuing
the cancelled buy order. Hence, there is a question of how to resolve among retried
and new buy orders.

An obvious choice, designated from now on as "Policy A", is for retried buy orders be
handled without any differentiation from buy orders originating from new request
arrivals. Under this policy, a resource market selects randomly among the equivalent
buy orders accumulated at each clearing period. In this context, "equivalent" means
equal number of requested resource slots and offered price per slot. This policy is
expected to result in quite high setup delays for requests that involve retries, as under
high load these requests may suffer additional delays due to competition with an ever-
increasing number of requests. This effect is quantified in Section 3.4.

An alternative to "Policy A" is to differentiate retried from new buy orders. Under this
policy, designated from now on as "Policy B", resource markets select among buy
orders in chronological order, giving retried orders precedence over new buy orders.
This policy favors application classes that experience overload on their class-specific
resources, as their requests will get increased priority the longer they remain pending
and the more they get retried. The effects of this policy on the number of pending and
retried requests per market clearing are examined in Section 3.5.
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Policy A is studied in order to provide a comparison baseline for the more elaborate
policy B. It also reveals the dependencies among application classes due to resource
sharing and demonstrates the adverse performance effects of uncoordinated multi-
resource allocation. In Section 3.6, we compare the two policies presented in this
section in terms of setup delay, maximum and mean number of retries per request, for
each class and resource.

3.4 Measurements for Policy A

Figures 3 and 4 depict the time series for the numbers of pending and retried requests
for C1 and C2, respectively, for the 60-40 workload under Policy A. It can be seen
that there are hardly any retries for C2, whereas (after a short load build-up period) C1
exhibits retries.

As shown in Figure 5, these retries are mainly due to the retries for NET resource.
The reason for these retries is that, although C1 requests can easily acquire NET slots,
they occasionally fail to acquire SRV1 slots, because its capacity is marginally
sufficient to sustain the incoming load. Thus, the broker has to cancel NET resource

Figure 3. C1-Requests (Policy A / 60-40 load)
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acquisition contracts for C1 requests. The number of pending requests for SRV1,
shown in Figure 7, indirectly drives the NET retry curve.

The effect is much less noticeable for C2, since there is ample capacity for the class-
specific resource SRV2. Nevertheless, Figure 6 shows that there are occasional
pending C2 requests for NET slots, which cause corresponding retries for the SRV2
resource (see Figure 8). This is because frequent C1 retries for NET cause an increase
on the number of requests competing for NET slots. This is reflected by pending
requests for NET of C1 shown in Figure 5, as well as C2 requests shown in Figure 6.

For the 70-30 workload, these phenomena become more pronounced, as shown in
Figures 9 and 10 for classes C1 and C2, respectively. The number of pending C1
requests rises without bound, because there is insufficient capacity for the SRV1
resource to sustain the incoming load (see Figure 13). Therefore, the effect that
pending C1 requests for SRV1 cause retries for NET is much more visible (Figure
11). The large number of C1 retries for NET increase competition, leading to a

Figure 9. C1-Requests (Policy A / 70-30 load) Figure 10. C2-Requests (Policy A / 70-30 load)
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noticeable number of C2 pending requests for NET slots, as shown in Figure 12. In
turn, this results in retries for SRV2 (Figure 14).

As with the 60-40 workload, C2 requests, although occasionally penalized as a result
of increased competition on the shared resource (NET), are not significantly affected
by the high load imposed on the SRV1 resource. This is a consequence of the fact that
policy A does not discriminate against new arrivals in favor of retries. Thus, C2
requests are given equal opportunity to access the shared resource NET as the C1
requests that often get retried.

3.5 Measurements for Policy B

Figures 15 and 16 show the time series for the numbers of pending and retried
requests for classes C1 and C2, and the 60-40 workload under policy B. For this
workload, there is no major difference between policies A and B. However, as can be
seen by comparing Figures 3 and 15, policy B results in a slight decrease on the
number of pending and retried requests for the C1 class.
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This can be attributed to a corresponding decrease on the number of pending and
retried C1 on the NET resource (see Figures 17 and 18). Notably, this occurs at the
expense of C2, which (as seen by comparing Figures 6 and 18) exhibits a slight
increase on the number of pending requests on the NET resource. This increase on the
number of pending requests on the NET resource causes a corresponding increase on
the number of retries for the SRV2 resources, as the broker cancels SRV2 contracts
for class C2.

These effects become much more evident under the 70-30 workload, as shown in
Figures 21 and 22. From Figure 25 it can be seen that there are no retries for SRV1
slots by class C1 requests, unlike the situation under policy A (Figure 13). Moreover,

the number of pending requests for NET slots, depicted in Figure 23, is lower than
under policy A (Figure 11). Nevertheless, SRV1 remains overloaded and the number
of pending requests for its slots rises without bound, as seen in Figure 25.

However, this slight improvement for class C1 is achieved at the expense of class C2.
This is mainly because it becomes more difficult for C2 requests to acquire NET slots,
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as it can be inferred from Figure 24. This difficulty is due to the fact that (after a brief
load build-up phase) C1 requests remain much longer in the pending state in the NET
market, which under policy B increases the likelihood that they will be selected. Since
C1 requests find it increasingly difficult to acquire SRV1 slots as well, a fraction of
NET slots allocated to C1 requests are wasted due to retries. In other words, the
retries for NET slots by C1 requests are given increased priority under policy B,
resulting in an increased handicap for the C2 class.

As the C1 backlog grows, this problem escalates and results in a growing number of
retries for C2 requests. The overload on SRV1 results in an ever-growing fraction of
the C1 requests alternating between being unable to obtain NET slots and acquiring
only NET slots but then having to release them as they cannot acquire corresponding
SRV1 slots. This cycle increases the amount of time that C1 requests spend in the
system and the expected number of retries. As a byproduct of increased delay in
acquiring NET slots for C2 requests, new arrivals create a backlog for SRV2 slots as
well, as shown in Figure 26.

Thus policy B, with its preference to requests that have spent considerable time in the
system waiting for resource slots and that have experienced retries, breaks down in
the case of overload for resource SRV1. In fact, it penalizes class C2 that has no direct
dependence on this resource, and, remarkably, despite the fact that the shared resource
NET has sufficient capacity to sustain the aggregate load. Since there is no other
distinction between the classes other than their differing (but overlapping) resource
requirements, from the system's point of view it would be more beneficial for NET
slots that are wasted by the C1 class to be allocated to C2 requests.

It is important to note that this anomaly remains hidden under the 60-40 workload,
where policy B appears to have a similar performance impact as policy A. However, a
slight change in the relative occurrence frequency of the two application classes
suffices to unveil this problem and to destabilize the system. Most important of all,
none of the authorities managing the resources for NET and SRV2 can explain (or
address effectively) this problem in isolation.

3.6 Comparisons of Setup Delay, Maximum and Mean Number of Retries

In this section we present a further comparison of policies A and B in terms of the
mean setup delay and statistics for the number of retries, for each application class
and resource. Table 1 shows the mean setup delay for classes C1 and C2 under
policies A and B, for both workloads. It also shows the mean setup delay as measured
over all requests regardless of class. Tables 2 and 3 show the mean and the maximum
number of retries per class and resource, for both workloads.

Class C1 Class C2 Overall

Policy/Workload 60-40 70-30 60-40 70-30 60-40 70-30
A 1.96 9.01 0.16 0.38 1.26 9.01
B 1.55 11.48 0.20 6.65 1.03 10.07

Table 1. Mean Setup Delay (in seconds)

In the 60-40 workload, policy B results in lower setup delays as measured over all
requests (decrease of 18%) in comparison with policy A. This is achieved by a
decrease of setup delay for class C1 (by 20%), and a corresponding increase of setup
delay for class C2 (by 25%). The overall decrease is attributed to the fact that more
C1 requests are issued than C2 requests. In the 70-30 workload, policy B actually
increases the mean setup delay over all requests by approximately 12%, while the
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mean setup delay for classes C1 and C2 is increased by 27% and 1650%, respectively.
While for the 60-40 workload, an increase of the setup delay for class C2 is justified
by a corresponding improvement of the setup delay for class C1, in this case class C2
suffers a tremendous performance penalty without any improvement for class C1.
This is due to the instability problem highlighted in Section 3.5.

Class C1 NET Class C1 SRV1 Class C1 – Overall

Policy/Workload 60-40 70-30 60-40 70-30 60-40 70-30
A 14.28 / 146 35.37 / 251 0.08 / 7 1.00 / 9 14.37 / 146 36.37 / 259
B 12.29 / 191 35.75 / 76 0.05 / 4 0 / 0 12.34 / 195 35.75 / 76

Table 2. Mean/Maximum Number of Retries for the C1 class

Class C2 – NET Class C2 - SRV1 Class C2 – Overall

Policy/Workload 60-40 70-30 60-40 70-30 60-40 70-30
A 0.17 / 9 0 / 0 0.17 / 5 1.63 / 20 0.35 / 9 1.63 / 20
B 0.20 / 5 0 / 0 0.53 / 21 42.40 / 114 0.74 / 26 42.40 / 114

Table 3. Mean/Maximum Number of Retries for the C2 class

For the 60-40 workload, policy B decreases the mean number of retries for class C1
requests (by 14%) while increasing it for class C2 requests (by 111%). For the NET
resource, the decrease in the mean number of retries for class C1 is 14%. This is
matched by a 17% increase for class C2 on NET. The breakdown of policy B, in the
70-30 workload, for class C2 is evident. The mean number of retries for C1 requests
decreases by less than 2%, leading to a corresponding increase of 2500% for C2
requests. There are no retries for the NET resource by C2 requests because C2
requests are pending, waiting for NET slots to be released (see Figure 24). Likewise,
there are no retries for SRV1 by C1 requests, but as shown in Figure 25 the number of
pending requests is growing without bound.

It is interesting to see that the maximum number of retries under policy B is
consistently higher than under policy A for the 60-40 workload, and consistently
lower for the 70-30 workload.

4. Discussion and Future Work
From our experiments it becomes clear that retries are not merely an internal
processing overhead of the brokerage mechanism, but may indeed lead to lost
opportunities for service providers, thus resulting in lower utilization of their
resources, and performance degradation for some applications.

Notably, retries can be avoided without enforcing a strict synchronization scheme
among the underlying resource providers. Instead of letting the broker issue a buy
order to all markets in parallel and wait for matches, it is possible to issue a buy order
in one market only, and wait for this order to be matched before issuing a buy order to
the other market. In analogy to the nomenclature of group-oriented communication,
the former protocols could be termed as “multicast” protocols while the latter could
be called a “ring” protocol.

The ring protocol is particularly attractive when the order in which buys are sent to
the markets is chosen so that unnecessary contention for shared resources is explicitly
avoided. As an example, for the configuration used in Section 3, it is better to acquire
server capacity first, before attempting to acquire network capacity, since SRV1 is the
bottleneck resource.
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Indeed, a series of preliminary experiments shows that the ring protocol completely
eliminates the retries both for the C1 and C2 class. For this reason, the choice of the
retry policy is also irrelevant for the ring protocol. However, this method comes with
its own weaknesses, as it can be inferred from Table 4 that gives the mean setup
delay.

Class C1 Class C2 Overall

Policy/Workload 60-40 70-30 60-40 70-30 60-40 70-30
Multicast - A 1.96 9.01 0.16 0.38 1.26 9.01
Multicast - B 1.55 11.48 0.20 6.65 1.03 10.07
Ring A/B 2.40 12.50 0.24 0.18 1.56 8.91

Table 4. Mean Setup Delay of the Ring Protocol

The setup delay of the ring protocol is smaller only for class C2 and the 70-30 load,
where the retry probability is high when using a multicast protocol. However, the
performance of class C1 slightly deteriorates, because apart from the delay caused by
the overload on SRV1 the sequential nature of the acquisition method imposes an
additional delay. The overall setup delay nevertheless decreases, because the gains for
the C2 class carry more weight. For the 60-40 load both classes exhibit longer setup
delays with the sequential method because of the extra acquisition overhead, even
though there is no overload.

It is important to note that both protocols can be viewed as special cases of a more
general, tree-structured protocol family, with nodes indicating the protocol (multicast
or ring) employed for acquiring a particular group of “abstract” resources, themselves
also being nodes (Figure 27). The leaves of the tree are resource groups consisting of
a single resource type.

Using this classification, the acquisition protocol studied in this paper is a tree
protocol of depth 1 using a multicast method to acquire two resources. Analogously,
the sequential method introduced in this section, is a tree protocol of depth 1 using a
ring method to acquire these resources.

Identifying the key parameters of the multicast and ring methods is important since
this will enable a rudimentary, offline performance analysis of the entire protocol
family. It must be noted, however, that in an open and dynamic system it cannot be
determined a priori which instantiation of the tree protocol should be used to acquire
the resources needed by a certain application class. Furthermore, in the case of the

Figure 27. The general, resource acquisition protocol family
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ring protocol, the order at which it is attempted to acquire a given set of resources also
cannot be specified in advance. The reason is that these decisions depend not only on
the resources required by each application class but also on the overall application
load relative to the capacity of the underlying services, at the time when a request
enters the system. It is thus interesting to compare the problem of choosing the
appropriate acquisition protocol to distributed query optimization problems that have
been extensively addressed in the past, and for which working and well-tested
solutions already exist [OzVa91].

5. Related Work

Our system employs market-based control to allocate resource bundles to applications
using auctions. Market-oriented programming has been proposed as a general
solution technique for resource allocation [We95]. Also, auctions of various types
have been applied to a wide range of resource allocation problems arising in
distributed systems [Cl95]. The WALRAS environment [ChWe97] has been
developed for the simulation of computational economies. The Michigan AuctionBot
[WuWeWa98] uses configurable components to support parameterized auctions.

The prototype presented is a specialization of a broader resource allocation
framework developed in the context of our ongoing work towards dynamic service
composition in an open environment [MaPaNi97]. There are related designs that have
parallels with our approach.

The Auction Manager [MuWe98], developed in the context of the University of
Michigan Digital Library project, is a middleware service designed to support creation
of auctions, matching of agents to auctions, and notification of agents upon creation
of new auctions that match their interests. Such a service could be used by our
brokerage mechanism to locate market objects. Since we are considering allocation of
low-level resource "slots" from two functionally different resources, however, the
problem of locating appropriate markets is considerably simplified, compared to
higher-level information services in a digital library.

Most of the literature related to resource allocation for distributed systems have been
concerned with allocation of a single “item”, such as processing time
[WaHoHuKeSt92], communication bandwidth [Fe89], access to data [Fe93] or
network information services [MuWe95]. Our work is concerned with allocating
multiple resources in a single "bundle", as this is the type of resource allocation
problem arising in the realization of composite services in open environments.

In [HaBoDs95], a negotiation architecture is introduced, which allows to return in
response to user requests a set of present and future proposals for resource contracts,
instead of a simple acceptance or rejection signal. An important difference is that this
kind of negotiation can be done only if the expected service duration of applications is
known in advance. Also, there is a direct coupling of the entity responsible for the
coordinated resource allocation and the individual resources. In our system, the broker
has no knowledge of the request duration, and resource selection is done indirectly via
the market mechanism.

Further, [CoJaMoGi97] presents an architecture to support a variety of commerce
transaction types, from simple direct buying and selling to complex multi-agent
contract negotiations. In this case, markets for specific commodities are hosted in
"exchanges", which are network-accessible resources that support a set of markets and
provide common services. Market services are delivered to a participating agent
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through a "market session", which encapsulates the state of all interactions in the
process of contracting with other agents. This corresponds to the broker component of
our architecture, which handles the details of establishing resource bundles on behalf
of applications. However, no concrete resource acquisition strategy is studied.

In another design, presented in [RaRiDiCh97], individual resources use a calendar
metaphor for arranging their schedule. A client locks a time slot when it has
committed to using the associated resource during the period denoted by the slot.
Clients implement a two-phase commit protocol [Gr79] to atomically reserve slots for
all the resources that they require. In our implementation, service providers are
assumed to be autonomous, and the broker cannot synchronize the individual markets
to allocate resource bundles. The ring protocol discussed in Section 4 can introduce a
similar reservation effect, but the broker has no control over the actual resolution
process among orders and offers for each resource. It is thus impossible to perform
global optimization.

Our experimental results indicate that the asynchronous and uncoordinated operation
of multiple independent auctions poses non-trivial problems in achieving efficient
allocation of resource bundles. In this respect, our work complements related work
such as [WaWe98], which considers convergence properties of bidding strategies and
auctions in a setting involving multiple items. They further consider running the
auctions simultaneously, using the WALRAS simulation environment for multi-agent
systems. Our prototype demonstrates some of the implementation issues arising in a
real distributed environment.

6. Conclusions

A major result of this experimental study is that overload on one resource may cause
another resource to remain underutilized. An application class may be penalized, by
experiencing increased delays in accessing a shared resource as a result of overload
on other resources, unknown to it.

It is important to consider this finding in the light of effects due to changes in the
overall workload. Such changes are a common occurrence in open systems, cannot be
predicted a-priori due to the dynamic nature of the environment. In particular, we
study a case where the relative frequencies of requests belonging to different
application classes change in such a way that the aggregate request arrival process
remains unchanged. This type of changes affects the load level of class-specific
resources, which may in turn lead to undesirable performance effects for all classes
due to cancelled partial contracts for resources shared among classes.

This study points out that issues of stability have to be explicitly addressed in multi-
resource allocation, as the dynamics of open environments may lead to undesirable
performance for all application classes if there is no strict coordination among the
resource managers. It is important to stress that in open environments it may be
impossible - or even undesirable - to synchronize autonomous resource managers.
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