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Abstract
All methods analyzed and contrasted in this chapter have the unique attribute of

exploiting prior knowledge about distortion in the training stage, in addition to training
an HMM. They then use such prior knowledge as a guide to either remove noise
or adapt models in the testing or deployment stage. Most methods which use prior
knowledge about acoustic distortions as discussed in this chapter learn the nonlinear
mapping functions between the clean and noisy speech features when they are available
in the training phase as a pair of stereo data. By modeling the differences between
the features or models of the stereo data, a distortion model can be learned accuratly
in training and subsequently used in testing to perform feature enhancement or model
compensation. Another set of methods that also exploit prior knowledge operate by
collecting and learning a set of simple models ®rst, each corresponding to one speci®c
acoustic environment in the training. These environment-speci®c models are then
combined in the online fashion to form a new acoustic model that is aimed to ®t the test
environment in an optimal matter.

Key Words
prior knowledge, stereo data, environment-speci®c, online model combination,

variable-parameter modeling, DNN-based noise removal, SPLICE, non-negative matrix
factorization



158 Chapter 5. Compensation with Prior Knowledge

In this chapter, we explore an alternative way of categorizing and analyzing existing
robust ASR techniques, where we use the attribute of whether or not they make use of
prior knowledge and information about the acoustic distortion before applying formal
compensation procedures. This contrasts the previous chapter when the attribute was
whether the operations were applied on the feature domain or on the model domain.

Major noise-robust methods which use the prior knowledge about acoustic distortions
learn the generally nonlinear mapping functions between the clean and distorted speech
features when they are available in the form of stereo data in the training phase. By
modeling the differences between the features or models of the stereo data, a distortion
model can be learned in training and then used in testing to perform feature enhancement
or model compensation. The distortion model can be a deterministic mapping function.
It can also be formulated probabilistically as inp(yjx). A collection of these methods
can be called stereo-data mapping methods.

In addition to stereo-based methods, another collection of methods exploiting prior
knowledge are based on ®rst establishing or sampling a set of simple models for the
acoustic environments, each corresponding to one speci®c environment during training.
These models are then combined online to form the ®nal acoustic model of distorted
speech that ®ts the test environment to the best extent possible.

More recently, there appeared in the literature new methods based on clean speech
and noise exemplar dictionaries learned from training data for source separation. Using
non-negative matrix factorization (NMF), these methods restore clean speech by con-
structing the noisy speech with pre-trained clean speech and noise exemplars and only
keeping the clean speech exemplars. How to generalize to unseen acoustic conditions is
very important to robust ASR. Variable-parameter modeling presented in this chapter
will provide a decent solution by modeling the acoustic model parameters with a set
of polynomial functions of the environment variable. The model parameters can be
extrapolated from the learned polynomial functions if the test environments are not
observed during training.

5.1 Learning from Stereo Data

Many methods use stereo data to learn the mapping from distorted speech to clean speech.
The stereo data consists of time-aligned speech samples that have been simultaneously
recorded in training environments and in representative test environments. Stereo data
can also be obtained by digitally introducing (e.g. adding noise) distortion to the clean
speech. The success of these methods usually depends on how well the representative
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distorted samples during training really match test samples.

5.1.1 Empirical Cepstral Compensation
One group of methods is called empirical cepstral compensation [Stern et al., 1996],
developed at CMU. Let's recap Eq-3.14 in Eq-5.1 which is the cepstral representation of
the relationship between the clean speech feature and the distorted speech feature as

y = x+ h+ Clog(1+ exp(C 1(n  x  h))) : (5.1)

Then, with

v = h+ Clog(1+ exp(C 1(n  x  h))) : (5.2)

the distorted speech cepstrumy is expressed as the clean speech cepstrumx plus a bias
v. In empirical cepstral compensation, this biasv can be formulated to depend on the
SNR, the location of vector quantization (VQ) clusterk, the presumed phoneme identity
p, and the speci®c test environmente. Hence, Eq-3.14 can be re-written as

y = x+ v(SNR;k; p;e): (5.3)

v(SNR;k; p;e) can be learned from stereo training data. During testing, the clean speech
cepstrum can be recovered from the distorted speech with

Ãx = y  v(SNR;k; p;e): (5.4)

Depending on howv(SNR;k; p;e) is de®ned, there are different cepstral compensation
methods. If SNR is the only factor forv, it is called SNR-dependent cepstral normaliza-
tion (SDCN) [Acero and Stern, 1990]. During training, frame pairs in the stereo data
are allocated into different subsets according to SNR. Then, the compensation vector
v(SNR) corresponding to a range of SNRs is estimated by averaging the difference
between the cepstral vectors of the clean and distorted speech features for all frames in
that range. During testing, the SNR for each frame of the input speech is ®rst estimated,
and the corresponding compensation vector is then applied to the cepstral vector for that
frame with Eq-5.4.

Fixed codeword-dependent cepstral normalization (FCDCN) [Acero, 1993] is a
re®ned version of SDCN with the compensation vector asv(SNR;k), which depends on
both SNR and VQ cluster location. For each SNR range, there is a VQ cluster trained
from the utterances representative for the testing. During training, the frame pairs in the
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stereo data are allocated into different subsets according to the SNR and the VQ cluster
location of the distorted feature. The compensation vector is calculated by averaging the
difference between the cepstral vectors of the clean and distorted speech features for the
SNR-speci®c VQ cluster location. During testing, both SNR and VQ cluster locations
are estimated, and the corresponding compensation vector is then applied to the cepstral
vector for that frame. Phone-dependent cepstral normalization (PDCN) [Liu et al., 1994]
is another empirical cepstral compensation method in which the compensation vector
depends on the presumed phoneme the current frame belongs to. During testing, the
phoneme hypotheses can be obtained by a ®rst pass HMM decoding. It can also be
extended to include SNR as a factor, and is called SNR-dependent PDCN (SPDCN)
[Liu et al., 1994]. Environment is also a factor of the compensation vector. FCDCN and
PDCN can be extended to multiple FCDCN (MFCDCN) and multiple PDCN (MPDCN)
when multiple environments are used in training [Liu et al., 2004]. The test utterance
is ®rst classi®ed into one speci®c environmente, and then the compensation vector
v(SNR;k;e) (in MFCDCN) or v(p;e) (in MPDCN) will be applied to the distorted
speech cepstral vector. Another alternative is to interpolate the compensation vectors
from those of multiple environments instead of making the hard decision of the speci®c
environment. The corresponding methods are called interpolated FCDCN and interpo-
lated PDCN [Liu et al., 1994].

5.1.2 SPLICE

Stereo-based Piecewise LInear Compensation for Environments (SPLICE) , proposed
originally in [Deng et al., 2000a] and described in more detail in [Deng et al., 2001,
Droppo et al., 2001b, 2002, Deng et al., 2003c], is a popular method to learn from stereo
data and is more advanced than the aforementioned empirical cepstral compensation
methods. In SPLICE, the noisy speech data,y, is modeled by a mixture of Gaussians

p(y;k) = P(k)p(yjk) = P(k)N (y;m(k);S(k)) ; (5.5)

and thea posterioriprobability of clean speech vectorx given the noisy speechy and
the mixture componentk is modeled using an additive correction vectorb(k):

p(xjy;k) = N (x;y+ b(k);Y (k)) ; (5.6)

whereY(k) is the covariance matrix of the mixture component dependent posterior
distribution, representing the prediction error. The dependence of the additive (linear)
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correction vector on the mixture component gives rise to a piecewise linear relationship
between the noisy speech observation and the clean speech, hence the name of SPLICE.
The feature compensation formulation can be described by

Ãx =
K

å
k= 1

P(kjy)(y+ b(k)) : (5.7)

The prediction bias vector,b(k), is estimated by minimizing the mean square error
(MMSE) as the weighted mean square error between the clean speech vector and the
predicted clean speech vector in the mixture componentk:

E = å
t

P(kjyt)(xt  yt  b(k))2: (5.8)

By setting ¶E
¶b(k) = 0, the estimation of the prediction bias vector,b(k), is obtained as

b(k) =
å t P(kjyt)(xt  yt)

å t P(kjyt)
; (5.9)

andY(k) can be obtained as

Y(k) =
å t P(kjyt)(xt  yt)(xt  yt)T

å t P(kjyt)
 b(k)bT(k): (5.10)

To reduce the runtime cost, the following simpli®cation can be used

Ãk = argmax
k

p(y;k);

Ãx = y+ bÃk: (5.11)

Note that for implementation simplicity, a fundamental assumption is made in the
above SPLICE algorithm that the expected clean speech vectorx is a shifted version of
the noisy speech vectory. In reality, whenx andy are Gaussians given componentk,
their joint distribution can be modeled as

N
��

x
y

�
;
�

mx(k)
my(k)

�
;
�

Sx(k) Sxy(k)
Syx(k) Sy(k)

��
: (5.12)

and a rotation ony is needed for the conditional mean as

E(xjy;k) = mx(k)+ Sxy(k)S 1
y (k)(y  my(k)) (5.13)

= A(k)y+ b(k); (5.14)
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where

A(k) = Sxy(k)S 1
y (k) (5.15)

b(k) = mx(k)  Sxy(k)S 1
y (k)my(k): (5.16)

The feature compensation formulation in this case is

Ãx =
K

å
k= 1

P(kjy)(A(k)y+ b(k)) : (5.17)

It is interesting that feature space minimum phone error (fMPE) training [Povey et al.,
2005a], a very popular feature space discriminative training method, can be linked
to SPLICE to some extent [Deng et al., 2005b]. Originally derived with the MMSE
criterion, SPLICE can be improved with the maximum mutual information criterion
[Bahl et al., 1997] by discriminative trainingA(k) andb(k) [Droppo and Acero, 2005].
In [Droppo et al., 2001b], dynamic SPLICE is proposed to not only minimize the static
deviation from the clean to noisy cepstral vectors, but to also minimize the deviation
between the delta parameters. This is implemented by using a simple zero-phase,
non-causal IIR ®lter to smooth the cepstral bias vectors.

In addition to SPLICE, MMSE-based stereo mapping is studied in [Cui et al., 2008a],
and the MAP-based stereo mapping is formulated in [A®fy et al., 2007, 2009]. Most
stereo mapping methods use a GMM to construct a joint space of the clean and noisy
speech feature. This is extended in [Cui et al., 2008b], where a HMM is used. The
mapping methods can also be extended into a discriminatively trained feature space,
such as the fMPE space [Cui et al., 2009a].

One concern for learning with stereo data is the requirement of stereo data, which
may not be available in real-world application scenarios. In [Droppo et al., 2002], it is
shown that a small amount of real noise synthetically mixed into a large, clean corpus
is enough to achieve signi®cant bene®ts for the FCDCN method. In [Du et al., 2010],
the pseudo-clean features generated with a HMM-based synthesis method [Tokuda
et al., 2000] are used to replace the clean features which are usually hard to get in real
deployment. It is shown that this pseudo-clean feature is even more effective than the
ideal clean feature [Du et al., 2010].

5.1.3 DNN for Noise Removal Using Stereo Data
Both the empirical cepstral compensation and SPLICE are piecewise linear compensa-
tion methods, in which the noisy featurey and the estimated clean featureÃx have an
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Figure 5.1: Generate clean feature from noisy feature with DNN

environment-dependent linear relationship. If putting them into the context of neural
network withy as the input andÃx as the output, all of these methods may be considered
as a shallow neural network to learn the mapping ofy and Ãx as Ãx = G(y). From the
success of DNNs, we learn that a deep neural network usually has more modeling power
than a shallow neural network. Hence it is natural to use a DNN to better learn the
mapping functionG, and this method has been recently very successful in both speech
enhancement and speech recognition tasks [Maas et al., 2012b, Lu et al., 2013c, W llmer
et al., 2013b, Narayanan and Wang, 2013a, Weninger et al., 2014a,c, Feng et al., 2014b,
Du et al., 2014a,b, Narayanan and Wang, 2014b,a, Wang et al., 2014, Gao et al., 2015,
Tu et al., 2015].

As shown in Figure 5.1, a DNN can be trained to generate clean feature from noisy
featurey by minimizing the mean squared error between the DNN outputÃx = G(y) and
the reference clean featuresx [Lu et al., 2013c, Feng et al., 2014b, Du et al., 2014a,b]:

FMSE = å
t

kÃxt  xtk2 (5.18)

Usually, the input noisy featurey is with a context window of consecutive frames, while
the reference clean featuresx only corresponds to the current frame. The enhancement
functionG is realized with a DNN in Figure 5.1. This noise-removal strategy is very
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effective. Evaluated in [Du et al., 2014b], when the underlying DNN model used for
recognition is trained with clean data and the noisy test data is cleaned with the noise-
removal DNN, huge WER reduction can be achieved. If the underlying DNN model
used for recognition is trained with multi-condition data, remarkable WER reduction
still can be achieved. Note that if the underlying model for recognition is a GMM, the
improvement of using a noise-removal DNN is even larger. Also, the improvement is
much larger than that obtained with AFE [ETSI, 2002] described in Section 4.1.3. This
is due to the power of DNNs which learn the mapping between noisy and clean feature,
while AFE is a traditional front-end without learning from the stereo data.

In addition to using a standard feed-forward DNN, a recurrent neural network (RNN)
has also been proposed to predict the clean speech from noisy speech [Maas et al.,
2012b] by modeling temporal signal dependencies in an explicit way because a RNN
directly uses its time-recurrent structure to model the long-range context of speech
which cannot be approximated by the feature stacking with a context window in the
standard feed-forward DNN. Standard RNN has a known problem of weight decaying
(or blowing up) during training. This issue can be solved by replacing the sigmoid
units with long short-term memory (LSTM) units and bidirectional LSTM (BLSTM)
units [W llmer et al., 2013b, Weninger et al., 2014a,c] which allow for a more ef®cient
exploitation of temporal context, leading to an improved feature mapping from noisy
speech to clean speech. The LSTM units have an internal memory cell whose content
is modi®ed in every time step by input, output, and forget gates so that the network
memory is modeled explicitly.

While most studies [Maas et al., 2012b, Lu et al., 2013c, W llmer et al., 2013b,
Weninger et al., 2014a, Feng et al., 2014b, Du et al., 2014a] use clean speech features
as the DNN training target, there are also some works [Narayanan and Wang, 2013a,
2014b,a, Wang et al., 2014] using the time-frequency (T-F) masks such as ideal binary
mask (IBM) or ideal ratio mask (IRM) as the training target. For each T-F unit, the
corresponding IBM value is set to 1 if the local SNR is greater than a local criterion,
otherwise it is set to 0. IRM is de®ned as the energy ratio of clean speech to noisy speech
at each T-F unit with the assumption that noise is uncorrelated with clean speech, and
can be written as a function of SNR:

IRM(t;k) =
�

SNR(t;k)
1+ SNR(t;k)

� b

; (5.19)

whereb is a tunable parameter to scale the mask. This is closely related to the frequency-
domain Wiener ®lter in Eq-4.29. The training of IBM or IRM estimation with a DNN
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is done by replacing the clean speech target in Figure 5.1 with either IBM or IRM
as the target. During testing, the estimate of the T-F maskÃmt is obtained by forward
propagating the learned DNN, and the estimated clean speech spectrum is obtained as

Ãxt = Ãmt : � yt; (5.20)

where:� is the element wise multiplication.
It is shown in [Narayanan and Wang, 2014a] that IRM is superior to IBM for the

speech recognition task. However, it is still arguable whether using IRM is better than
using clean speech feature as the target for noise removal. Suppose a clean utterance is
corrupted by different types of noise with various SNRs, using clean speech feature as
target directly maps the features from all the utterances with different distortion to the
features from the same clean utterance. A DNN needs to learn this challenging many-
to-one mapping. In contrast, by using IRM as the training target, the DNN learning is
pretty simple ± only the one-to-one mapping needs to be learned. Moreover, the target
IRM value is between 0 and 1, which makes the learning avoid estimation of unbounded
values. [Wang et al., 2014] also provides other arguments why IRM is better as the DNN
training target for the task of speech separation. As a result, IRM as the training target is
shown to outperform clean speech feature as the training target in speech separation tasks
[Wang et al., 2014, Weninger et al., 2014c]. On the other hand, using IRM in Eq-5.19 as
the training target is supposed to remove only the noise distortion. If the distorted signal
y is also impacted by the channel distortion, an additional feature mapping function has
to be provided in [Narayanan and Wang, 2014a] to remove the channel distortion in the
estimated clean speech feature from the noise-removal DNN. In contrast, using clean
speech feature as the training target can directly map the noise and channel distorted
feature to clean speech feature with its many-to-one mapping in one step.

In addition to noise removal with DNN based on the minimum square error criterion,
similar methodology can separate multiple speakers by putting the mixed feature as the
input and the target speaker feature as the output in Figure 5.1. This is done in [Weng
et al., 2014a]where separate DNNs are trained to predict individual sources. Another
solution is proposed in [Huang et al., 2014a] where a single DNN is trained to predict
all the sources as in Figure 5.2. This is optimized by minimizing the objective function

FMSE2 = å
t

kÃx1t  x1tk2 + kÃx2t  x2tk2 (5.21)

One improvement proposed in [Huang et al., 2014a] is to re®ne the ®nal speaker
sources with the constraint that they can be combined to form the original mixed feature
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Figure 5.2: Speech separation with DNN

with

Äx1t =
kÃx1tk

kÃx1tk+ kÃx2tk
: � yt (5.22)

Äx2t =
kÃx2tk

kÃx1tk+ kÃx2tk
: � yt (5.23)

In this way, the reconstructed sources are more meaningful. The DNN optimization is
still done with Eq-5.21 by replacingÃx1t andÃx2t with Äx1t andÄx2t . This method should
also be applicable to noise removal if we considerx1 andx2 are the clean speech and
noise features, respectively.

Similar to the learning with SPLICE and empirical cepstral compensation, the
supervised learning using DNN also needs stereo data which is hard to obtain in most
real world scenarios. One solution is proposed in [Du et al., 2014a], where pseudo clean
data is generated with HMM-based synthesis. When the test noise is also available
during the learning of the enhancement functionG, high performance can always be
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obtained by using DNN for noise removal. However, the challenge is the generalization
to unseen conditions. This problem can be signi®cantly alleviated by training the noise
removal function on more acoustic conditions [Wang and Wang, 2013]. In [Xu et al.,
2014], a set of more than 100 noise types is added when training the noise removal
function in order to enrich the generalization of the DNN to unseen and non-stationary
noise conditions. Although achieving satisfactory results in the area of speech separation,
this noise enrichment method still degrades the recognition performance in the unseen
test sets when the underlying acoustic model is a DNN [Du et al., 2014b].

5.2 Learning from Multi-Environment Data
This type of methods utilizes prior knowledge about the distortion by collecting and
learning a set of models ®rst, each corresponding to one speci®ed environment in the
training. These environment-speci®c models are then online combined to form a new
model that ®ts the test environment best.

Usually, the acoustic model can be trained with a multi-condition training set to
cover a wide range of application environments. However, there are two major problems
with multi-style training. The ®rst is that during training it is hard to enumerate all
of the possible noise types and SNRs that may be present in future test environments.
The second is that the distribution trained with multi-style training is too broad because
it needs to model the data from all environments. Therefore, it is better to build
environment-speci®c models, and use the model that best ®ts the test environment when
doing runtime evaluation.

5.2.1 Online Model Combination
The model combination methods build a set of acoustic models, each modeling one
speci®c environment. During testing all the models are combined to construct a target
model used to recognize the current test utterance. Denote the set of environment-
dependent parameters asf L 1; : : : ;L Kg; whereK is the total number of environments.
Then the model parameters during testing can be obtained as

ÃL =
K

å
k= 1

wkL k; (5.24)

wherewk is the combination weight for thek-th environment model. The model parame-
ters can be Gaussian mean vectors or transforms when the underlying acoustic model is
a GMM, and they can be weight matrices in the DNN case.
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Online Model Combination for GMM
Assume thatK environment-speci®c models share the same covariance matrix and
only differ in mean parameters of GMMs. The mean parameters for each environment-
speci®c model are concatenated together to form mean super-vectors (sk;k = 1: : :K),
and the mean super-vector of the test utterance,Ãs, is obtained as a linear combination of
K mean super-vectors of the environment-speci®c models

Ãs=
K

å
k= 1

wksk; (5.25)

wherewk is the combination weight for thek-th mean super-vector, andw = [ w1;w2; : : : ;wK]T .
The combination weightsw can be obtained with the maximum likelihood estimation
(MLE) criterion as

Ãw = argmax
w

logp(YjÃs) (5.26)

This is solved with the expectation-maximization (EM) algorithm which ®nds the
solution ofw iteratively. The auxiliary function is de®ned as the following by ignoring
standard constants and terms independent ofw

Q(w;w0) =  
1
2å

m;t
gt(m)(yt  m(m))TS 1(m)(yt  m(m)) ; (5.27)

wherew0 is the previous weight estimate,gt(m) is the posterior of Gaussian component
m at timet determined using the previous model parameters, andyt is the feature vector
of framet. m(m) is the adapted mean of Gaussian componentm, represented as

m(m) =
K

å
k= 1

wksk(m) = S(m)w; (5.28)

wheresk(m) is the subvector for Gaussian componentm in super-vectorsk andS(m) =
[s1(m); : : : ;sK(m)]. S(m) is the variance of the Gaussian componentm, shared by all the
environment-speci®c models. By maximizing the auxiliary function, the combination
weightw can be solved as

w =

"

å
m;t

gt(m)ST(m)S 1(m)S(m)

# 1

å
m;t

gt(m)ST(m)S 1(m)yt : (5.29)
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This model combination method is very similar to general speaker adaptation methods
such as cluster adaptive training (CAT) [Gales, 2000b] and eigenvoice [Kuhn et al.,
2000]. In the CAT approach, the speakers are clustered together andsk stands for
clusters instead of individual speakers. In the eigenvoice approach, a small number
of eigenvectors are extracted from all the super-vectors and are used assk. These
eigenvectors are orthogonal to each other and guaranteed to represent the most important
information. Although originally developed for speaker adaptation, both CAT and
eigenvoice methods can be used for robust speech recognition. StoringK super-vectors
in memory during online model combination may be too demanding. One way to reduce
the cost is to use methods such as eigenMLLR [Chen et al., 2000, Wang et al., 2001]
and transform-based CAT [Gales, 2000b] by adapting the mean vector with environment
dependent transforms. In this way, onlyK transforms are stored in memory. Moreover,
adaptive training can be used to ®nd the canonical mean as in CAT [Gales, 2000b].

One potential problem of MLE model combination is that usually all combination
weights are nonzero, i.e., every environment-dependent model contributes to the ®nal
model. This is obviously not optimal if the test environment is exactly the same as
one of the training environments. There is also a scenario where the test environment
can be approximated well by interpolating only few training environments. Including
unrelated models into the construction brings unnecessary distortion to the target model.
In ensemble speaker and speaking environment modeling (ESSEM) [Tsao and Lee, 2007,
Tsao et al., 2009, Tsao and Lee, 2009], environment clustering is ®rst used to cluster
environments into several groups, each of which consists of environments having similar
acoustic properties. During online model combination, an online cluster selection is ®rst
used to locate the most relevant cluster and then only the super-vectors in this selected
cluster contribute to the model combination in Eq-5.25. In this way, most weights of the
super-vectors are set to 0 and the method is shown to have better accuracy than simply
combining all the super-vectors. By suitably incorporating prior knowledge, ESSEM
can estimate combination weights accurately with a limited amount of adaptation data
and has been shown to achieve very high accuracy on the standard Aurora 2 task [Tsao
et al., 2014].

Instead of ®rst doing the online clustering as in ESSEM, weights can also be automat-
ically set to 0 [Xiao et al., 2012b] by using Lasso (least absolute shrinkage and selection
operator) [Tibshirani, 1996] which imposes anL1 regularization term in the weight
estimation problem to shrink some weights to exactly zero. The auxiliary function in
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Eq-5.27 is modi®ed with theL1 regularization as

Q(w;w0) =  
1
2å

m;t
gt(m)(yt  m(m))TS 1(m)(yt  m(m))  Ta

K

å
k= 1

jwkj; (5.30)

wherea is a tuning parameter that controls the weight of theL1 constraint,T is the
total number of frames in the current utterance, andjwkj denotes the absolute value of
wk. This can be solved iteratively using the method proposed in [Li et al., 2011b]. In
[Xiao et al., 2012b], it is shown that Lasso usually shrinks to zero the weights of those
mean super-vectors not relevant to the test environment. By removing some irrelevant
super-vectors, the obtained mean super-vectors are found to be more robust against noise
distortions.

Note that the noisy speech feature variance changes with the introduction of noise,
therefore simply adjusting the mean vector of the speech model cannot solve all of the
problems. It is better to adjust the model variance as well. One way is to combine
the pre-trained CMLLR matrices as in [Cui et al., 2009b]. However, this is not trivial,
requiring numerical optimization methods, such as the gradient descent method or a
Newton method [Cui et al., 2009b].

Online Model Combination for DNN
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function

Summing 
function

...

×

×

×
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Figure 5.3: Linear model combination for DNN
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The realization of Eq-5.24 in a DNN is done in the weight matrix and bias level
as shown in Figure 5.3. Suppose in thel -th layer, we have trained the weight matrix
setf H l

1; : : : ;H l
Kg and bias setf pl

1; : : : ;pl
Kg for all the environments. Then at test time,

the weight matrixÃA l and biasÃbl for the new environment can be obtained as a linear
combination of the trained counter parts as

ÃA l =
K

å
k= 1

wkH
l
k; (5.31)

Ãbl =
K

å
k= 1

wkp
l
k: (5.32)

Because the number of environments observed during training usually is much less than
the number of parameters in a DNN, the combination weightw = [ w1;w2; : : : ;wK]T

can be easily estimated online with only a few utterances with the standard error back
propagation training.

5.2.2 Non-Negative Matrix Factorization

In Section 5.2.1, the acoustic model for the current test utterance is obtained by com-
bining the pre-learned acoustic models. Recently, there is increasing interest to use
exemplar-based methods for general ASR [Demuynck et al., 2011, Sainath et al., 2011b]
and noise-robust ASR [Gemmeke and Virtanen, 2010, Raj et al., 2010, Gemmeke et al.,
2011]. Exemplar refers to an example speech segment from the training corpus. In
exemplar-based noise-robust ASR [Gemmeke and Virtanen, 2010, Raj et al., 2010,
Gemmeke et al., 2011], noisy speech is modeled by a linear combination of speech
and noise [Gemmeke and Virtanen, 2010, Gemmeke et al., 2011] (or other interfering
factors, such as music [Raj et al., 2010]) exemplars. If the reconstructed speech consists
of only the exemplars of clean speech, the impact of noise is removed. This is a source
separation approach, and non-negative matrix factorization (NMF) [Lee and Seung,
2000] has been shown to be a very successful method [Smaragdis and Brown, 2003,
Schmidt and Olsson, 2007, Virtanen, 2007], and can directly bene®t noise-robust ASR
[Gemmeke and Virtanen, 2010, Raj et al., 2010, Gemmeke et al., 2011, Mohammadiha
et al., 2013]. An advantage of the exemplar-based approach is that it can deal with
highly non-stationary noise, such as speech recognition in the presence of background
music. The source separation process with NMF is described below.

First the training corpus is used to create a dictionaryxl (1 � l � L) of clean speech
exemplars and a matrixX is formed asX = [ x1x2 : : :xL]. The exemplars are drawn
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randomly from a collection of magnitude spectral vectors in a training set. Similarly, the
noise matrixN is formed with noise exemplars. Then speech and noise exemplars are
concatenated together to form a single matrixA = [ XN], with a total ofK exemplars.
The exemplars ofA are denotedak;1 � k � K. The reconstruction feature is

Ãy =
K

å
k= 1

wkak = Aw; s:t: wk � 0 (5.33)

with w as theK-dimensional activation vector. All exemplars and activation weights
are required to be non-negative. The objective is to minimize the reconstruction error
d(y;Aw) between the observationy and the reconstruction featureÃy while constraining
the matrices to be element-wise non-negative. It is also good to embed sparsity into the
objective function so that the noisy speech can be represented as a combination of a
small set of exemplars, similar to the concept of online GMM model combination with
Lasso regularization in Section 5.2.1. This is done by penalizing the nonzero entries of
w with theL1 norm of the activation vectorw, weighted by element-wise multiplication
(operation .*) of a non-negative vectorl . Therefore the objective function is

d(y;Aw)+ kl : � wk1 s:t: wk � 0 (5.34)

If all the elements ofl are zero, there is no enforced sparsity [Raj et al., 2010]. Oth-
erwise, sparsity is enforced [Gemmeke and Virtanen, 2010, Gemmeke et al., 2011].
In [Lee and Seung, 2000], two measures are used for the reconstruction errord(y; Ãy),
namely Euclidean distance and divergence. In most speech-related work [Gemmeke
and Virtanen, 2010, Raj et al., 2010, Gemmeke et al., 2011], Kullback-Leibler (KL)
divergence is used to measure the reconstruction error.

d(y; Ãy) =
E

å
e= 1

ye log
�

ye

Ãye

�
 ye+ Ãye; (5.35)

whereE is the vector dimension.
To solve Eq-5.34, the entries of the vectorw are initialized to unity. Then Eq-5.34

can be minimized by iteratively applying the multiplicative update rule [Gemmeke et al.,
2011]

w ! w: � (A(y:=(Aw))) :=(A1+ l ) (5.36)

with :� and:= denoting element-wise multiplication and division, respectively.1 is a
vector with all elements set to 1.
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After gettingw, the clean speech feature can be reconstructed by simply combining
all the speech exemplars with nonzero weights [Schmidt and Olsson, 2007]. Good
recognition performance has been observed particularly at very low SNR (below 0 dB).
Better results are reported by using the following ®ltering [Raj et al., 2010, Gemmeke
et al., 2011, Gemmeke and Van hamme, 2012] as

Ãx = y: � Axwx:=(Axwx + Anwn); (5.37)

whereAx andwx denote the exemplars and activation vector for clean speech, respec-
tively, andAn andwn denote the exemplars and activation vector for noise, respectively.
This procedure can be viewed as ®ltering the noisy speech spectrum with a time-varying
®lter de®ned byAxwx:=(Axwx + Anwn), similar to Wiener ®ltering in Eq-4.28. This
is referred as feature enhancement (FE) in [Gemmeke et al., 2011, Gemmeke and
Van hamme, 2012].

Instead of cleaning the noisy speech magnitude spectrum, a sparse classi®cation
(SC) method is proposed in [Gemmeke and Virtanen, 2010] to directly use the activation
weights to estimate the state or word likelihood. Since each frame of each speech
exemplar in the speech dictionary has state or word labels obtained from the alignment
with conventional HMMs, the weights of the exemplars in the sparse representation
wx can be used to calculate the state or word likelihood. Then, these activation-based
likelihoods are used in a Viterbi search to obtain the state sequence with the maximum
likelihood criterion.

Although the root methodology of FE and SC are the same, i.e., NMF source
separation, it is shown in [Weninger et al., 2012, Gemmeke and Van hamme, 2012] that
they are complementary. If combined together, more gain can be achieved. There are
also variations of standard NMF source separation. For example, a sliding time window
approach [Gemmeke et al., 2009] that allows the exemplars to span multiple frames
is used for decoding utterances of arbitrary length. Convolutive extension of NMF is
proposed to handle potential dependencies across successive input columns [Smaragdis,
2007, Weninger et al., 2012]. Prior knowledge of the co-occurrence statistics of the basis
functions for each source can also be employed to improve the performance of NMF
[Wilson et al., 2008]. In [Grais and Erdogan, 2013], by minimizing cross-coherence
between the dictionaries of all sources in the mixed signal, the bases set of one source
dictionary can be prevented from representing the other source signals. This clearly gives
better separation results than the traditional NMF. Superior digit recognition accuracy
has been reported in [Gemmeke and Van hamme, 2012] with the exemplar-based method
by increasing the number of update iterations and exemplars, designing arti®cial noise
dictionary, doing noise snif®ng, and combining SC with FE.
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Although the objective of NMF is to accurately recover clean features from noisy
features, most NMF approaches have not directly optimized this objective. This problem
is addressed in [Weninger et al., 2014d], where discriminative training of the NMF bases
are performed so that given the weight coef®cients obtained on a noisy feature, the
desired clean feature is optimally recovered. This is done by minimizing the distance
between the recovered and reference clean feature. However, this objective becomes
a bi-level optimization problem because the recovered clean feature also depends on
the bases. Therefore, this involves very complicated iterative inference. In [Hershey
et al., 2014] a concept of deep unfolding is proposed to address this issue by unfolding
the inference iterations as layers in a DNN. Rather than optimizing the original model,
the method unties the model parameters across layers to create a more powerful DNN.
Then this DNN can be optimized with the back-propagation algorithm. This deep
unfolding method gives superior performance to discriminative NMF than the solution
in [Weninger et al., 2014d].

There are still plenty of challenges. e.g., how to deal with convolutive channel
distortions [Gemmeke et al., 2013], how to most effectively deal with noise types in
testing that have not been previously seen in the development of the noise dictionary
[Gemmeke and Van hamme, 2012], and how to generalize to LVCSR tasks although
there are recent improvements on Aurora 4 tasks [Geiger et al., 2014a]. Finally, although
it is challenging to a noise-robust front-end to improve over the performance of a DNN
back-end fed with raw features, it is reported in [Geiger et al., 2014a] that NMF en-
hancement improves the recognition accuracy substantially when the training data is
clean, and it still brings improvement even with multi-condition training data.

5.2.3 Variable-Parameter Modeling

We have seen two broad classes of variables that affect the observation of speech signals:
discrete (e.g. speaker and speaker classes, types of noises) and continuous (e.g. SNR,
speaking rate, distance to the microphone). The variability of speech signals as a
function of continuous variables can be explicitly modeled in the acoustic models. The
concept of variable-parameter modeling is that speech model parameters in a speci®c
test environment can be obtained as a function of environment variables. There are three
advantages with this modeling techniques.

� When the test environment is unseen during training, the model parameters can
still be extrapolated very well with the learned function. Therefore, this method
generalizes very well to unseen test environments.
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� With the introduction of a continuous parameterization of the model, any data
sample contributes to the training of all the model parameters of the variable-
parameter model. This improves training data effectiveness compared to multi-
condition training where there is no design to leverage data across conditions.

� Another advantage is that the model is sharper than the model trained with standard
multi-style training because it can ®t the underlying individual test environments
better by adjusting its parameters according to the test environment variable. This
concept is ®rst proposed to dynamically adjust GMM parameters [Cui and Gong,
2003, 2006, 2007], and then extended to DNN modeling [Zhao et al., 2014a,b].

Variable-Parameter Modeling for GMM
As shown in Cui and Gong [2007], the mean and variance of the Gaussian distribution
of the observed speech acoustic feature are functions of SNR. Pooling such distributions
together and training SNR-independent models, as multi-style training does, inevitably
yields relatively ¯at distributions. Apparently, the standard GMM-HMM which em-
ploys a constant set of model parameters to describe the acoustics under all different
environments is imperfect and inadequate to deal with the phenomena.

To improve the modeling accuracy and performance, it is better to make the parame-
ters of the acoustic model change according to the environment. This is the motivation
of variable-parameter HMM (VPHMM) [Cui and Gong, 2003, 2006, 2007] which
models the speech Gaussian mean and variance parameters as a set of polynomial
functions of an environment variableu. A popular environment variable is SNR [Cui
and Gong, 2003, 2006, 2007]. Hence, the Gaussian componentm is now modeled as
N (y;m(m;u);S(m;u)) . m(m;u) andS(m;u) are polynomial functions of environment
variableu. For example,m(m;u) can be denoted by

m(m;u) =
J

å
j= 0

c j (m)u j ; (5.38)

wherec j (m) is a vector with the same dimension as the input feature vectors. The choice
of polynomial function is based on its good approximation to continuous functions,
its simple derivation operations, and the fact that the change of means and variances
in terms of the environment is smooth and can be modeled by low order polynomials.
Note that strictly speaking, variable parameter modeling using Eq-5.38 should be called
variable-parameter Gaussian mixture model instead of VPHMM because only Gaussian
parameters are modeled with polynomial functions, although transition probabilities can
also be modeled using variable parameter techniques (e.g. speaking rate changes). Here
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we still use the term VPHMM to follow the literature in which it was proposed [Cui and
Gong, 2003, 2006, 2007].

Other functions can also be used for a VPHMM. For example, in [Yu et al., 2009b],
piecewise spline interpolation is used to represent the dependency of the HMM param-
eters on the environment parameters. To reduce the total number of parameters for
a VPHMM, parameter clustering can be employed [Yu et al., 2008c]. The VPHMM
parameters can be trained either with the MLE criterion [Cui and Gong, 2007] or a
discriminative criterion [Yu et al., 2008b]. In addition to Gaussian mean and variance
parameters, other model parameters can also be modeled. In [Cheng et al., 2011, Li et al.,
2013b], a more generalized form of VPHMM is investigated by modeling tied linear
transforms as a function of environment variables. In addition to using the standard
MFCC as the input feature for a GMM, [Xie et al., 2014] shows the effectiveness of
using bottle-neck features generated from a DNN as the features of a VPHMM.

During testing, the actual set of speech model parameters can be calculated by
evaluating the parametric function with the estimated environment variable. Even if
the estimated environment is not seen during training, the curve ®tting optimization
naturally uses the information on articulation/context from neighboring environments.
Therefore, VPHMM can work well in unseen environment instances modeled by the
environment variable.

Variable-Component DNN

Usually multi-style data is used to train a DNN [Seltzer et al., 2013a] and good accuracies
can be obtained. However, as shown in Section 3.4, speech samples from different
environments cannot be well aligned even with the DNN's high-level feature extraction.
Therefore, if a single DNN is used to model the multi-style speech data, it is possible
to end up with ª¯atº distributions. So for the test speech produced in a particular
environment, such a "¯at" model would not be the optimal matched model. Actually,
a ¯at model does not represent any of the training environments. It is also dif®cult to
collect training data to cover all possible types of environments, so the performance
on unseen noisy environments remains unpredictable. Therefore, it is desirable that
DNN components can be modeled as a function of a continuous environment-dependent
variable. At the recognition time, a set of DNN components speci®c to the given value
of the environment variable is instantiated and used for recognition. Even if the test
environment is not seen in the training, the estimated DNN components can still work
well because the change of DNN components in terms of the environment variable can
be predicted. Variable-component DNN (VCDNN) [Zhao et al., 2014a,b] is proposed
for this purpose.
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In the VCDNN method, any component in the DNN can be modeled as a set of
polynomial functions of an environment variable. To that end, four types of variation
can be de®ned for VCDNN: variable-parameter DNN (VPDNN) in which the weight
matrix and bias are variable dependent, variable-output DNN (VODNN) in which the
output of each hidden layer is variable dependent, variable-activation DNN (VADNN) in
which the activation function is variable dependent, and variable-input DNN (VIDNN)
in which the input feature is variable dependent.

Figure 5.4 shows the ¯ow chart of one layer of a VPDNN , in which the weight
matrixA and biasb of layerl is modeled as a function of the environment variableu:

A l =
J

å
j= 0

H l
ju

j 0 < l � L (5.39)

bl =
J

å
j= 0

pl
ju

j 0 < l � L (5.40)

J is the polynomial function order.H l
j is a matrix with the same dimensions asA l and

pl
j is a vector with the same dimension asbl .

Then the relation between the inputvl and the outputvl+ 1 of the l -th layer at a
VPDNN is

vl+ 1 = s (zl ); (5.41)

where

zl = A l vl + bl (5.42)

ands (�) is the sigmoid function.
Combining Eq-5.39 and 5.40 with the error back propagation algorithm introduced

in Section 2.4, the update formulas forH l
j andpl

j can be obtained as:

ÃH l
j = H l

j + a vl (el )Tu j (5.43)

Ãpl
j = pl

j + a el u j (5.44)

wherevl is the input to thel -th layer,a is the learning rate, andel is the error signal at
thel -th layer, de®ned in Eq-2.38.

In the recognition stage, the weight matrixA and biasb of each layer are instantiated
according to Eq-5.39 and 5.40 with the estimated environment variable of the test data.
Then the senone posterior can be calculated in the same way as in the standard DNN.
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Figure 5.4: Variable-parameter DNN

Comparing Eq-5.39 and Eq-5.40 in VPDNN with Eq-5.31 and Eq-5.32 in linear
DNN model combination, we can see that they are very similar ± both methods linearly
combine a set of basis matrix and bias at test time. However, they also have several
different aspects as shown in Table 5.1. Similar comparison can also be applied to
VPHMM and linear GMM model combination.

Table 5.1: Difference between VPDNN and linear DNN model combination

VPDNN linear DNN model combination

DNN weight matrix
and bias of test utter-
ances

a learned polynomial function of
environment variables

linear combination of a set of
weight matrix and bias trained
from different environments

combination coef®-
cients

directly calculated with environ-
ment variables

online estimated

environment variables can be continuous such as SNRdiscrete, each associated with a
weight matrix and bias

In a VODNN , it is assumed the output of each hidden layer could be described by a
polynomial function of the environment variableu:

vl+ 1 =
J

å
j= 0

s (zl
j )u

j 0 < l < L (5.45)
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where

zl
j = ( H l

j )
Tvl + pl

j (5.46)

The framework of one layer in a VODNN is shown in Figure 5.5. Similarly, the
updating formulas can be obtained by combining Eq-5.45 and Eq-5.46 with the error
back propagation algorithm:

ÃH l
j = H l

j + a vl (el
j )

Tu j (5.47)

Ãpl
j = pl

j + a el
ju

j (5.48)

The difference between the update formulas of VPDNN and VODNN parameters is that
the order-independent error signalel is used in Eq-5.43 and 5.44 while the error signal
el

j used in Eq-5.47 and 5.48 depends on the polynomial orderj as

el
i( j) =

"
J

å
n= 0

Nl+ 1

å
k= 1

hl+ 1
ik(n)e

l+ 1
k(n)

#

s 0(zl
i j ) (5.49)

whereel
i( j) is thei-th element of the error signal vectorel

j at thel -th layer,zl
i j is thei-th

element ofzl
j , andhl+ 1

ik(n) is the element of matrixH l+ 1
n in thei-th row andk-th column at

the layerl + 1. s 0(�) is the derivative of the sigmoid function.
In a VADNN , the activation function of hidden layers has environment-variable-

dependent parameters as

vl+ 1 = s
�

al : � zl + ml
�

(5.50)

wherezl is de®ned in Eq-5.42 and:� means the element-wise product.al andml are
de®ned as the polynomial functions of the environment variableu

al =
J

å
j= 0

hl
ju

j 0 < l < L (5.51)

ml =
J

å
j= 0

pl
ju

j 0 < l < L (5.52)

Figure 5.6 shows one layer of a VADNN. The additional variable-dependent parame-
tershl

j andpl
j in a VADNN for each hidden layer are vectors with dimensionNl , which
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Figure 5.5: Variable-output DNN

is the number of nodes of thel -th layer. Hence its number of parameters is much smaller
than that in a VPDNN or a VODNN. In the training of a VADNN,hl

j andpl
j as well

as the DNN parametersA l andbl need to be updated with the error back propagation
algorithm as

ÃA l = A l + a vl (el : � al )T (5.53)
Ãbl = bl + a (el : � al ) (5.54)
Ãhl

j = hl
j + a (el : � zl )u j (5.55)

Ãpl
j = pl

j + a el u j (5.56)

Finally, the simplest DNN structure to use environment variables is VIDNN , which
concatenates environment variables with the original input feature. Even with the ®rst-
order polynomial, a VPDNN or a VODNN doubles the number of parameters from the
standard DNN. If a large amount of training data is available, these two models may
give better accuracy. In contrast, a VADNN or a VIDNN only increases negligibly the
number of parameters, but still achieves satisfactory robustness.

The advantage of VCDNNs is shown in [Zhao et al., 2014a] where VCDNNs
achieved better relative WER reduction from the standard DNN under unseen SNR
conditions than under the seen SNR conditions. This indicates that a standard DNN has
a strong power to model the various environments it has observed, but for the unseen
environments, there is more room for improvement from the standard DNN. With the
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Figure 5.6: Variable-activation DNN

polynomial function, VCDNNs can very well predict the DNN components used for
unseen condition by extrapolation. Therefore, VCDNNs can generalize very well to
unseen environments.

5.3 Summary

Method Proposed
around

Characteristics

empirical cepstral compensa-
tion [Acero and Stern, 1990,
Acero, 1993, Liu et al., 1994,
Stern et al., 1996, Droppo
et al., 2001a]

1990 calculates all kinds of factor-dependent (including
SNR, VQ cluster, phoneme identity, etc.) bias us-
ing stereo training data, and remove that bias during
testing

online GMM model combi-
nation [Kuhn et al., 2000,
Gales, 2000b]

2000 online combines a set of environment-speci®c GMM
models, representative methods are eigenvoice and
cluster adaptive training

stereo piecewise linear com-
pensation for environment
(SPLICE) [Deng et al.,
2000a]

2000 the additive correction vector is piecewise linear be-
tween the noisy speech observation and the clean
speech of the stereo training data

variable-parameter HMM
(VPHMM) [Cui and Gong,
2003]

2003 models the Gaussian mean and variance parameters
as a set of polynomial functions of the environment
variable
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ensemble speaker and speak-
ing environment modeling
(ESSEM) [Tsao and Lee,
2007, Tsao et al., 2009]

2007 To remove unrelated models into construction, an
online cluster selection is ®rst used to locate the most
relevant cluster and then only the super-vectors in this
selected cluster contribute to the model combination

exemplar-based reconstruc-
tion with non-negative
matrix factorization (NMF)
[Gemmeke and Virtanen,
2010, Raj et al., 2010]

2010 NMF is used to reconstruct speech with only clean
speech exemplars extracted from the training dictio-
nary

Lasso model combination
[Xiao et al., 2012b]

2012 imposes anL1 regularization term in the weight es-
timation problem of online model combination to
shrink some weights to exactly zero

discriminative NMF
[Weninger et al., 2014d]

2014 discriminative training of the NMF bases is performed
so that the desired clean feature is optimally recov-
ered given the weight coef®cients obtained on a noisy
feature

Table 5.2: Compensation with prior knowledge methods originally proposed for GMMs
in Chapter 5, arranged chronologically

Method Proposed
around

Characteristics

RNN for noise removal
[Maas et al., 2012b, W llmer
et al., 2013b, Weninger et al.,
2014a,c]

2012 Uses a RNN which better models temporal sequence
to learn the mapping from noisy feature to clean fea-
ture, and it is extended with advanced structure such
as LSTM and BLSTM

DNN for noise removal
[Lu et al., 2013c, Feng
et al., 2014b, Du et al.,
2014a, Narayanan and Wang,
2014a]

2013 Use a DNN to learn the mapping from noisy feature
to clean feature

online DNN model combi-
nation [Wu and Gales, 2015,
Tan et al., 2015]

2015 online combines a set of environment-speci®c DNN
models

variable-component DNN
[Zhao et al., 2014a,b]

2014 any component in the DNN can be modeled as a set
of polynomial functions of an environment variable
so that better modeling of test environments can be
achieved.

deep unfolding [Hershey
et al., 2014]

2014 solves the complicated bi-level optimization problem
in discriminative NMF by unfolding the inference
iterations as layers in a DNN
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Table 5.3: Compensation with prior knowledge methods originally proposed for DNNs
in Chapter 5, arranged chronologically

To provide a better view of the development trend of robustness methods from the GMM
era to the DNN era, we summarize the representative methods described in this chapter
for robust ASR exploiting prior knowledge originally proposed for GMM and DNN in
Table 5.2 and Table 5.3, respectively, in a chronological order. Further comments and
summary of these methods, as well as additional relevant work that we did not describe
in detail in this chapter, are made below:

� If stereo data is available, a mapping from noisy feature to clean feature can be
learned. Empirical cepstral compensation is widely used to address all kinds of
factors (SNR, VQ cluster, phoneme identity, etc.) with a bias, and it is improved
by SPLICE which uses piecewise linear compensation. With the layer-by-layer
nonlinear modeling power of a DNN, a much better learning of the noisy-to-clean
feature mapping can be obtained. This is further improved by the introducing the
recurrent structure and (B)LSTM units which better model the temporal sequence
of speech signals.

� Online model combination is one way to fast adapt acoustic models to environ-
ments with limited adaptation data because only combination coef®cients need to
be computed online. For GMM models, eigenvoice and cluster adaptive training
are representative methods. The combination coef®cients can be made sparse with
either clustering orL1 regularization. Similar idea can be easily extended to DNN
by online combining weight matrices.

� VPHMM is another way to online constructing an adapted GMM model with a set
of polynomial functions of the environment variable. It is extended to VCDNN
in which any component in the DNN (parameter in VPDNN, output in VODNN,
activation in VADNN, and input in VIDNN, respectively) can be modeled as a
set of polynomial functions of an environment variable. With the polynomial
functions, the model can be instantiated even in the unseen case by extrapolation,
thus enjoying good generalization property.

� NMF is used to reconstruct the clean speech spectrum from the noisy speech
spectrum using pre-constructed clean speech and noise exemplars. While no
stereo data is required, examples of the corrupting noise are nevertheless required
to form the noise dictionary. There are plenty of extensions of NMF, including
discriminative NMF in which discriminative training of the NMF bases is per-
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formed so that the desired clean feature is optimally recovered given the weight
coef®cients obtained on a noisy feature.

� Last, deep unfolding was proposed to solve the complicated bi-level optimization
problem in discriminative NMF. It builds a bridge between DNN modeling and
model-based approaches. As will be described in detail in Chapter 6, model-based
approaches are very powerful because of the use of explicit distortion models
between the clean and distorted speech. However, the inference is sometimes
very complicated and may rely on the underlying Gaussian model assumption.
On the other hand, it is straightforward to optimize parameters in DNN modeling
with the back propagation algorithm. A well-known disadvantage of the DNN
is that it is closer to mechanisms than problem-level formulation, and is usually
considered as a ªblack-boxº. Deep unfolding may be a potential framework that
allows model-based approaches to guide the exploration of the space of DNNs,
which is important but missing in current literature.
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