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ABSTRACT
In this paper a parallel algorithm for solving systems of linear equation on the k-
ary n-cube is presented and evaluated for the first time. The proposed algorithm
is of O(N3/kn) computation complexity and uses O(Nn) communication time to
factorize a matrix of order N on the k-ary n-cube. This is better than the best
known results for the hypercube, O(N log kn), and the mesh, O(N

√
kn), each

with approximately kn nodes. The proposed parallel algorithm takes advantage
of the extra connectivity in the k-ary n-cube in order to reduce the communication
time involved in tasks such as pivoting, row/column interchanges, and pivot row
and multipliers column broadcasts.

Keywords: Interconnection topologies, k-ary n-cube, linear systems, parallel
computing.

1. Introduction. Numerous scientific computing applications require
fast solution of large linear systems of equations. One direct method of so-
lution is to transform the linear system to a triangular system where the
solution are obtained by backward/forward substitutions. Gaussian elimi-
nation (GE) is the standard procedure to carry out matrix triangulization
to solve the system Ax = b. This procedure forms a sequence of matrices
A(1), A(2), . . . , A(N) where A(1) is the initial matrix and A(N) is the desired
triangular matrix. The matrix A(t)(t = 2, . . . , N), defined below, repre-
sent the equivalent linear system for which the variable xt−1 has just been
eliminated.
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This triangulization procedure will fail if any of the pivot elements is
zero. In practice it is often desirable to perform partial or complete piv-
oting to ensure numerical stability on finite-digit arithmetic. The amount
of computation time required by any serial setting of Gaussian elimination
to solve a linear system of N equations is proportional to N3. As for most
matrix computations, parallelizing Gaussian elimination method requires a
mapping of the matrix elements to the set of processors that allows efficient
communication across rows and columns. The most natural interconnec-
tion topology that meets this requirement is the mesh. The mesh topology
allows to pipeline GE steps where arithmetic computations are overlapped
with communication. Another way of parallelizing the GE steps is to use
broadcasting to exchange the pivot rows and multipliers columns. Such
an approach has been extensively investigated on the hypercube [2,4,10,13].
The broadcasting approach on the hypercube has introduced little improve-
ment over the pipelining approach and it proved inefficient when pivoting is
required [4,13].

This paper presents matrix mapping techniques and a parallel implemen-
tation of matrix triangulization based on the broadcasting approach for both
partial and complete pivoting on the k-ary n-cube. The proposed algorithm
is then compared against the existing implementations of the hypercube and
the mesh topologies.

The rest of the paper is organized as follows: In Section 2, some related
work is presented. In Section 3, we give an overview of the k-ary n-cube. In
Section 4, we discuss the employed matrix mapping techniques. Section 5
presents a parallel algorithm for matrix triangulization on the k-ary n-cube.
The proposed algorithms are analyzed in Section 6. Conclusions are given
in Section 7.
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2. Overview of the related work. One of the most widely used
methods for solving linear systems is Gaussian elimination. As any other
direct method of solution, Gaussian elimination is of O(N3) serial complex-
ity. Therefore, the implementation of the matrix triangulization in parallel
computers has been extensively studied and used by many computer manu-
facturers as a benchmarking algorithm [15].

The literature contains a vast body of research on parallel linear alge-
bra. Here are some recent examples: Block LU decomposition on the BBN
TC200 [14], hypercube based parallel LU factorization [2,4,10,13], matrix
triangulization on mesh-connected architectures [5], parallel block LU fac-
torization on the IBM 3090 VF/600J supercomputer [7], and pipelined ring
algorithms on a ring of transputers [12]. In general, computational complex-
ities of these parallel implementations are bounded by O(N3/P ), where N
is the order of the linear system and P is the number of processors, N2 ≥ P .
In the finest case each processor holds a single matrix element and in each
triangulization step all processors update the corresponding matrix element
with just one multiplication, one division, and one subtraction. The total
computation time required to triangulize the matrix is approximately 3N ,
using N2 processors.

The major problem with parallel matrix factorization algorithms is that
they suffer high communication delays. Pipelined ring algorithms [12] al-
leviate the communication penalty by overlapping computation and com-
munication. The columns of the matrix are stored in local caches so that
partial pivoting requires no communication overhead. Mesh implementa-
tions of the pipelined algorithms seem to be more attractive when pivot-
ing is not required. The hypercube broadcasting-based matrix trianguliza-
tion algorithms could not introduce significant improvement over pipelining
[2,4,10,13]. Here we take advantage of the increased connectivity of the k-
ary n-cube to improve the communication time requirement of the parallel
matrix triangulization. A parallel algorithm based on the broadcasting ap-
proach for the k-ary n-cube will be discussed. First we review the k-ary
n-cube and then we discuss the employed mapping techniques and present
the parallel algorithm for matrix triangulization.

3. The k-ary n-cube. The k-ary n-cube, Qk,n, consists of k
n vertices

labeled with strings of n symbols from the set of symbols 〈k〉 = {0, 1, . . . , k−
1}. Two nodes U = unun−1 · · ·u1 and V = vnvn−1 · · · v1 are connected if,
and only if, uj 6= vj for some j, 1 ≤ j ≤ n, and ui = vi for all i, 1 ≤ i ≤ n
and i 6= j. In Qk,n a node has degree n(k − 1), diameter n, and an average
diameter n(k − 1)/k [1,9]. Figure 1 shows Q3,2.
Proposition 1. The Qk,n can be partitioned into k

n−m disjoint Qk,m
subcubes. Each Qk,m subcube can be uniquely represented by a string of
n−m symbols from 〈k〉 followed by m dont’care symbols “*”. Denote these
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subcubes by Q1k,m, Q
2
k,m, . . . , Q

kn−m
k,m . Alternatively, each Qk,m subcube can

be uniquely represented by a string of m dont’care symbols followed by n−m
symbols from 〈k〉. Denote these subcubes by 1Qk,m, 2Qk,m, . . . , k

n−m
Qk,m.

Figures 2(a) and 2(b) show two different partitionings for the Q3,2 cube
{Q13,1 ≡ 0∗, Q23,1 ≡ 1∗, Q33,1 ≡ 2∗} and {1Q3,1 ≡ ∗0, 2Q3,1 ≡ ∗1, 3Q3,1 ≡ ∗2}.
We should notice that there are many other ways to partition the k-ary
n-cube into disjoint subcubes. In fact, there are

(n
m

)

different partitionings
which depend on where we locate the m dont’care symbols in the n-digit
addresses.

Fig. 1. The 3-ary 2-cube.

(a) Q13,1 ≡ 0∗, Q23,1 ≡ 1∗

and Q33,1 ≡ 2∗
(b) 1Q3,1 ≡ ∗0, 2Q3,1 ≡ ∗1
and 3Q3,1 ≡ ∗2

Fig. 2. Two different partitionings of the 3-ary 2-cube.

Definition 2. Let In be a one-to-one mapping from the set of strings
{unun−1 · · ·u1|ui∈〈k〉 and 1 ≤ i ≤ n} onto the set of integers {1, 2, . . . , kn}.
For any string U = unun−1 · · ·u1 a unique integer can be generated using
the following recursive function:

In(U) =

{

1 if n = 0

In−1(U) + un ∗ kn−1 otherwise .
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Proposition 3. Given any two nodes U = unun−1 · · ·u1 and V =
vnvn−1 · · · v1 such that In−m(unun−1 · · ·um+1) = In−m(vnvn−1 · · · vm+1),
m ≤ n, then U and V belong to the same subcube Qk,m. Similarly, if
Im(umum−1 · · ·u1) = Im(vmvm−1 · · · v1), then U and V belong to the same
subcube Qk,n−m.

4. Subcube matrix mapping techniques. In this section we will
present subcube matrix mapping techniques that facilitate simultaneous
broadcasts across rows and columns. These mapping techniques partition
the n-digit addresses of the k-ary n-cube into two parts one with m digits
and another with n−m digits. This will necessarily partition the k-ary n-
cube into km (resp. kn−m) disjoint subcubes of dimension n−m (resp. m).
Thus, matrix elements can be distributed over these disjoint subcubes such
that elements in the same row (resp. column) reside in the same subcube.
LetA = {aij |1 ≤ i, j ≤ N} be amatrix of orderN, Ar = {r1, r2, . . . , rN}

be the set of rows in the matrix A, Ac = {c1, c2, . . . , cN} be the set of
columns in the matrix A, H be the set of nodes in Qk,n, and ρr = {1Qk,n−m,
2Qk,n−m, . . . , k

mQk,n−m} and ρc = {Q1k,m, Q2k,m, . . . , Qk
n−m

k,m } be two parti-
tionings of the Qk,n, where N ≥

√
kn and m ≤ n.

Definition 4. The row mapping function frow : Ar → ρr that maps the
matrix rows to subcubes on a cyclic manner is defined as follows: f(ri) =
RQk,n−m such that R = [(i− 1) mod km] + 1.

Fig. 3. Subcube matrix mapping of A6×6 on Q3,2.
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Definition 5. The column mapping function fcol : Ac → ρc that maps
the matrix columns to subcubes on a cyclic manner is defined as follows:
f(cj) = Q

C
k,m such that C = [j − 1) mod kn−m] + 1.

Definition 6. The subcube matrix mapping function f : A → H is
defined as follows: f(aij) = U such that In−m(unun−1 · · ·um+1) = R and
Im(umum−1 · · ·u1) = C, where R = [(i − 1) mod km] + 1 and C = [j −
1) mod kn−m] + 1. The node U is denoted by PRC .

The function f distributes the matrix rows over the subcubes cyclically.
Within each subcube the row elements are also distributed cyclically over
its nodes. Formally speaking, for each R and C, 1 ≤ R ≤ km and 1 ≤ C ≤
kn−m, let λR be the largest integer such that R+ λRk

m ≤ N and let µC be
the largest integer such that C+µCk

n−m ≤ N . A node PRC will be assigned
the submatrix AN/km,N/kn−m = [aij ], i = R, R+k

m, R+2km, . . . , R+λRk
m

and j = C, C+kn−m, C+2kn−m, . . . , C+µCk
n−m. This type of mapping is

called cyclic data distribution and is known to achieve good load balancing
and processor utilization [11]. Figure 3 shows an example on mapping a 6×6
matrix onto a Q3,2 using the mapping function f .

5. Parallel matrix triangulization. Gaussian elimination can be
used to triangulize a dense matrix A of order N by generating N−1 matrices
A(2), . . . , A(N) as defined in the introduction section. The steps involved in
computing these matrices are given below:

for t = 1 to N − 1 do

Task 〈Ttt〉 ≡



























Partial pivoting: interchange the rows of A(t),

i.e., |a(t)tt | = max
t≤i≤N

{|a(t)it |}

Complete pivoting: interchange rows & columns of A(t),

i.e., |a(t)tt | = max
t≤i,j≤N

{|a(t)ij |}
for i = t+ 1 to N do

Task 〈Tit〉 ≡ {Compute multipliers} a(t)it = a
(t)
it /a

(t)
tt

endfor
for i = t+ 1 to N do

for j = t+ 1 to N do

Task 〈T (t)ij 〉 ≡ {Eliminate}a
(t)
ij = a

(t)
ij − a

(t)
it ∗ a

(t)
tj

endfor
endfor

endfor

In the Qk,n based parallel matrix triangulization each processor will hold
one or more matrix elements. Without pivoting processors can compute mul-

tipliers 〈Tit〉 and perform eliminations 〈T (t)ij 〉 on their domain whenever the
proper multipliers and pivot elements are available. Partial pivoting requires
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the following steps to be performed: the set of processors holding elements of

the tth column should find a
(t)
rt such that |a

(t)
rt | = maxt≤i≤N{|a

(t)
it |}, and then

the set of processors holding elements of the tth and the rth rows should
interchange the relevant subrows.
To perform complete pivoting the set of processors holding elements of

the submatrix a
(t)
ij , t ≤ i, j ≤ N , find a

(t)
rs such that |a(t)rs | = maxt≤i,j≤N{|a(t)ij |},

then the set of processors holding elements of the tth and the rth rows should
interchange the relevant subrows and the set of processors holding elements
of the sth and the rth columns should interchange the relevant subcolumns.
The whole process requires N − 1 steps to triangulize the matrix. At

the tth step, processors tasks can be described as follows:

— Processor PRt,C where Rt = [(t − 1) mod km] + 1 and 1 ≤ C ≤ kn−m,
should broadcast the pivot subrow {atj |j = C, C + kn−m, C + 2kn−m,
. . . , C + µCk

n−m} in QCk,m.
— Processor PR,Ct where 1 ≤ R ≤ km and Ct = [(t − 1) mod kn−m] + 1,
should compute the multipliers subcolumn 〈Tit〉, i = R, R + km, R +
2km, . . . , R+ λRk

m, and broadcast it in RQk,n−m.

— Processor PR,C , where 1 ≤ R ≤ km and 1 ≤ C ≤ kn−m excluding those
holding the multipliers subcolumns should wait until multipliers subcol-
umn are received then eliminate the submatrix {aij |i = R, R+ km, R+
2km, . . . , R+λRk

m, j = C, C+kn−m, C+2kn−m, . . . , C+µCk
n−m, and

t ≤ i, j ≤ N}. Processors holding the multipliers subcolumns should not
wait and may proceed with elimination.

The parallel matrix triangulization program that is executed in each
node U = (unun−1 · · ·u1) in Qk,n given in Fig. 4. The program assumes that
the matrix is initially distributed using the mapping function f . The proce-
dure broadcast performs broadcasting in a subcube. Optimal broadcasting
on a k-ary n-cube would be of O(n) complexity. When a processor executes
the procedure wait it keeps checking all ports until the specified value is
received.
For partial pivoting the tth pivot row is determined by the set of proces-

sors {PR,Ct |1 ≤ R ≤ km and Ct = [(t−1)mod kn−m]+1}. These processors
perform an “exchange-max” procedure. At the end of this procedure each
processor will have a copy of the index of the desired pivot row, say imax. If
the rows t and imax are in RtQk,n−m where Rt = [(t− 1) mod km] + 1 then
each processor in RtQk,n−m should swap subrows aij and aimax,j , j = C, C+
kn−m, C + 2kn−m, . . . , C + µCk

n−m. Otherwise, each processor pair PRt,C
and Pvt,C where Vt = [(imax− 1) mod km] + 1 and 1 ≤ C ≤ kn−m, should
exchange subrows aij and aimax,j , j = C, C + k

n−m, C + 2kn−m, . . . , C +
µCk

n−m. The task 〈Ttt〉 in partial pivoting is described in Fig. 5.
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The two procedures Swap subrows and Interchange subrows are used to
swap rows within the same processor and between two different processors
in a subcube, respectively. One possible coding for the procedure Inter-
change subrows is as follows: the procedure receives two row indices i and j
and a destination processor number. It then issues an asynchronous receive
to get the subrow i from the destination processor followed by a synchronous
send to send the subrow j to the same destination processor and then blocks
until the asynchronous receive is complete.
For complete pivoting all processors in the Qk,n will perform “exchange-

max” to find imax and jmax such that |aimax,jmax| = max{|aij |t ≤ i, j ≤
N}. Then, the tth pivot row is determined by swapping the rows t and
imax and swapping the columns t and jmax. This is achieved as follows:
if the rows t and imax are in the same subcube RtQk,n−m where Rt =
[(t− 1) mod km]+1, then each processor in RtQk,n−m should swap subrows
atj and aimax,j , j = C, C+ k

n−m, C+2kn−m, . . . , C+µCk
n−m. If the rows

t and imax are in two different subcubes RtQk,n−m and
VtQk,n−m where

Vt = [(imax − 1) mod km] + 1, then each processor pair PRt,C and PVt,C
where 1 ≤ C ≤ kn−m should interchange subrows atj and aimax,j , j = C,
C+kn−m, C+2kn−m, . . . , C+µCk

n−m. Similar processing is to be performed

Program Parallel Matrix Triangulization
{ the following code is executed by the node U = unun−1 · · ·u1 in Qk,n}
compute R = In−m(unun−1 · · ·um+1) and C = Im(umum−1 · · ·u1)
for t = 1 to N − 1 do
Rt = [(t− 1) mod km] + 1
Ct = [(t− 1) mod kn−m] + 1
execute 〈Ttt〉
if R = Rt then broadcast ({atj |j = C, C + kn−m, C + 2kn−m, . . . ,
C + µCk

n−m and (t ≤ j ≤ N}) in QCk,m
if R 6= Rt then wait ({atj |j = C, C + kn−m, C + 2kn−m, . . . ,
C + µCk

n−m and (t ≤ j ≤ N})
if C = Ct then

execute 〈Tit〉, i = R, R + km, R+ 2km, . . . , R+ λRkm
and t < i ≤ N

broadcast ({ait|i = R, R+ km, R+ 2km, . . . , R + λRkm
and t < i ≤ N}) in RQk,n−m

endif
if (C 6= Ct) then wait ({ait|i = R, R+ km, R + 2km, . . . , R + λRkm
and t < i ≤ N})

execute 〈T (t)ij 〉, i = R, R+ km, R+ 2km, . . . , R+ λRkm, j = C,
C + kn−m, C + 2kn−m, . . . , C + µCk

n−m, t < i ≤ N ,
and t ≤ j ≤ N

endfor
end Parallel Matrix Triangulization

Fig. 4. Parallel matrix triangulization algorithm on the k-ary n-cube.
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Task 〈Ttt〉: Partial pivoting
if C = Ct then

let M1 = −1 and imax1 = 1
find imax1 such that |aimax1,t | = max{|ai,t| |i = R, R+ km,

R+ 2km, . . . , R + λRk
m and t < i ≤ N}

if (t ≤ imax1 ≤ N) then let M1 = |aimax1,t |
for j = 1 to m do

asynchronously receive (Mi, imaxi), i = 2, . . . , m(k − 1) + 1
from all neighbors in QCk,m

synchronously send (M1, imax1) to all neighbors in Q
C
k,m

wait for asynchronous receive to complete
find h such that Mh = max{Mi|i = 1, 2, . . . , m(k − 1) + 1}
let M1 =Mh and imax1 = imaxh

endfor
broadcast (imax1) in

RQk,n−m
else wait (imax1)
Vt = ((imax1 − 1) mod km) + 1
if R = Vt = Rt then Swap subrows (t, imax1)
elseif R = Vt 6= Rt then Interchange subrows (t, imax1, Rt)
elseif R = Rt 6= Vt then Interchange subrows (imax1, t, Vt)
endif

end Task 〈Ttt〉

Fig. 5. Parallel partial pivoting on the k-ary n-cube.

for columns t and jmax. The k-ary n-cube based complete pivoting
algorithm is given in Fig. 6.
To find imax and jmax such that |aimax,jmax| = max{|aij |t ≤ i, j ≤ N}

all processors in Qk,n execute exchange-max procedure simultaneously. This
procedure iteratively enters two phases. In the first phase processors initi-
ate asynchronous receive from all neighbors and block on synchronous send
to all neighbors in order to exchange local extremes. In the second phase,
processors update their local extremes that will be exchanged in the next
iteration. It can be simply proved that after a number of iterations equal to
the diameter of the graph, the exchange-max procedure will terminate with
each processor having a copy of the maximum. The binary n-cube based
exchange-max procedure requires n iterations to terminate successfully. In
each iteration a processor receives a local extreme from one neighbor, up-
dates its local extreme, and resends the updated local extreme to the same
neighbor.
Whether single or multiple port communication is used will not affect the

performance of the exchange-max procedure for the binary n-cube. This is
due to the fact that even with simultaneous send/receive the maximum value
requires n steps to travel from an arbitrary node to the farthest node in the
graph. However, simultaneous send/receive operations significantly improve
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Task 〈Ttt〉: Complete pivoting
let M1 = −1, imax1 = 1 and jmax1 = 1
find imax1 and jmax1 such that
|aimax1,jmax1 | = max{|ai,j | |i = R, R+ km, R+ 2km, . . . , R+ λRkm,
j = C, C + kn−m, C + 2kn−m, . . . , C + µCk

n−m and t ≤ i, j ≤ N}
if (t ≤ imax1 , jmax1 ≤ N) then let M1 = |aimax1,jmax1 |
for j = 1 to n do

asynchronously receive (Mi, imaxi, jmaxi), i = 2, . . . ,
n(k − 1) + 1 from all neighbors

synchronously send (M1, imax1, jmax1) to all neighbors
wait for asynchronous receive to complete
find h such that Mh = max{Mi|i = 1, 2, . . . , n(k − 1) + 1}
let M1 =Mh, imax1 = imaxh and jmax1 = jmaxh

endfor
RVt = ((imax1 − 1) mod km) + 1
CVt = ((jmax1 − 1) mod kn−m) + 1
if (RVt = Rt) and (CVt = Ct) then

if R = Rt then Swap subrows (t, imax1)
if C = Ct then Swap subcolumns (t, jmax1)

elseif (RVt = Rt) and (CVt 6= Ct) then
if R = Rt then Swap subrows (t, imax1)
if C = CVt then Interchange subcolumns (t, jmax1, Ct)
if C = Ct then Interchange subcolumns (jmax1, t, CVt)

elseif (RVt 6= Rt) and (CVt = Ct) then
if C = Ct then Swap subcolumns (t, jmax1)
if R = RVt then Interchange subrows (t, imax1, Rt)
if R = Rt then Interchange subrows (imax1, t, RVt)

elseif (RVt 6= Rt) and (CVt 6= Ct) then
if R = RVt then Interchange subrows (t, imax1, Rt)
if R = Rt then Interchange subrows (imax1, t, RVt)
if C = CVt then Interchange subcolumns (t, jmax1, Ct)
if C = Ct then Interchange subcolumns (jmax1, t, CVt)

endif
end Task 〈Ttt〉

Fig. 6. Complete pivoting on the k-ary n-cube.

the performance in the Qk,n. What is important is how much time it takes
to carry out a single iteration in an Qk,n based exchange-max procedure. In
each iteration a processor receives n(k − 1) values to be compared with the
local extreme. In the worst case, this is done serially which will result in
O(kn2) complexity of the exchange-max procedure. In the best case these
n(k−1) values can be compared in log n(k−1) steps using a system function
similar to sum-reduction supported by most of parallel computers. Thus,
the Qk,n exchange-max procedure requires O(n log n(k−1)) time to find the
maximum.
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6. Performance analysis. In this section we present a model for tim-
ing of computation and interprocessor communication for the proposed algo-
rithms. Also we compare the performance of the proposed algorithms with
those of the hypercube and the mesh networks.
The k-ary n-cube based matrix triangulization algorithm requires N −1

serial steps to triangulize a matrix A of order N . In the tth step the fol-
lowing tasks are performed in sequence: (1) locating the pivot row 〈Ttt〉,
(2) simultaneous sub-row broadcasts in subcubes of dimension m, (3) N/km

sequential 〈Tit〉, (4) simultaneous sub-column broadcasts in subcubes of di-
mension n−m, and (5) N2/kn sequential 〈T (t)ij 〉. Thus, the execution time
T for the parallel matrix triangulization algorithm is given by the following
model:

T = (N − 1)
(

T〈Ttt〉 + TR +
N

km
T〈Tit〉 + TC +

N2

kn
T (t)〈Tij〉

)

where T〈Ttt〉 is the total time required to perform 〈Ttt〉 which is equal to
the time needed to locate the pivot row plus the time needed to route sub-
rows/subcolumns, TR is the time required to broadcast a pivot subrow in
Qk,m, TC is the time required to broadcast a multiplier subcolumn inQk,n−m,
T〈Tit〉 is the time required to perform 〈Tit〉, and T〈T (t)

ij
〉
is the time required

to perform 〈T (t)ij 〉.
The communication time required for broadcasting a message M in a

graph with a diameter δ is commonly described by δ(ts + α|M |) where ts
is the communication startup, α is the channel throughput, and |M | is the
message size [2,4,6]. Applying this model to our primitives we obtain:

TR = m(ts + α(N/kn−m))

TC = (n−m)(ts + α(N/km))

T〈Ttt〉 = Temax + Troute

Temax =
{

tc log(N/k
m) +m(ts+ 2α+ tc log(m(k − 1))) partial pivoting

tc log(N
2/kn) + n(ts + 3α+ tc log(n(k − 1))) complete pivoting

Troute =
{

m(ts + α(N/k
n−m)) partial pivoting

m(ts + α(N/k
n−m)) + (n−m)(ts + α(N/km)) complete pivoting

T〈Tit〉 = tfpo
T
〈T
(t)
ij
〉
= 2tfpo

where tc is the time required to compare two floating-point numbers and tfpo
is the average time required to perform a floating-point operation. The above
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estimates of execution time represent the worst case analysis of the k-ary
n-cube based matrix triangulization algorithm. Furthermore, overlapping of
communication and computation is ignored. With these assumptions, the
models for estimating computation time with partial and complete pivoting,

τ
(p)
comp and τ

(c)
comp, and for estimating communication time with partial and

complete pivoting, τ
(p)
comm and τ

(c)
comm, are given below.

τ (p)comp = (N − 1)
(

tfpo
kn−mN + 2N2

kn
+ tc

(

log
N

km
+m log(m(k − 1))

)

)

τ (c)comp = (N − 1)
(

tfpo
kn−mN + 2N2

kn
+ tc

(

log
N2

kn
+ n log(n(k − 1))

))

τ (p)comm = (N − 1)
(

ts(n+ 2m) + α

(

2Nmkm +N(n−m)kn−m + 2mkn
kn

))

τ (c)comm = (N − 1)
(

ts(3n) + α

(

2Nmkm + 2N(n−m)kn−m + 3nkn
kn

))

.

The above expressions indicate that the proposed parallel algorithm re-
quires O(N3/kn) computation complexity to triangulize a matrix of order
N on a k-ary n-cube. This is the same computation time requirement for
an optimal hypercube or mesh implementation on graphs of similar sizes.
However, the communication time requirement of a k-ary n-cube based im-
plementation is much better than the hypercube and the mesh as discussed
below.
The cost of broadcasting in a graph is generally measured by the required

number of broadcasting steps regardless of the dimension of the message be-
ing broadcasted. This is due to the fact that today’s networking technology
offers higher bandwidth that can deliver up to several giga bits transmission
rates. Hence, what actually matters is the initial transmission startup time.
This will be the major criterion in comparing the communication time re-
quirement of the k-ary n-cube based matrix triangulization, the hypercube
based implementation, and the mesh based implementation.
The optimal number of broadcasting steps in any parallel setting of the

matrix triangulization problem on the mesh can be achieved using a square
mesh, say M(

√
kn,
√
kn) mesh with kn nodes. In this setting O(N

√
kn)

broadcasting steps would be required to broadcast the pivot rows and mul-
tipliers columns in an M(

√
kn,
√
kn) mesh.

The smallest hypercube of size kn nodes is Q⌈n log k⌉. An obvious sub-
cube partitioning that achieves the best broadcasting results is to divide
the ⌈n log k⌉ bits of the Q⌈n log k⌉ into two equal parts. This will result in
Q ⌈n log k⌉

2

broadcasts in order to do the required pivot rows and multipliers
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columns routings. Therefore, an optimal hypercube implementation would
end up O(Nn log k) communication time requirements [2,4].

The above expressions for τ
(p)
comm and τ

(c)
comm indicate that the k-ary n-

cube based matrix triangulization uses O(Nn) communication time to tri-
angulize a matrix of order N on the k-ary n-cube. This compares favorably
to the hypercube and the mesh communication time requirements.
Figure 7 shows the communication time requirements of the k-ary n-cube

based matrix triangulization for different k values. Here we choose α = 1
and ts = 1000 µs. These choices are representative of the currently available
machines [8]. The optimal communication time is achieved at m = n/2 in
both partial and complete pivoting. In partial pivoting the communication
cost increases faster for m > n/2 than for m < n/2. This is due to the fact
that partial pivoting does not require row communication in order to locate
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(a) Partial pivoting.
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(b) Complete pivoting.

Fig. 7. Communication cost of the k-ary n-cube matrix triangulization algorithm.
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the pivot rows (recall that each processor will be assigned a submatrix of
dimensions N/km ×N/kn−m).
The communication cost improves with larger k values in both partial

and complete pivoting. This improvement comes at the expense of higher
network cost. To give better indication of the efficiency of the algorithm we
should take into consideration the network cost. One reasonable measure for
the network cost is the total number of edges required to realize the network.
This measure captures both the cost of the links and the cost of the I/O ports
of all nodes. For instance, in the k-ary n-cube there are (n(k−1)kn)/2 links
and n(k−1)kn I/O ports, while a hypercube of similar size has (n log k kn)/2
links and (n log k kn) I/O ports. Hence, the performance improvement at a
factor of log k comes at the expense of increasing the network cost by a
factor of (k − 1)/ log k. This is demonstrated more clearly in Fig. 8. The
figure shows the cost/performance ratio of the proposed algorithm. In this
figure the parameters n and N (the cube dimension and the matrix order)
are fixed. The cost/performance ratio grows faster for higher radix values on
both partial and complete pivoting. The information in Figs. 7 and 8 indicate
that the extra connectivity of the higher radix cubes contribute little towards
reducing the communication cost. Therefore, a cost-performance trade-off
would be a practical solution.
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Fig. 8. Cost/performance ratio of the k-ary n-cube matrix triangulization algorithm.

7. Conclusion. The major contribution of this paper is the design
and evaluation of a parallel matrix triangulization algorithm based on the
k-ary n-cube topology. Parallel algorithms for carrying out partial and com-
plete pivoting are also discussed. Compared to the hypercube and the mesh
based matrix triangulization [2,4,5,10,13], the k-ary n-cube based parallel
matrix triangulization presented in this paper is more efficient for at least
the following two reasons: First, broadcasting pivot rows and multipliers
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columns is faster on the k-ary n-cube than the hypercube and the mesh.
When communication along all channels can take place simultaneously, an
optimal broadcasting in the k-ary n-cube requires O(n) steps which is much
lower than O(n log k) steps that are required by an optimal broadcasting in
a hypercube or O(

√
kn) steps that are required by an optimal broadcasting

in a mesh. Second, the exchange of rows/columns can be done more effi-
ciently between the k-ary n-cube processors since the average distance of the
k-ary n-cube is less than that of the hypercube and the mesh. Finally, we
have presented timing models for estimating computation and communica-
tion time of the k-ary n-cube based matrix triangulization for both partial
and complete pivoting. Also we have conducted a cost-performance analysis
of the proposed algorithm.
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