
Support Vector Machines for Speaker and

Language Recognition ?

W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer,

P. A. Torres-Carrasquillo

MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420

Abstract

Support vector machines (SVMs) have proven to be a powerful technique for pattern
classification. SVMs map inputs into a high dimensional space and then separate
classes with a hyperplane. A critical aspect of using SVMs successfully is the design
of the inner product, the kernel, induced by the high dimensional mapping. We con-
sider the application of SVMs to speaker and language recognition. A key part of our
approach is the use of a kernel that compares sequences of feature vectors and pro-
duces a measure of similarity. Our sequence kernel is based upon generalized linear
discriminants. We show that this strategy has several important properties. First,
the kernel uses an explicit expansion into SVM feature space—this property makes
it possible to collapse all support vectors into a single model vector and have low
computational complexity. Second, the SVM builds upon a simpler mean-squared
error classifier to produce a more accurate system. Finally, the system is competitive
and complimentary to other approaches, such as Gaussian mixture models (GMMs).
We give results for the 2003 NIST speaker and language evaluations of the system
and also show fusion with the traditional GMM approach.

Key words: speaker recognition, language recognition, support vector machines

? This work was sponsored by the Department of Defense under Air Force contract
F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are
those of the authors and are not necessarily endorsed by the United States Govern-
ment.

1 Introduction

A support vector machines (SVM) is a powerful classifier that has gained

considerable popularity in recent years. An SVM is a discriminative classifier—

it models the boundary between, for example, a speaker and a set of impostors.

This approach contrasts to traditional methods for speaker recognition which

separately model the probability distributions of the speaker and the general

population. By exploring SVM methods, we have several goals—to benchmark

the performance of new classification methods for speaker recognition, to gain

more understanding of the speaker recognition problem, and to see if SVMs

provide complimentary information to traditional GMM approaches. For the

final goal, we note that the study of systems which fuse well has been a

significant recent effort in the speaker recognition community [1].

Several recent approaches using support vector machines have been proposed

in the literature for speech applications. The first set of approaches attempts

to model emission probabilities for hidden Markov models [2,3]. This approach

has been moderately successful in reducing error rates, but suffers from several

problems. First, large training sets result in long training times for support

vector methods. Second, the emission probabilities must be approximated [4],

since the output of the support vector machine is not a probability. This

approximation is needed to combine probabilities using the standard frame

independence method used in speaker and language recognition. A second set

of approaches tries to combine GMM approaches with SVMs [5,6].

A third set of method is based upon comparing sequences using the Fisher

kernel proposed by Jaakkola and Haussler [7]. This approach has been ex-

plored for speech recognition in [8]. The application to speaker recognition is

2

detailed in [9,10]. We propose an alternate kernel [11] based upon generalized

linear discriminants [12] and the associated mean-squared error (MSE) train-

ing criterion. The advantage of this kernel is that it preserves the structure

of generalized linear discriminants [13] which are both computationally and

memory efficient. We consider SVMs for two applications in this paper—text-

independent speaker and language recognition.

Traditional methods for text-independent speaker recognition are Gaussian

mixture models (GMMs) [14], vector quantization [15], and artificial neural

networks [15]. Of these methods, GMMs have been the most successful because

of many factors, including a probabilistic framework, training methods scalable

to large data sets, and high-accuracy recognition.

We also consider language recognition in this paper. Language recognition

is a similar problem to speaker recognition in that we are trying to extract

information about an entire utterance rather than specific word content. The

application of our SVM technique to language recognition shows that our

methods are general and have potential applications to several areas in speech.

Many successful approaches to language recognition have been proposed. A

classic approach implemented in the parallel-phone recognition language mod-

elling (PPRLM) system of Zissman [16] used phone tokenization of speech

combined with a phonotactic analysis of the output to classify the language.

A more recent development is the use of methodologies similar to those in

speaker recognition. In these approaches, a set of features useful for language

recognition have been combined with the GMM to produce excellent recogni-

tion performance [17,18]. Our approach to language recognition is based upon

features used in the GMM approach.

3

The outline of the paper is as follows. In Section 2, we introduce the concept

of SVMs. Section 3 discusses the overall setup for discriminative training of

SVMs. In Section 4, we derive our sequence kernel. We cover the basics of

generalized discriminants and then show how they can be incorporated into a

sequence kernel. In Section 5, we give a concise algorithmic summary of using

our sequence kernel in a speaker or language recognition system. Sections 6

and 7 detail experiments with the resulting system on corpora for the NIST

2003 speaker and language recognition evaluations. In these sections, we also

present an approach for fusing our SVM system with a GMM system. Finally,

we conclude in Section 8.

2 Support Vector Machines

An SVM [19] is a two-class classifier constructed from sums of a kernel function

K(·, ·),

f(x) =
N
∑

i=1

αitiK(x,xi) + d, (1)

where the ti are the ideal outputs,
∑N

i=1 αiti = 0, and αi > 0. The vectors

xi are support vectors and obtained from the training set by an optimization

process [20]. The ideal outputs are either 1 or -1, depending upon whether

the corresponding support vector is in class 0 or class 1, respectively. For

classification, a class decision is based upon whether the value, f(x), is above

or below a threshold.

The kernel K(·, ·) is constrained to have certain properties (the Mercer con-

dition), so that K(·, ·) can be expressed as

K(x,y) = b(x)tb(y), (2)

where b(x) is a mapping from the input space (where x lives) to a possibly

4

Class 0

Separating hyperplane
f(x) = 0

Margin

Class 1

f(x) > 0

f(x) < 0

Fig. 1. Support vector machine concept

infinite dimensional space. The kernel is required to be positive semi-definite.

The Mercer condition ensures that the margin concept is valid, and the opti-

mization of the SVM is bounded.

The optimization condition relies upon a maximum margin concept, see Fig-

ure 1. For a separable data set, the system places a hyperplane in a high

dimensional space so that the hyperplane has maximum margin. The data

points from the training set lying on the boundaries (as indicated by solid

lines in the figure) are the support vectors in equation (1). The focus, then,

of the SVM training process is to model the boundary, as opposed to a tra-

ditional GMM UBM which would model the probability distributions of the

two classes.

3 Discriminative Training for Speaker and Language Recognition

Discriminative training of an SVM for speaker or language recognition is

straightforward. Several basic issues must be addressed—handling multiclass

data, world modelling, and sequence comparison. We handle the first two top-

ics in this section.

We use the following scenarios for speaker and language recognition. For

5

speaker recognition, we consider two problems—speaker identification and

speaker verification. For (closed set) speaker identification, given an utter-

ance, the task is to find the speaker from a list of known individuals. For

speaker verification, one is given an utterance and a target model, and the

goal is to determine if there is or is not a match. For language recognition,

the goal is to determine the language of an utterance from a set of known

languages.

Since the SVM is a two-class classifier, we handle speaker recognition and

language recognition as verification problems. That is, we use a one vs. all

strategy. For both closed-set speaker identification and language recognition,

we train a target model for the speaker or language respectively. The set of

known non-targets are used as the remaining class. Figure 2 shows an example

of training an English language model. In the figure, we use English for class 1

data, and the remaining languages are used for class 0 data. This training data

is processed with a standard SVM optimizer (we have used SVMTorch [20])

using a kernel, which will be discussed in Section 4. The result is an SVM

model that represents English. We repeat the process and produce models for

other languages. Speaker identification models are constructed in an analogous

fashion with individual speakers substituted for languages. Typically, for both

SVM Training

Algorithm

English Utterance 1

English Utterance 2

…

English Utterance N

Arabic Utterance 1

…

Arabic Utterance N

Mandarin Utterance 1

…

Mandarin Utterance N

…

Class 1

Class 0

GLDS Kernel

Module

English Language
Model

Fig. 2. Training strategy

6

speaker identification and language recognition, we assume a well-defined set

of non-target utterances.

For speaker verification, we train in a manner similar to speaker identification.

For each target speaker, we label the target speaker’s utterances as class 1.

We also construct a background speaker set (class 0) that consists of example

impostor speakers. The example impostors should be representative of typical

impostors to the system. We keep the background speaker set the same as

we enroll different target speakers. In contrast to the speaker identification

problem, the non-target set of speakers is not as well-defined; we try to capture

a representative population of example impostors.

For speaker verification, the support vectors have an interesting interpretation.

If f(x) is an SVM for a target speaker, then we can write

f(x) =
∑

i∈{i|ti=1}

αiK(x,xi) −
∑

i∈{i|ti=−1}

αiK(x,xi) + d. (3)

We can think of the first sum as a per-utterance-weighted target score. The

second sum has many of the characteristics of a cohort score [21] with some

subtle differences. For the second sum, we pick utterances rather than speakers

as cohorts. Second, the weighting on these “cohort” utterances is not equal—

the cohort score is usually an average of the individual cohorts scores. The

interpretation of the SVM score as a cohort normalized score also suggests

that we should ensure that our background has a rich speaker set, so that we

can always find speakers “close” to the target speaker. Also, note that this

interpretation distinguishes the SVM approach from a universal background

model method [14], which tries to model the impostor set with one model.

Other methods for GMMs including cohort normalization [21] and TNorm [22]

are closer to the proposed SVM method; although, the latter method (TNorm)

7

typically uses a fixed set of cohorts rather than picking our individual speakers.

4 A Sequence Kernel for Speech Applications

4.1 General Structure

To apply an SVM, f(x), to a speaker or language recognition application, we

need a method of calculating kernel operations on speech inputs. For recog-

nition, we need a way of taking a sequence of input feature vectors from an

utterance, {xi}, and computing the SVM output, f({xi}). Typically, each vec-

tor xi would be the cepstral coefficients and deltas for a given frame of speech.

One way of handling this situation is to assume that the kernel, K(·, ·), in the

SVM (1) takes sequences as inputs; i.e., we can calculate K({xi}, {yj}) for

two input sequences {xi} and {yj}. We call this a sequence kernel method.

An alternate method for applying an SVM is to use it as an emission prob-

ability estimator in an HMM architecture [2]. Although this second method

can yield reasonable results, it has several drawbacks. First, reasonably sized

speech problems yield large training sets which can overwelm an SVM training.

Second, the SVM output is not a probability, so a framework must be devel-

oped for scoring. Finally, working at the frame level gives high overlapping

classes yielding a large number of support vectors; this creates large target

models and slows scoring. Because sequence kernel methods eliminate these

problems, we do not explore this alternate method further.

A challenge in applying the sequence kernel method is deriving a function for

comparing sequences. We need a function that, given two utterances, produces

a measure of similarity of the speakers or languages. Also, we need a method

that is efficient computationally, since we will be performing many kernel

8

Feature ExtractionUtterance 1 Find Model

Utterance 2 Feature Extraction Classifier

Utterance 1
model

w

Average Score (kernel value)

Score for
each frame

x1,x2, …

y1,y2, …

Feature ExtractionUtterance 1 Find Model

Utterance 2 Feature Extraction Classifier

Utterance 1
model

w

Average Score (kernel value)

Score for
each frame

x1,x2, …

y1,y2, …

Fig. 3. Sequence kernel

inner products during training and scoring. Finally, the kernel must satisfy

the Mercer condition mentioned in Section 2.

Our main idea for constructing a sequence kernel is illustrated in Figure 3.

The basic approach is to compare two utterances by training a model on

one utterance and then scoring the resulting model on another utterance.

This process produces a number that measures the similarity between the two

utterances. Two questions that follow from this approach are as follows. 1) Can

the train/test process be computed efficiently? 2) Is the resulting comparison

a kernel (i.e., does it satisfy the Mercer condition)? We take up these problems

in the following sections.

4.2 Generalized Linear Discriminant Scoring

As discussed in Section 3, we can represent our applications as a two class

problems; i.e., target and nontarget language or speaker. If ω is a random

variable representing the hypothesis, then ω = 1 represents target present and

ω = 0 represents target not present.

A score is calculated from a sequence of observations y1, . . . ,yn extracted from

the speech input. The scoring function is based on the output of a generalized

linear discriminant function [12] of the form g(y) = wtb(y), where w is the

vector of classifier parameters (model) and b is an expansion of the input

9

space into a vector of scalar functions. An example is

b(y) =

b1(y) b2(y) . . . bNe
(y)

t

, (4)

where bi is a mapping from R
m to R. We typically assume that b1(y) =

1. Commonly used generalized linear discriminants are polynomials [13] and

radial basis functions [23]. Note that we do not use a nonlinear activation

function as is common in higher-order neural networks; this allows us to find

a closed-form solution for training.

If the classifier is trained with a mean-squared error training criterion and

ideal outputs of 1 for ω = 1 and 0 for ω = 0, then g(y) will approximate the

a posteriori probability p(ω = 1|y) [23]. We can then find the probability of

the entire sequence, p(y1, . . . ,yn|ω = 1), as follows. Assuming independence

of the observations [24] gives

p(y1, . . . ,yn|ω) =
n
∏

i=1

p(yi|ω)

=
n
∏

i=1

p(ω|yi)p(yi)

p(ω)
.

(5)

The scoring method in (5) with scaled posteriors is the same technique as used

in the artificial neural network literature for speech applications [25].

For the purposes of classification, we can discard p(yi). We take the logarithm

of both sides to get the discriminant function

d′(yn
1 |ω) =

n
∑

i=1

log

(

p(ω|yi)

p(ω)

)

, (6)

where we have used the shorthand yn
1 to denote the sequence of vectors

y1, . . . ,yn. We use two terms of the Taylor series of log(x) ≈ x − 1 to ob-

10

tain the final discriminant function

d(yn
1 |ω) =

1

n

n
∑

i=1

p(ω|yi)

p(ω)
. (7)

Note that we have discarded the −1 in this discriminant function and normal-

ized by the number of frames since these changes will not affect the classifica-

tion decision.

There are several reasons for using the Taylor approximation. One reason is

that it reduces computation without significantly affecting classifier accuracy.

Second, the approximation is not too drastic. A linear approximation is a

monotone map, so it preserves score order. Also, we can linearize around any

point, a, and get the exact same discriminant function in (7) (scaling and

shifting the values of the discriminant function don’t change the decision).

Typically, the discriminant will have the ratio p(ω|yi)/p(ω) vary over a fairly

small range. Finally, and most importantly, the approximation will symmetrize

the role of training and testing utterances and allow us to use the classifier in

an SVM framework.

Now assume we have g(y) ≈ p(ω = 1|y); we call the vector w the target model.

Substituting in the generalized linear discriminant approximation g(y) gives

d(yn
1 |ω = 1) =

1

n

n
∑

i=1

wtb(yi)

p(ω = 1)

=
1

np(ω = 1)
wt

(

n
∑

i=1

b(yi)

)

=
1

p(ω = 1)
wtb̄y

(8)

where we have defined the mapping yn
1 → b̄y as

yn
1 → 1

n

n
∑

i=1

b(yi). (9)

11

We summarize the scoring method. For a sequence of input vectors y1, . . .yn

and a target model, w, we construct b̄y using (9). We then score using the

target model, score = wtb̄y.

4.3 Using Monomials as an Expansion

In this paper, we use monomials as the functions in the expansion (4). A

monomial is a polynomial of the form

xi1xi2 . . . xik , (10)

where k is less than or equal to the polynomial degree. Here, the input vector

x is

x =

x1 x2 . . . xm

t

. (11)

The vector b(x) is the vector of all monomials of the input feature vector (e.g.,

cepstral coefficients) up to and including degree K. As an example, suppose

we have two input features, x =

x1 x2

t

and K = 2, then the vector is given

by

b(x) =

1 x1 x2 x2
1 x1x2 x2

2

t

. (12)

4.4 Generalized Linear Classifier Training

We next review how to train the classifier to approximate the probability

p(ω|x). Let w be the desired target model. The resulting problem is

w∗ = argmin
w

E

[

(

wtb(x) − ω
)2
]

, (13)

where E denotes expectation. This criterion can be approximated using the

training set as

w∗ = argmin
w

[Ntgt
∑

i=1

∣

∣

∣wtb(xi) − 1
∣

∣

∣

2
+

Nnon
∑

i=1

∣

∣

∣wtb(zi)
∣

∣

∣

2
]

. (14)

12

Here, the target training data is x1, . . . ,xNtgt
and the non-target data is

z1, . . . , zNnon
.

The training method can be written in matrix form. First, define Mtgt as the

matrix whose rows are the expansion of the target’s data; i.e.,

Mtgt =

b(x1)
t

b(x2)
t

...

b(xNtgt
)t

. (15)

Define a similar matrix for the nontarget data, Mnon. Define

M =

Mtgt

Mnon

. (16)

The problem (14) then becomes

w∗ = argmin
w

‖Mw − o‖2 , (17)

where o is the vector consisting of Ntgt ones followed by Nnon zeros (i.e., the

ideal output).

The problem (17) can be solved using the method of normal equations,

MtMw = Mto. (18)

We rearrange (18) to

(

MtM
)

w = Mt
tgt1 + Mt

non0 = Mt
tgt1, (19)

13

where 1 and 0 are the vectors of all ones and all zeros, respectively. If we

define R = MtM and solve for w, then (19) becomes

w = R−1Mt
tgt1. (20)

4.5 Generalized Linear Discriminant Sequence Kernels

We can now combine the methods from Sections 4.2 and 4.4 to obtain a novel

sequence kernel. Combine the target model from (20) with the scoring equation

from (8) to obtain the classifier score

score =
1

p(ω = 1)
b̄t

yw =
1

p(ω = 1)
b̄t

yR
−1Mt

tgt1. (21)

Now p(ω = 1) = Ntgt/(Nnon + Ntgt), so that (21) becomes

score = b̄t
yR̄

−1b̄x, (22)

where b̄x is (1/Ntgt)M
t
tgt1 (note that this exactly the same as mapping as in

(9)), and R̄ is (1/(Nnon + Ntgt))R.

The scoring method in (22) is the basis of our sequence kernel. Given two

sequences of speech feature vectors, xn
1 and ym

1 , we compare them by mapping

xn
1 → b̄x and ym

1 → b̄y and then computing

KGLDS(x
n
1 ,y

m
1) = b̄t

xR̄
−1b̄y. (23)

Note that the function in (23) is not symmetric, so it is not yet a kernel. We

discuss several straightforward methods for symmetrizing the kernel in the

next section.

After symmetrizing (23), we call KGLDS the Generalized Linear Discriminant

Sequence kernel (GLDS is pronounced “golds”). The value KGLDS(x
n
1 ,y

m
1)

14

can be interpreted as scoring using a generalized linear discriminant on the

sequence ym
1 , see (8), with the MSE model trained from feature vectors xm

1 .

4.6 Comments on the GLDS Kernel

Several simplifications and approximations are helpful in using the GLDS

kernel in applications. In this section, we point out approximations to R̄,

simplifications in training and scoring, and additional general comments on

the GLDS kernel.

Two approximations of R̄ are extremely useful in applications with the GLDS

kernel. First, consider equation (23). From our derivation, R̄ is dependent on

the target data, {xi}. A useful assumption is that, typically, the nontarget

data will dominate the calculation of R̄. That is, for Nnon � Ntgt, R̄ ≈

(1/Nnon)Rnon. Another way to view this approximation is that we do not

need additional target data to approximate the average R̄ if we already have

a large nontarget set. A consequence of this approximation is that (23) is

now symmetric with respect to the role of the sequences {xi} and {yj}; we

can view either as the training or testing sequence. An alternate approach

to symmetrization (not used in this paper), is to reverse the role of the two

sequences in Figure 3 and then take the average score as the kernel; this

operation is equivalent to using an average of the inverse correlation matrices

generated in (23).

A second approximation of R̄ that is useful in practice is to calculate only

the diagonal of R̄. This dramatically reduces computation since the process is

O(Ne) rather than O(N 2
e), where Ne is the dimension of the expansion (4). We

have found in several cases that increasing the dimension of the expansion for

polynomials by increasing the degree, see Section 4.3, yielded better accuracy

15

with less computation than a full correlation R̄.

If R̄ is a full correlation matrix, the computational complexity of training can

be dramatically reduced using the following simplification. We factor R̄−1 =

UtU using the Cholesky decomposition. Then KGLDS(x
n
1 ,y

m
1) = (Ub̄x)

t(Ub̄y).

That is, if we transform all the sequence data by Ub̄x before training, the

sequence kernel is a simple inner product. This method reduces kernel com-

putation from O(N 2
e) to O(Nexp).

We can simplify scoring with the GLDS kernel with the following technique.

Suppose f({xi}) is the output of the SVM,

f({xi}) =
N
∑

i=1

αitib̄
t
iR̄

−1b̄x + d, (24)

where the b̄i are the support vectors. We can simplify this to

f({xi}) =

(

N
∑

i=1

αitiR̄
−1b̄i + d

)t

b̄x, (25)

where d =

d 0 . . . 0

t

; we assume that the first entry in the expansion is

b1(x) = 1. In summary, once we train the support vector machine, we can

collapse all the support vectors down into a single model w, where

w =
N
∑

i=1

αitiR̄
−1b̄i + d. (26)

Several other items should be mentioned about the GLDS kernel. First, the

simplification in (25) gives a very concise way of storing and scoring target

models. If we want to search a large database of targets, we can take an input

{xi} and map it to b̄x (a single vector). Each target score is then simply

an inner product, wt
tgtb̄x which is O(Ne) operations. Second, another item

to note about the GLDS kernel is that it can be incorporated into a text-

16

dependent speaker or language recognition system. We can create a kernel for

each subword or word from an ASR system and then fuse multiple kernels with

different weights to create a new scoring function. This approach is discussed in

a hybrid SVM/HMM system in [26]. Third, we mention that the GLDS kernel

is an explicit expansion into SVM feature space; i.e., we are not using the kernel

trick common in the SVM literature [19]. Using an explicit expansion makes

it possible to compact the model as given in (25) resulting in considerable

reduction in computation for scoring and model storage.

5 Algorithms for the GLDS Kernel

After deriving the mathematics behind the GLDS kernel in Section 4, we now

discuss a basic algorithmic framework for using the GLDS kernel. We make

several assumptions to simplify the presentation. First, we will assume that

we are performing speaker verification. Second, we assume that the matrix

R̄ in (23) is approximated using nontarget data and a diagonal structure as

discussed in 4.6. These simplifying assumptions make it possible to split the

training process into two parts: 1) background creation, and 2) target speaker

training.

Table 1 shows the process of background training for the SVM GLDS kernel.

As mentioned in Section 3, the background should be a “large” corpus repre-

sentative of the expected impostors to the system. The result of background

creation is a set of vectors, {b̄i
z}, that can be used in the SVM training process

as the class will ideal output −1. Several notational items should be mentioned

from Table 1. First, the notation z = x.∗y means z is the vector zi = xi ∗ yi.

Similarly the square root of a vector is the square root of its entries.

17

Table 1
Creating a nontarget background

1) Given: Nutt nontarget utterances
2) Ntot = 0
3) r = 0

4) For i = 1 to Nutt

5) Let {zi}, i = 1, . . . , Nz , be the features extracted from the ith nontarget utter-
ance

6) Calculate and store b̄i
z = (1/Nz)

∑Nz

i=1 b(zi)

7) r = r +
∑Nz

i=1 b(zi).∗b(zi)
8) Ntot = Ntot + Nz

9) Next i
10) Let r = (1/Ntot)r
11) Let rsqrt = 1./

√
r

12) For all i = 1, . . . , Nutt, replace b̄i
z = rsqrt.∗b̄i

z.
13) The set of vectors {b̄i

z} is the nontarget background

Table 2
Creating a target model

1) Given: Ntgt target utterances
2) For i = 1 to Ntgt

3) Let {xi}, i = 1, . . . , Nx, be the features extracted from the ith target utterance
4) b̄i

x = (1/Nx)
∑Nx

i=1 b(xi)
5) b̄i

x = rsqrt.∗b̄i
x where rsqrt is from the background training algorithm in Table 1

6) Next i
7) Train an SVM using: a linear kernel (K(x,y) = xty), ideal outputs of 1 for {b̄i

x},
and ideal outputs of −1 for {b̄i

z} (computed in Table 1). For the trained SVM,
call the resulting weights, αi, the support vectors, bi, and the constant, d.

8) Compute the target model as w = rsqrt.∗
(

∑l
i=1 αitib̄i

)

+ d where d =
[

d 0 . . . 0
]t

, and ti is the ideal output for the ith support vector.

After creating a background for the speaker verification, we can now train

target models. The basic process is shown in Table 2. The result of training is

a target model, w. Note that the algorithm in Table 2 requires no special SVM

training tool—one can use any SVM tool that implements a linear kernel for

classification. Typically, we have used SVMTorch [20].

After we obtain target models from the training process in Table 2, we can

then score with these models in a straightforward manner. Given an input

utterance, we convert it to a sequence of feature vectors, {yj}, and then to an

18

average expansion, b̄y. The output score is s = wtb̄y. Since we have included

the matrix R̄−1 in the model, we don’t need to apply it to b̄y.

6 Speaker Recognition Experiments

6.1 The NIST 2003 Speaker Recognition Evaluation

The NIST 2003 speaker recognition evaluation (SRE) included multiple tasks

for both one- and two- speaker detection. For the purposes of this paper, we

focus on the one speaker detection task from limited data.

The data in the one-speaker limited-data detection task was taken from the

second release of the cellular Switchboard corpus of the Linguistic Data Con-

sortium. Training data was nominally 2 minutes of speech from a target

speaker excerpted from a single conversation. The training corpus contained

356 target speakers. Each test segment contained a single speaker. The pri-

mary task was detection of the speaker from a segment of length 15 to 45

seconds. The test set had 2,215 true trials and 25,945 false trials (impostor

attempts). For evaluation, NIST used the decision cost function

Cdet =CmissP (miss|target)P (target)+

CFAP (FA|nontarget)P (nontarget)

(27)

as well as reporting standard measures such as equal error rate (EER). In (27),

Cmiss = 10, CFA = 1 and P (target) = 0.01. More details on the evaluation may

be found in [27].

6.2 SVM setup

We used two different sets of features for the SVM to explore performance.

Linear prediction cepstral coefficients (LPCCs) were extracted using a configu-

ration from [13]. The mel-frequency cepstral coefficient (MFCC) configuration

19

was based on the best feature set for a GMM implementation used in the NIST

speaker recognition evaluations.

LPCC front end processing. LPCC feature extraction is performed using

a 30 ms window with a rate of 100 frames/second. A Hamming window is

applied, and then 12 LP coefficients are extracted. From 12 LP coefficients,

18 cepstral coefficients (LPCCs) are calculated. Deltas are extracted from the

18 LPCCs. This results in a feature vector of dimension 36 (18 LPCCs and

deltas). Energy-based speech activity detection is used to remove nominally

nonspeech frames. Both mean and variance normalization are applied to pro-

duce zero mean, unit variance features.

MFCC front end processing. A 19-dimensional MFCC vector is extracted

from the pre-emphasized speech signal every 10 ms using a 20 ms Hamming

window. The mel-cepstral vector is computed using a simulated triangular

filterbank on the DFT spectrum. Bandlimiting is performed by retaining only

the filterbank outputs from the frequency range 300 Hz–3140 Hz. Cepstral

vectors are processed with RASTA filtering to mitigate linear channel bias

effects. Delta-cepstral coefficients are then computed over a ±2 frame span and

appended to the cepstra vector, producing a 38 dimensional feature vector.

The feature vector stream is processed through an adaptive, energy-based

speech detector to discard low-energy vectors. Finally, both mean and variance

normalization are applied to the individual features.

Training. The SVM uses a GLDS kernel with an expansion into feature space

with a monomial basis. All monomials up to degree 3 are used, resulting

in a feature space expansion of dimension 9139 for the LPCC features and

dimension 10,660 for the MFCC features. We use a diagonal approximation

20

to the kernel inner product matrix. A background for the SVM consists of a

set of speakers taken from a corpus not used in the train/test set. The NIST

SRE 01 evaluation is used as a background. SVM training is performed as

a two-class problem, where all of the speakers in the background have SVM

target -1 and the current speaker under training has SVM target +1. For each

conversation in the background and for the current speaker under training, an

average feature expansion is created. SVM training is then performed using

the GLDS kernel implemented using SVMTorch.

Scoring. For each utterance, the standard front end is used. An average fea-

ture expansion is then calculated. Scores for each target speaker are an inner

product between the speaker model and the average expansion. A gender T-

norm score is also computed using 100 males and 100 females from the NIST

SRE 2001 task; details on T-norm may be found in [28].

6.3 Experiments

Figure 4 shows the DET plot of the SVM system applied to the one-speaker

NIST SRE 2003 limited data task. The two systems differ only in the front end

processing—SVM-M uses MFCC features, and SVM-L uses LPCC features.

Both systems are performing well compared with standard approaches—see

the next section.

6.4 Fusing the SVM GLDS system with a GMM system

We fused the SVM GLDS kernel with a standard GMM system for speaker

recognition. The goals were twofold. First, we wanted to show how the new

SVM approach compared to the standard GMM approach. Second, we wanted

to explore fusion of GMMs and SVMs.

21

 1 2 5 10 20
 1

 2

 5

10

20

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (i
n

%
)

SVM−M
SVM−L

Fig. 4. SVM speaker recognition on the NIST SRE 2003 1sp limited data task

GMM feature extraction. The GMM feature extraction process was the

same as the MFCC feature extraction given in Section 6.2 except for one

additional step—feature mapping. After producing MFCC features, feature

mapping is applied to help remove channel effects [29]. Briefly, the feature

mapper works as follows. A channel-independent root model is trained using

all available channel-specific data. Next, channel-specific models are derived

by using MAP adaptation of root parameters with channel-specific data. For

an input utterance, the most likely channel specific model is first identified

then each feature vector in the utterance is shifted and scaled using the top-1

scoring mixture parameters in the root and channel-specific models to map the

feature vector to the channel-independent feature space. Ten channel models

derived from Switchboard landline and cellular corpora were used.

22

GMM training and scoring. The basic system used is a likelihood ratio de-

tector with target and alternative probability distributions modeled by GMMs.

Target models are derived by Bayesian adaptation (a.k.a. MAP estimation)

of the UBM parameters using the designated training data [14]. Based on ob-

served better performance, only the mean vectors are adapted. The amount

of adaptation of each mixture mean is data dependent with a relevance factor

of 16 used. Gender dependent T-norming [22] was applied to the final scores;

speakers are taken from the Switchboard 2 part 1 corpus (100 per gender).

6.5 Speaker Recognition Fusion Results

We performed experiments on the 2003 NIST SRE evaluation data described

in Section 6.1. Fusion of different systems is accomplished using equal linear

weighting of the different systems scores; i.e., if two systems produce scores, s1

and s2, then the fused score is s = 0.5s1 +0.5s2. Since all systems use T-norm,

no further normalization of scores is required.

Figure 5 and Table 3 show the results of fusion. In the table, minDCF stands

for minimum decision cost function where the cost function is given by (27).

In the figure, SVM-L is the SVM with LPCC features, and SVM-M is the

SVM with MFCC features. Both the figure and the table show that the SVM

and GMM fuse in a complementary way reducing error rates substantially. An

interesting and important fact shown in the figure is that gains in performance

are due both to different features (LPCC and MFCC) and the different speaker

modelling techniques (SVM and GMM). For the NIST 2003 corpus, we have

found that the SVM performs best with LPCC features. It is not clear whether

this property is due to interactions with the SVM modelling (e.g., our diagonal

correlation approximation) or a corpus idiosyncrasy. Certainly, our MFCC

23

 1 2 5 10 20
 1

 2

 5

10

20

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (i
n

%
)

GMM
SVM−L
SVM−M+GMM
SVM−L+SVM−M
SVM−L+GMM
SVM−L+SVM−M+GMM

Fig. 5. NIST 2003 1sp limited data fusion results

feature extraction has been tuned for a GMM; further research into optimizing

features for the SVM approach should be explored.

Another point to make about Figure 5 and Table 3 is the relative performance

of the GMM and SVM. The GMM system uses a background data set, features

(MFCCs), and TNorm which have been extensively optimized for performance.

The SVM feature sets and methods presented are some initial explorations into

the best configuration. If we compare the best SVM system, SVM-L, with

the GMM system, the error rates are close—7.72% and 7.47%, respectively.

This result shows that the SVM is competitive with the GMM for this set of

experiments. Further research is needed to fully understand the performance

of the new SVM system relative to the GMM system.

24

Table 3
Comparison of EER and minDCF for different systems on the 2003 NIST SRE 1sp
limited data evaluation

System EER minDCF

GMM 7.47 % 0.0306

SVM-L 7.72 % 0.0303

SVM-M 9.57 % 0.0374

SVM-M+GMM 6.74 % 0.0266

SVM-L+SVM-M 6.46 % 0.0262

SVM-L+GMM 5.73 % 0.0237

SVM-L+SVM-M+GMM 5.55 % 0.0230

7 Language Recognition Experiments

7.1 Features for Language Recognition

One of the significant advances in performing language recognition using

GMMs was the discovery of a better feature set for language identification [17].

The improved feature set, shifted delta cepstral (SDC) coefficients, are an

extension of delta-cepstral coefficients. Prior to the use of SDC coefficients,

GMM-based language recognition was less accurate than alternate approaches [16].

SDC coefficients capture variation over many frames of data; e.g., our current

approach uses 20 consecutive frames of cepstral coefficients. This long term

analysis might explain the effectiveness of the SDC features in capturing lan-

guage specific information.

SDC coefficients are calculated as shown in Figure 6. SDC coefficients are

based upon four parameters, typically written as N -d-P -k. For each frame

of data, MFCCs are calculated based on N ; i.e., c0, c1, . . . , cN−1 (note that

c0 is used). The parameter d determines the spread over which deltas are

calculated, and the parameter P determines the gaps between successive delta

computations. For a given time, t, we obtain

∆c(t, i) = c(t + iP + d) − c(t + iP − d) (28)

25

t-d t t+d

- +

∆c(t,0)

d=2

t+P-d t+P t+P+d

- +

d=2

∆c(t,1)

Fig. 6. Shifted delta cepstral coefficients

as an intermediate calculation. The SDC coefficients are then k stacked ver-

sions of (28),

SDC(t) =

∆c(t, 0)t ∆c(t, 1)t . . . ∆c(t, k − 1)t

t

. (29)

7.2 2003 NIST Language Recognition Evaluation

In 2003, NIST held an evaluation to assess the current performance of language

recognition systems for conversational telephone speech. The basic task of the

evaluation was to detect the presence of a hypothesized target language given

a segment of speech. The target languages were American English, Egyptian

Arabic, Farsi, Canadian French, Mandarin, German, Hindi, Japanese, Spanish,

Korean, Tamil, and Vietnamese. Evaluation of the task was performed through

standard measures: a decision cost function and EER.

The training, development, and test data were primarily drawn from the Call-

Friend corpus available from the Linguistic Data Consortium (LDC). Training

data consisted of 20 complete conversations (nominally 30 minutes) for each

of the 12 target languages. Development data was drawn from the 1996 NIST

LID development and evaluation sets. Test data consisted of speech segments

of length 3, 10, and 30 seconds. For each of these durations, 960 true trials

and 10,560 false trials were produced from the primary evaluation task. Per-

26

formance was measure by EER and the detection cost function given in (27)

with Cmiss = CFA = 1 and Ptarget = 0.5. For more information, we refer to the

NIST evaluation plan [30,31].

7.3 Experiments

Experiments are performed using the NIST LRE evaluation data and the pri-

mary evaluation condition. We focus on language detection for the 30 second

case. This resulted in 960 true trials and 10,560 false trials.

For the SVM system, SDC features are extracted as in Section 7.1. Our pri-

mary representation N -d-P -k is 7-1-3-7. This representation is selected based

upon prior excellent results with this choice [17,32]. After extracting the SDC

features, nonspeech frames are eliminated, and each feature is normalized to

mean 0 and variance 1 on a per-utterance basis. This results in a sequence of

features vectors of dimension 49 for each utterance.

The SVM system uses the GLDS kernel, as described in Section 4, with a

diagonal correlation matrix R̄. All monomials up to degree 3 are used in the

expansion b(x); this results in an expansion dimension of 22,100.

The performance of language recognition is enhanced considerably by applying

backend processing to the target language scores. A simple backend process

is to apply a log-likelihood normalization. Suppose s1, . . . , sM are the scores

from the M language models for a particular message. To normalize the scores,

we find new scores, s′i given by

s′i = si − log

1

M − 1

∑

j 6=i

e−sj

 (30)

A more complex full backend process is given in [16,32]; this process trans-

27

0.1 0.2 0.5 1 2 5 10 20 40
0.1

0.2

0.5

 1

 2

 5

10

20

40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (i
n

%
)

SVM Scores
Log−likelihood Normalization
Full Backend

Fig. 7. SVM language recognition on the NIST LRE 2003 30s task

forms language scores with LDA, models the transformed scores with diago-

nal covariance Gaussians (one per language), and then applies the transform

in (30).

Figure 7 shows the performance of the SVM on the NIST LRE 2003 30 second

task. In the figure, we compare the performance of three systems. As can be

seen, the “raw” SVM scores (i.e., no backend normalization) perform consid-

erably worse than a backend processed score. If we do only LLR normalization

as in (30) on the SVM scores, this performs substantially better. Finally, using

the full backend process described performs the best.

7.4 Fusing with a GMM-based Language Recognition System

We compare and fuse our SVM system with a GMM language recognition

system. The GMM system setup and description are given in [32]. Briefly,

each language model consisted of a GMM with 2048 mixture components. SDC

28

0.1 0.2 0.5 1 2 5 10 20 40
0.1

0.2

0.5

 1

 2

 5

10

20

40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (i
n

%
)

SVM
GMM
Fused

Fig. 8. Performance of three different systems on the NIST 2003 language recognition
evaluation for 30s duration tests

features were extracted using the parameter specification 7-1-3-7; the features

were postprocessed using the feature mapping technique [29]. Language models

were gender dependent, so a total of 24 models were used for the 12 target

languages.

We considered the performance of the system relative to a GMM language

recognition system, see Figure 8. In the figure, we see that the new SVM

system is performing competitively with the state-of-the-art GMM system.

The figure also shows the fusion of the two systems. Fusion was accomplished

with a backend fuser described in [16,32]. As the figure illustrates, the fusion

combination works extremely well, significantly outperforming both individual

systems. The EERs for these different systems is shown in Table 4.

29

Table 4
EER performance of the systems for the 30s test

System EER

SVM 6.1%

GMM 4.8%

Fused 3.2%

8 Conclusions

We have introduced a new technique for speaker and language recognition

based upon SVMs. A novel sequence kernel was derived called the generalized

linear discriminant sequence (GLDS) kernel. This kernel was shown to be com-

putationally efficient and easily incorporated into standard SVM packages. We

applied this new SVM approach to the NIST 2003 speaker and language eval-

uation. The results demonstrated the accuracy and success of the approach.

Finally, the SVM was compared and fused with a GMM system. The SVM

was shown to perform comparably to the GMM in EER and minDCF perfor-

mance. Additionally, the SVM was shown to provide complementary scoring

information resulting in substantially lower error rates when it was fused with

a GMM system.

30

References

[1] J. P. Campbell, D. A. Reynolds, R. B. Dunn, Fusing high- and low-level features

for speaker recognition, in: Proc. Eurospeech, 2003, pp. 2665–2668.

[2] V. Wan, W. M. Campbell, Support vector machines for verification and

identification, in: Neural Networks for Signal Processing X, Proceedings of the

2000 IEEE Signal Processing Workshop, 2000, pp. 775–784.

[3] A. Ganapathiraju, J. Picone, Hybrid SVM/HMM architectures for speech

recognition, in: Speech Transcription Workshop, 2000.

[4] J. C. Platt, Probabilities for SV machines, in: A. J. Smola, P. L. Bartlett,

B. Schölkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers,

The MIT Press, 2000, pp. 61–74.

[5] J.Kharroubi, D. Petrovska-Delacretaz, G. Chollet, Combining GMMs with

support vector machines for text-independent speaker verification, in:

Eurospeech, 2001, pp. 1757–1760.

[6] J. Kharroubi, D. Petrovska-Delacretaz, G. Chollet, Text-independent speaker

verification using support vector machines, in: Proc. Speaker Odyssey, 2001,

pp. 51–54.

[7] T. S. Jaakkola, D. Haussler, Exploiting generative models in discriminative

classifiers, in: M. S. Kearns, S. A. Solla, D. A. Cohn (Eds.), Advances in Neural

Information Processing 11, The MIT Press, 1998, pp. 487–493.

[8] N. Smith, M. Gales, M. Niranjan, Data-dependent kernels in SVM classification

of speech patterns, Tech. Rep. CUED/F-INFENG/TR.387, Cambridge

University Engineering Department (2001).

[9] S. Fine, J. Navrátil, R. A. Gopinath, A hybrid GMM/SVM approach to speaker

31

recognition, in: Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, 2001.

[10] V. Wan, S. Renals, SVMSVM: support vector machine speaker verification

methodology, in: Proceedings of the International Conference on Acoustics

Speech and Signal Processing, 2003, pp. 221–224.

[11] W. M. Campbell, Generalized linear discriminant sequence kernels for speaker

recognition, in: Proceedings of the International Conference on Acoustics Speech

and Signal Processing, 2002, pp. 161–164.

[12] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press,

Oxford, 1995.

[13] W. M. Campbell, K. T. Assaleh, Polynomial classifier techniques for speaker

verification, in: Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, 1999, pp. 321–324.

[14] D. A. Reynolds, T. F. Quatieri, R. Dunn, Speaker verification using adapted

Gaussian mixture models, Digital Signal Processing 10 (1-3) (2000) 19–41.

[15] K. R. Farrell, R. J. Mammone, K. T. Assaleh, Speaker recognition using

neural networks and conventional classifiers, IEEE Trans. on Speech and Audio

Processing 2 (1) (1994) 194–205.

[16] M. Zissman, Comparison of four approaches to automatic language

identification of telephone speech, IEEE Trans. Speech and Audio Processing

4 (1) (1996) 31–44.

[17] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. Greene, D. A.

Reynolds, J. R. Deller, Jr., Approaches to language identification using

Gaussian mixture models and shifted delta cepstral features, in: International

Conference on Spoken Language Processing, 2002, pp. 89–92.

32

[18] E. Wong, J. Pelecanos, S. Myers, S. Sridharan, Language identification

using efficient Gaussian mixture model analysis, in: Australian International

Conference on Speech Science and Technology, 2000.

[19] N. Cristianini, J. Shawe-Taylor, Support Vector Machines, Cambridge

University Press, Cambridge, 2000.

[20] R. Collobert, S. Bengio, SVMTorch: Support vector machines for large-scale

regression problems, Journal of Machine Learning Research 1 (2001) 143–160.

[21] A. E. Rosenberg, J. DeLong, C.-H. Lee, B.-H. Juang, F. K. Soong, The use

of cohort normalized scores for speaker verification, in: Proceedings of the

International Conference on Spoken Language Processing, 1992, pp. 599–602.

[22] R. Auckenthaler, M. Carey, H. Lloyd-Thomas, Score normalization for text-

independent speaker verification systems, Digital Signal Processing 10 (2000)

42–54.

[23] J. Schürmann, Pattern Classification, John Wiley and Sons, Inc., 1996.

[24] L. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition, Prentice-Hall,

1993.

[25] N. Morgan, H. A. Bourlard, Connectionist Speech Recognition: A Hybrid

Approach, Kluwer Academic Publishers, 1994.

[26] W. M. Campbell, A SVM/HMM system for speaker recognition, in: Proceedings

of the International Conference on Acoustics Speech and Signal Processing,

2003, pp. II–209–212.

[27] M. Przybocki, A. Martin, The NIST year 2003 speaker recognition evaluation

plan, http://www.nist.gov/speech/tests/spk/2003/index.htm (2003).

[28] W. M. Campbell, D. A. Reynolds, J. P. Campbell, Fusing discriminative and

generative methods for speaker recogntion: Experiments on Switchboard and

33

NFI/TNO field data, in: Proc. Odyssey Speaker and Language Workshop, 2004,

pp. 41–44.

[29] D. A. Reynolds, Channel robust speaker verification via feature mapping, in:

Proceedings of the International Conference on Acoustics Speech and Signal

Processing, Vol. 2, 2003, pp. II–53–56.

[30] The 2003 NIST language recognition evaluation plan,

http://www.nist.gov/speech/tests/lang/index.htm (2003).

[31] A. F. Martin, M. A. Przybocki, NIST 2003 language recognition evaluation, in:

Proceedings of Eurospeech, 2003, pp. 1341–1344.

[32] E. Singer, P. A. Torres-Carrasquillo, T. P. Gleason, W. M. Campbell, D. A.

Reynolds, Acoustic, phonetic, and discriminative approaches to automatic

language identification, in: Proceedings of Eurospeech, 2003, pp. 1345–1348.

34

