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tThis paper provides a 
omprehensive survey of the most popular 
onstraint-handling te
hniques 
urrently used withevolutionary algorithms. We review approa
hes that go from simple variations of a penalty fun
tion, to others,more sophisti
ated, that are biologi
ally inspired on emulations of the immune system, 
ulture or ant 
olonies.Besides des
ribing brie
y ea
h of these approa
hes (or groups of te
hniques), we provide some 
riti
ism regardingtheir highlights and drawba
ks. A small 
omparative study is also 
ondu
ted, in order to assess the performan
eof several penalty-based approa
hes with respe
t to a dominan
e-based te
hnique proposed by the author, and withrespe
t to some mathemati
al programming approa
hes. Finally, we provide some guidelines regarding how to sele
tthe most appropriate 
onstraint-handling te
hnique for a 
ertain appli
ation, ad we 
on
lude with some of the themost promising paths of future resear
h in this area.Keywords: evolutionary algorithms, 
onstraint handling, evolutionary optimization.1 Introdu
tionThe famous naturalist Charles Darwin de�ned Natural Sele
tion or Survival of the Fittest as the preservation offavorable individual di�eren
es and variations, and the destru
tion of those that are injurious [33℄. In nature,individuals have to adapt to their environment in order to survive in a pro
ess 
alled evolution, in whi
h thosefeatures that make an individual more suited to 
ompete are preserved when it reprodu
es, and those featuresthat make it weaker are eliminated. Su
h features are 
ontrolled by units 
alled genes whi
h form sets 
alled
hromosomes. Over subsequent generations not only the �ttest individuals survive, but also their �ttest geneswhi
h are transmitted to their des
endants during the sexual re
ombination pro
ess whi
h is 
alled 
rossover.Early analogies between the me
hanism of natural sele
tion and a learning (or optimization) pro
ess led tothe development of the so-
alled \evolutionary algorithms" (EAs) [2℄, in whi
h the main goal is to simulate theevolutionary pro
ess in a 
omputer. There are three main paradigms within evolutionary algorithms, whosemotivations and origins were independent from ea
h other: evolution strategies [156℄, evolutionary programming[58℄, and geneti
 algorithms [77℄. However, the 
urrent trend has been to de
rease the di�eren
e among these threeparadigms and refer (in generi
 terms) simply to evolutionary algorithms when talking about any of them.In general, we need the following basi
 
omponents to implement an EA in order to solve a problem [104℄:1. A representation of the potential solutions to the problem.2. A way to 
reate an initial population of potential solutions (this is normally done randomly, but deterministi
approa
hes 
an also be used). 1



3. An evaluation fun
tion that plays the role of the environment, rating solutions in terms of their \�tness".4. A sele
tion pro
edure that 
hooses the parents that will reprodu
e.5. Evolutionary operators that alter the 
omposition of 
hildren (normally, 
rossover and mutation).6. Values for various parameters that the evolutionary algorithm uses (population size, probabilities of applyingevolutionary operators, et
.).EAs have been quite su

essful in a wide range of appli
ations [67, 111, 101, 3, 130, 64, 57, 133, 157℄. However,an aspe
t normally disregarded when using them for optimization (a rather 
ommon trend) is that these algorithmsare un
onstrained optimization pro
edures, and therefore is ne
essary to �nd ways of in
orporating the 
onstraints(normally existing in any real-world appli
ation) into the �tness fun
tion.The most 
ommon way of in
orporating 
onstraints into an EA have been penalty fun
tions (we will be referringonly to exterior penalty fun
tions in this paper) [144, 67℄. However, due to the well-known diÆ
ulties asso
iatedwith them [144℄, resear
hers in evolutionary 
omputing have proposed di�erent ways to automate the de�nitionof good penalty fa
tors, whi
h remains as the main drawba
k of using penalty fun
tions. Additionally, severalresear
hers have developed a 
onsiderable amount of alternative approa
hes to handle 
onstraints, mainly to dealwith spe
i�
 features of some 
omplex optimization problems in whi
h it is diÆ
ult to estimate good penalty fa
torsor to even generate a single feasible solution.In this paper, we provide a 
omprehensive survey of 
ontraint-handling te
hniques that have been adopted overthe years to handle all sorts of 
onstraints (linear, non-linear, equality, and inequality) in EAs. Ea
h group ofapproa
hes is brie
y des
ribed and dis
ussed, indi
ating their main advantages and disadvantages. At the end, we
on
lude with some of the most promising paths of future resear
h in this area.There are several other surveys on 
onstraint handling te
hniques available in the spe
ialized literature (see forexample [104, 109, 103, 63, 34, 161℄), but they are either too narrow (i.e., they 
over a single group of 
onstrainthandling te
hniques) or they fo
us more on empiri
al 
omparisons and on the design of interesting test fun
tions.None of these surverys attempt to fo
us on the dis
ussion of the di�erent aspe
ts of ea
h method or to be as
omprehensive as we intend in this paper.Our main goal is to provide enough (mainly des
riptive) information as to allow new
omers in this area to geta very 
omplete pi
ture of the resear
h that has been done and that is 
urrently under way. Sin
e trying to beexhaustive is as fruitless as it is ambitious, we have fo
used on papers in whi
h the main emphasis is the wayin whi
h 
onstraints are handled, and from this subset, we have sele
ted the most representative work available(parti
ularly, when dealing with very proli�
 authors).We are interested in the general non-linear programming problem in whi
h we want to:Find ~x whi
h optimizes f(~x) (1)subje
t to: gi(~x) � 0; i = 1; : : : ; n (2)hj(~x) = 0; j = 1; : : : ; p (3)where ~x is the ve
tor of solutions ~x = [x1; x2; : : : ; xr℄T , n is the number of inequality 
onstraints and p is thenumber of equality 
onstraints (in both 
ases, 
onstraints 
ould be linear or non-linear).If we denote with F to the feasible region and with S to the whole sear
h spa
e, then it should be 
lear thatF � S.For an inequality 
onstaint that satis�es gi(~x) = 0, then we will say that is a
tive at ~x. All equality 
onstraintshj (regardless of the value of ~x used) are 
onsidered a
tive at all points of F .The remainder of this paper is organized as follows. Se
tion 2 presents penalty fun
tions in several of theirvariations that have been used with EAs (i.e., stati
, dynami
, annealing, adaptive, 
o-evolutionary, and deathpenalties). Penalty fun
tions are the oldest approa
h used to in
orporate 
onstraints into un
onstrained optimiza-tion algorithms (in
luding EAs) and, therefore, they are dis
ussed �rst. Se
tion 3 dis
usses the use of spe
ialrepresentations and geneti
 operators. The use of operators that preserve feasibility at all times and de
oders2



that transform the shape of the sear
h spa
e are dis
ussed, among other te
hniques. Se
tion 4 dis
usses repairalgorithms, whi
h are normally used in 
ombinatorial optimization problems in whi
h the traditional geneti
 oper-ators tend to generate infeasible solutions all (or at least most of) the time. Thus, \repair" refers, in this 
ontext,to make valid (or feasible) these individuals through the appli
ation of a 
ertain (normally heuristi
) pro
edure.Se
tion 5 
overs te
hniques that handle obje
tives and 
onstraints separately. From these approa
hes, the useof multiobje
tive optimization te
hniques seems one of the most promising venues of future resear
h in the area.Se
tion 6 dis
usses approa
hes that use hybrids with other te
hniques su
h as Lagrangian multipliers or fuzzylogi
. This se
tion also 
ontains some approa
hes that 
onstitute very promising paths of future resear
h (e.g.,the use of 
ultural algorithms or the immune system). Se
tion 7 presents a small 
omparative study in whi
hseveral penalty-based te
hniques are 
ompared against a te
hnique based on dominan
e relations (i.e., one of thete
hniques dis
ussed in Se
tion 5). As a 
orollary to the results of this 
omparative study, Se
tion 8 provides some�nal suggestions on the 
hoi
e of 
onstraint-handling te
hniques for a 
ertain problem. Finally, Se
tion 9 presentssome 
on
lusions and some possible paths of future resear
h.The detailed table of 
ontents of the paper is the following:1. Penalty fun
tions(a) Stati
 Penalty(b) Dynami
 Penalty(
) Annealing Penalty(d) Adaptive Penalty(e) Co-evolutionary Penalty(f) Death Penalty2. Spe
ial representations and operators(a) Davis' appli
ations(b) Random keys(
) GENOCOP(d) Constraint Consistent GAs(e) Lo
ating the boundary of the feasible region(f) De
oders3. Repair algorithms4. Separation of obje
tives and 
onstraints(a) Co-evolution(b) Superiority of feasible points(
) Behavioral memory(d) Multiobje
tive Optimization Te
hniques5. Hybrid Methods(a) Lagrangian multipliers(b) Constrained optimization by random evolution(
) Fuzzy logi
(d) Immune system(e) Cultural algorithms 3



(f) Ant 
olony optimization6. Some Experimental Results(a) Example 1 : Himmelblau's Nonlinear Optimization Problem(b) Example 2 : Welded Beam Design(
) Example 3 : Design of a Pressure Vessel7. Some Re
ommendations8. Con
lusions and Future Resear
h Paths2 Penalty fun
tionsThe most 
ommon approa
h in the EA 
ommunity to handle 
onstraints (parti
ularly, inequality 
onstraints) isto use penalties. Penalty fun
tions were originally proposed by Courant in the 1940s [31℄ and later expanded byCarroll [18℄ and Fia

o & M
Cormi
k [55℄. The idea of this method is to transform a 
onstrained optimizationproblem into an un
ontrained one by adding (or subtra
ting) a 
ertain value to/from the obje
tive fun
tion basedon the amount of 
onstraint violation present in a 
ertain solution.In 
lassi
al optimization, two kinds of penalty fun
tions are 
onsidered: exterior and interior. In the 
ase ofexterior methods, we start with an infeasible solution and from there we move towards the feasible region. Inthe 
ase of interior methods, the penalty term is 
hosen su
h that its value will be small at points away from the
onstraint boundaries and will tend to in�nity as the 
onstraint boundaries are approa
hed. Then, if we startfrom a feasible point, the subsequent points generated will always lie within the feasible region sin
e the 
onstraintboundaries a
t as barriers during the optimization pro
ess [138℄.The most 
ommon method used in EAs is the exterior penalty approa
h and therefore, we will 
on
entrate ourdis
ussion only on su
h te
hnique. The main reason why most resear
hers in the EA 
ommunity tend to 
hooseexterior penalties is be
ause they do not require an initial feasible solution. This sort of requirement (an initialfeasible solution) is pre
isely the main drawba
k of interior penalties. This is an important drawba
k, sin
e inmany of the appli
ations for whi
h EAs are intended the problem of �nding a feasible solution is itself NP-hard[161℄.The general formulation of the exterior penalty fun
tion is:�(~x) = f(~x)� 24 nXi=1 ri �Gi + pXj=1 
j � Lj35 (4)where �(~x) is the new (expanded) obje
tive fun
tion to be optimized, Gi and Lj are fun
tions of the 
onstraintsgi(~x) and hj(~x), respe
tively, and ri and 
j are positive 
onstants normally 
alled \penalty fa
tors".The most 
ommon form of Gi and Lj is: Gi = max[0; gi(~x)℄� (5)Lj = jhj(~x)j
 (6)where � and 
 are normally 1 or 2.Ideally, the penalty should be kept as low as possible, just above the limit below whi
h infeasible solutions areoptimal (this is 
alled, the minimum penalty rule [39, 145, 162℄). This is due to the fa
t that if the penalty istoo high or too low, then the problem might be
ome very diÆ
ult for an EA [39, 145, 147℄. If the penalty is toohigh and the optimum lies at the boundary of the feasible region, the EA will be pushed inside the feasible regionvery qui
kly, and will not be able to move ba
k towards the boundary with the infeasible region. A large penaltydis
ourages the exploration of the infeasible region sin
e the very beginning of the sear
h pro
ess. If, for examplethere are several disjointed feasible regions in the sear
h spa
e, the EA would tend to move to one of them, andwould not be able to move to a di�erent feasible region unless they are very 
lose from ea
h other.4



On the other hand, if the penalty is too low, a lot of the sear
h time will be spent exploring the infeasible regionbe
ause the penalty will be negligible with respe
t to the obje
tive fun
tion [161℄. These issues are very importantin EAs, be
ause many of the problems in whi
h they are used have their optimum lying on the boundary of thefeasible region [159, 162℄.The minimum penalty rule is 
on
eptually simple, but it is not ne
essarily easy to implement. The reason isthat the exa
t lo
ation of the boundary between the feasible and infeasible regions is unknown in many of theproblems for whi
h EAs are intended (e.g., in many 
ases the 
onstraints are not given in algebrai
 form, but arethe out
ome generated by a simulator [27℄).It is known that the relationship between an infeasible individual and the feasible region of the sear
h spa
e playsa signi�
ant role in penalizing su
h an individual [144℄. However, it is not 
lear how to exploit this relationship toguide the sear
h in the most desirable dire
tion.There are at least three main 
hoi
es to de�ne a relationship between an infeasible individual and the feasibleregion of the sear
h spa
e [34℄:1. an individual might be penalized just for being infeasible regardless of its amount of 
onstraint violation (i.e.,we do not use any information about how 
lose it is from the feasible region),2. the `amount' of its infeasibility 
an be measured and used to determine its 
orresponding penalty, or3. the e�ort of `repairing' the individual (i.e., the 
ost of making it feasible) might be taken into a

ount.Several resear
hers have studied heuristi
s on the design of penalty fun
tions. Probably the most well-known ofthese studies is the one 
ondu
ted by Ri
hardson et al. [144℄ from whi
h the following guidelines were derived:1. Penalties whi
h are fun
tions of the distan
e from feasibility are better performers than those whi
h are onlyfun
tions of the number of violated 
onstraints.2. For a problem having few 
onstraints, and few feasible solutions, penalties whi
h are solely fun
tions of thenumber of violated 
onstraints are not likely to produ
e any solutions.3. Good penalty fun
tions 
an be 
onstru
ted from two quantities: the maximum 
ompletion 
ost and theexpe
ted 
ompletion 
ost. The 
ompletion 
ost refers to the distan
e to feasibility.4. Penalties should be 
lose to the expe
ted 
ompletion 
ost, but should not frequently fall below it. Themore a

urate the penalty, the better will be the solution found. When a penalty often underestimates the
ompletion 
ost, then the sear
h may fail to �nd a solution.Based mainly on these guidelines, several resear
hers have attempted to derive good te
hniques to build penaltyfun
tions. The most important will be analyzed next. It should be kept in mind, however, that these guidelinesare diÆ
ult to follow in some 
ases. For example, the expe
ted 
ompletion 
ost sometimes has to be estimatedusing alternative methods (e.g., doing a relative s
aling of the distan
e metri
s of multiple 
onstraints, estimatingthe degree of 
onstraint violation, et
. [161℄). Also, it is not 
lear how to 
ombine the two quantities indi
ated byRi
hardson et al. [144℄ and how to design a �tness fun
tion that uses a

urate penalties.Penalty fun
tions 
an deal both with equality and inequality 
onstraints, and the normal approa
h is to transforman equality to an inequality of the form: jhj(~x)j � � � 0 (7)where � is the toleran
e allowed (a very small value).Most of the approa
hes analyzed in this paper attempt to avoid this hand-tuning of the penalty fa
tors andsome even make unne
essary at all the use of a penalty fun
tion.
5



2.1 Stati
 PenaltiesUnder this 
ategory, we 
onsider approa
hes in whi
h the penalty fa
tors do not depend on the 
urrent generationnumber in any way, and therefore, remain 
onstant during the entire evolutionary pro
ess.Homaifar, Lai and Qi [78℄ proposed an approa
h in whi
h the user de�nes several levels of violation, and apenalty 
oeÆ
ient is 
hosen for ea
h in su
h a way that the penalty 
oeÆ
ient in
reases as we rea
h higher levelsof violation. This approa
h starts with a random population of individuals (feasible or infeasible).An individual is evaluated using [104℄:�tness(~x) = f(~x) + mXi=1 �Rk;i � max [0; gi(~x)℄2� (8)whereRk;i are the penalty 
oeÆ
ients used,m is total the number of 
onstraints (Homaifar et al. [78℄ transformedequality 
onstraints into inequality 
onstraints), f(~x) is the unpenalized obje
tive fun
tion, and k = 1; 2; : : : ; l,where l is the number of levels of violation de�ned by the user. The idea of this approa
h is to balan
e individual
onstraints separately by de�ning a di�erent set of fa
tors for ea
h of them through the appli
ation of a set ofdeterministi
 rules.An interesting stati
 penalty approa
h has been used by Kuri [114℄. Fitness of an individual is determined using:�tness(~x) = � f(~x) if the solution is feasibleK �Psi=1 �Km� otherwise (9)where s is the number of 
onstraints satis�ed, m is the total number of (equality and inequality) 
onstraints, and Kis a large 
onstant (it was set to 1�109 [113℄ in the experiments reported in [114℄). Noti
e that when an individualis infeasible, its �tness is not 
omputed and all the individuals that violate the same number of 
onstraints re
eivethe same penalty regardless of how 
lose they are from the feasible region.Finally, Ho�meister & Sprave have proposed to use the following penalty fun
tion [76℄:�tness(~x) = f(~x)�vuut mXi=0 H(�gi(~x))gi(~x)2 (10)where H : R ! f0; 1g is the Heavyside fun
tion:H(y) = � 1 : y > 00 : y � 0 (11)This is equivalent to a partial penalty approa
h and was su

essfully used in some real-world problems [155℄.Advantages and DisadvantagesThe main drawba
k of Homaifar et al.'s approa
h is the high number of parameters required. For m 
onstraints,this approa
h requiresm(2l+1) parameters in total [102℄. So, if we have, for example, six 
onstraints and two levels,we would need 30 parameters, whi
h is a very high number 
onsidering the small size of the proposed problem.Also, this method requires prior knowledge of the degree of 
onstraint violation present in a problem (to de�ne thelevels of violation), whi
h might not be always given (or easy to obtain) in real-world appli
ations.Kuri's approa
h does not use information about the amount of 
onstraint violation, but only about the numberof 
onstraints that were violated. Although this 
ontradi
ts one of the basi
 rules stated by Ri
hardson [144℄about the de�nition of good penalty fun
tions, apparently the self-adaptive EA used by Kuri (
alled E
le
ti
Geneti
 Algorithm or EGA for short) 
ould 
ope with this problem and was able to optimize several diÆ
ultnonlinear optimization problems. In one of the fun
tions reported in [114℄, however, it was ne
essary to initializethe population with another EGA be
ause no feasible solutions were present in the �rst generation. This problemwas obviously produ
ed by the la
k of diversity in the population (not having a single feasible individual in thepopulation, they all had a very similar or equal �tness), whi
h seriously limits its appli
ability in highly 
onstrainedsear
h spa
es. 6



The problem with Ho�meister & Sprave's approa
h is that it is based on the assumption that infeasible pointswill always be valuated worse than feasible ones, and that is not always the 
ase [103℄.Other resear
hers have used di�erent distan
e-based stati
 penalty fun
tions [68, 5, 79, 124, 144, 17, 172℄, butin all 
ases these metri
s rely on some extra parameter (namely one or more penalty fa
tors) whi
h are diÆ
ult togeneralize and normally remain problem-dependent.2.2 Dynami
 PenaltiesWithin this 
ategory, we will 
onsider any penalty fun
tion in whi
h the 
urrent generation number is involvedin the 
omputation of the 
orresponding penalty fa
tors (normally the penalty fun
tion is de�ned in su
h a waythat it in
reases over time|i.e., generations). Noti
e that although the two approa
hes des
ribed in the followingsubse
tions (annealing penalties and adaptive penalties) are also dynami
 penalty approa
hes, they were 
onsideredseparately for the sake of 
larity.Joines and Hou
k [83℄ proposed a te
hnique in whi
h individuals are evaluated (at generation t) using (we assumeminimization): �tness(~x) = f(~x) + (C � t)� � SV C(�; ~x) (12)where C, � and � are 
onstants de�ned by the user (the authors used C = 0:5, � = 1 or 2, and � = 1 or 2), andSV C(�; ~x) is de�ned as [83℄: SV C(�; ~x) = nXi=1 D�i (~x) + pXj=1Dj(~x) (13)and Di(~x) = � 0 gi(~x) � 0jgi(~x)j otherwise 1 � i � n (14)Dj(~x) = � 0 �� � hj(~x) � �jhj(~x)j otherwise 1 � j � p (15)This dynami
 fun
tion in
reases the penalty as we progress through generations.Kazarlis & Petridis [85℄ performed a detailed study of the behavior of a dynami
 penalty fun
tion of the form:�tness(~x) = f(~x) + V (g)� A mXi=1 (Æi � wi � �(di(S))) +B!� Æs (16)where A is a \severity" fa
tor, m is the total number of 
onstraints, Æi is 1 if the 
onstraint i is violated and0 otherwise, wi is a weight fa
tor for 
onstraint i, di(S) is a measure of the degree of violation of 
onstraint iintrodu
ed by solution S, �i(:) is a fun
tion of this measure, B is a penalty threshold fa
tor, Æs is a binary fa
tor(ds = 1 if S is infeasible and is zero otherwise), and V (g) is an in
reasing fun
tion of g (the 
urrent generation) inthe range (0 : : : 1).Using as test fun
tions the 
utting sto
k problem and the unit 
ommitment problem, Kazarlis & Petridisexperimented with di�erent forms of V (g) (linear, quadrati
, 
ubi
, quarti
, exponential and 5-step), and foundthat the best overall performan
e was provided by a fun
tion of the form:V (g) = � gG�2 (17)where G is the total number of generations.
7



Advantages and DisadvantagesSome resear
hers have argued that dynami
 penalties work better than stati
 penalties. However, it is diÆ
ultto derive good dynami
 penalty fun
tions in pra
ti
e as it is diÆ
ult to produ
e good penalty fa
tors for stati
fun
tions [159℄. For example, in the approa
h proposed by Joines and Hou
k [83℄, the quality of the solution foundwas very sensitive to 
hanges in the values of � and � and there were no 
lear guidelines regarding the sensitivityof the approa
h to di�erent values of C. Even when the values indi
ated above were found by the authors ofthis method to be a reasonable 
hoi
e, Mi
halewi
z [102, 108℄ reported that these parameters produ
ed premature
onvergen
e most of the time in other examples. Also, it was found that the te
hnique normally either 
onvergedto an infeasible solution or to a feasible one that was far away from the global optimum [102, 34℄. Apparently, thiste
hnique provides very good results only when the obje
tive fun
tion is quadrati
 [109℄.The dynami
 penalty fun
tion proposed by Kazarlis & Petridis (
alled by them Varying Fitness Fun
tion Te
h-nique or VFF for short) [85℄ requires several parameters that depend on the problem and whose de�nition is notat all 
lear (for example, A = 1000 and B = 0 in the experiments reported in [85℄, but no further explanationis provided about why these values were 
hosen). Also, their tests (although exhaustive for the two problems
onsidered in their work) need to be extended to other fun
tions before being able to make more general 
laimsabout this te
hnique.In general, the problems asso
iated with stati
 penalty fun
tions are also present with dynami
 penalties: if abad penalty fa
tor is 
hosen, the EA may 
onverge to either non-optimal feasible solutions (if the penalty is toohigh) or to infeasible solutions (if the penalty is too low) [161℄.2.3 Annealing PenaltiesMi
halewi
z and Attia [105℄ 
onsidered a method based on the idea of simulated annealing [89℄: the penalty
oeÆ
ients are 
hanged on
e in many generations (after the algorithm has been trapped in a lo
al optima). Onlya
tive 
onstraints are 
onsidered at ea
h iteration, and the penalty is in
reased over time (i.e., the temperaturede
reases over time) so that infeasible individuals are heavily penalized in the last generations.The method of Mi
halewi
z and Attia [105℄ requires that 
onstraints are divided into four groups: linear equal-ities, linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of a
tive 
onstraints A has tobe 
reated, and all nonlinear equalities together with all violated nonlinear inequalities have to be in
luded there.The population is evolved using [102℄: �tness(~x) = f(~x) + 12� Xi2A�2i (~x) (18)where � is the 
ooling s
hedule [89℄,�i(~x) = � max[0; gi(~x)℄ if 1 � i � njhi(~x)j if n+ 1 � i � m (19)and m is the total number of 
onstraints.An interesting aspe
t of this approa
h is that the initial population is not really diverse, but 
onsists of multiple
opies of a single individual that satis�es all the linear 
onstraints (a single instan
e of this feasible individual isreally enough [109℄). At ea
h iteration, the temperature � is de
reased and the new population is 
reated using thebest solution found in the previous iteration as the starting point for the next iteration. The pro
ess stops when apre-de�ned �nal `freezing' temperature �f is rea
hed.A similar proposal was made by Carlson et al. [160℄. In this 
ase, the �tness fun
tion of an individual is
omputed using: �tness(~x) = A � f(~x) (20)where A depends on two parameters: M , whi
h measures the amount by whi
h a 
onstraint is violated (it takesa zero value when no 
onstraint is violated), and T , whi
h is a fun
tion of the running time of the algorithm. T8



tends to zero as evolution progresses. Using the basi
 prin
iple of simulated annealing, Carlson et al. [160℄ de�nedA as: A = e�M=T (21)so that the initial penalty fa
tor is small and it in
reases over time. This will dis
ard infeasible solutions in thelast generations.To de�ne T (the 
ooling s
hedule), Carlson et al. [160℄ use:T = 1pt (22)where t refers to the temperature used in the previous iteration.Finally, it should be mentioned that Joines and Hou
k [83℄ also experimented with a penalty fun
tion based onsimulated annealing: �tness(~x) = f(~x) + e(C�t)��SV C(�;~x) (23)where t is the generation number, SV C(�; ~x) is de�ned by equation (13), C = 0:05, and � = � = 1.This �tness fun
tion was proposed as another form of handling 
onstraints in an EA, but their su

ess wasrelative, mainly be
ause they used unnormalized 
onstraints.Advantages and DisadvantagesOne of the main drawba
ks of Mi
halewi
z and Attia's approa
h is its extreme sensitivity to the values of itsparameters (parti
ularly the 
ooling s
hedule �), and it is also well known that it is normally diÆ
ult to 
hoose anappropriate 
ooling s
hedule when solving a problem with simulated annealing [89℄. Mi
halewi
z and Attia [105℄used �0 = 1 and �f = 0:000001 in their experiments, with in
rements �i+1 = 0:1��i. Carlson et al. [160℄ de
ided touse the mean 
onstraint violation ( �M) as the starting temperature value. For the �nal temperature, they de
idedto use one hundreth of the mean 
onstraint violation at the last generation. However, these values are empiri
allyderived and although proved to be useful in some engineering problems by Carlson et al. [160℄, their de�nitionremains as the most 
riti
al issue when using this approa
h.The approa
h used to handle linear 
onstraints in Mi
halewi
z and Attia's te
hnique (treated separately bythem) is very eÆ
ient, but it requires that the user provides an initial feasible point to the algorithm. Theimplementation of this te
hnique might require the use of another program to generate a feasible starting pointthat satis�es all linear 
onstraints (equalities and inequalities) and also requires spe
ial operators that produ
ealways feasible o�spring from feasible parents.Regarding Joines and Hou
k's approa
h [83℄, their main problems to make this approa
h work were due to theover
ows produ
ed by the fa
t that they did not normalize their 
onstraints. Therefore, the exponential fun
tionwould sometimes fall out of the valid numeri
al range of the 
omputer. Furthermore, the de�nition of the 
onstantC was not justi�ed, and the authors admitted that further experimentation regarding its e�e
t was ne
essary. Onthe other hand, the implementation of this te
hnique is easier be
ause it does not distinguish between linear andnonlinear 
onstraints and its authors leave to the EA itself the task of generating feasible solutions from an initialset of random values.2.4 Adaptive PenaltiesBean and Hadj-Alouane [10, 69℄ developed a method that uses a penalty fun
tion whi
h takes a feedba
k from thesear
h pro
ess. Ea
h individual is evaluated by the formula:�tness(~x) = f(~x) + �(t)24 nXi=1 g2i (~x) + pXj=1 jhj(~x)j35 (24)where �(t) is updated at every generation t in the following way:9



�(t+ 1) = 8<: (1=�1) � �(t); if 
ase #1�2 � �(t); if 
ase #2�(t); otherwise; (25)where 
ases #1 and #2 denote situations where the best individual in the last k generations was always (
ase#1) or was never (
ase #2) feasible, �1; �2 > 1, �1 > �2, and �1 6= �2 (to avoid 
y
ling). In other words, thepenalty 
omponent �(t+1) for the generation t+1 is de
reased if all the best individuals in the last k generationswere feasible or is in
reased if they were all infeasible. If there are some feasible and infeasible individuals tied asbest in the population, then the penalty does not 
hange.Smith and Tate [162℄ proposed an approa
h later re�ned by Coit and Smith [28℄ and Coit et al. [29℄ in whi
hthe magnitude of the penalty is dynami
ally modi�ed a

ording to the �tness of the best solution found so far. Anindividual is evaluated using the formula (only inequality 
onstraints were 
onsidered in this work):�tness(~x) = f(~x) + (Bfeasible �Ball) nXi=1 � gi(~x)NFT (t)�k (26)where Bfeasible is the best known obje
tive fun
tion at generation t, Ball is the best (unpenalized) overallobje
tive fun
tion at generation t, gi(~x) is the amount by whi
h the 
onstraint i is violated, k is a 
onstant thatadjusts the \severity" of the penalty (a value of k = 2 has been previously suggested by Coit and Smith [28℄), andNFT is the so-
alled Near Feasibility Threshold, whi
h is de�ned as the threshold distan
e from the feasible regionat whi
h the user would 
onsider that the sear
h is \reasonably" 
lose to the feasible region [109, 63℄.Norman & Smith [123℄ further applied Coit & Smith's approa
h to fa
ility layout problems, and apparently thete
hnique has been used only in 
ombinatorial optimization problems.Gen and Cheng [63℄ indi
ate that Yokota et al. [177℄ proposed a variant of Smith, Tate and Coit's approa
h inwhi
h they use a multipli
ative form of the �tness fun
tion (instead of an addition as in Smith et al. [162℄):�tness(~x) = f(~x)� P (~x) (27)where P (~x) is de�ned as: P (~x) = 1� 1n nXi=1 ��bi(~x)bi �k (28)and �bi(~x) = max[0; gi(~x)� bi℄ (29)In this 
ase, �bi(~x) refers to the violation of 
onstraint i. Noti
e that this approa
h is really a spe
ial 
ase ofSmith et al.'s approa
h in whi
h NFT = bi, assuming that gi(~x) � bi is required to 
onsider a solution as feasible.Gen and Cheng [62℄ later re�ned their approa
h introdu
ing a more severe penalty for infeasible solutions. Inthe new version of their algorithm, P (~x) = 1� 1n nXi=1 ��bi(~x)�bmaxi �k (30)�bi(~x) = max[0; gi(~x)� bi℄ (31)�bmaxi = max[�;�bi(~x); ~x 2 P (t)℄ (32)where �bi(~x) is the value by whi
h the 
onstraint i is violated in the n-th 
hromosome. �bmaxi is the maximumviolation of 
onstraint i in the whole (
urrent) population, and � is a small positive number used to avoid dividingby zero [63℄. The motivation of this te
hnique was to preserve diversity in the population, avoiding at the sametime overpenalizing infeasible solutions whi
h will 
onstitute most of the population at early generations in highly
onstrained optimization problems [63℄. 10



Eiben & van der Hauw [52℄, Eiben et al. [53℄ and Eiben & Ruttkay [51℄ proposed an adaptive penalty fun
tionthat was su

essfully applied to the graph 3-
oloring problem. They used a �tness fun
tion of the form�tness(~x) = nXi=1 wi � �(~x; i) (33)where wi is a weight (or penalty) assigned to node i of a graph, and�(~x; i) = � 1 if node xi is left un
olored be
ause of a 
onstraint violation0 otherwise (34)In this approa
h, originally introdu
ed by Eiben et al. [50℄, the weights used in the �tness fun
tion are 
hangedduring the evolutionary pro
ess su
h that the sear
h fo
uses on satisfying those 
onstraints that are 
onsidered\harder" by giving higher rewards to the �tness fun
tion in those 
ases. This te
hnique proved to be superior to apowerful (traditional) graph 
oloring te
hnique 
alled DSatur [15℄ and to a Grouping Geneti
 Algorithm [54℄.Rasheed [139℄ proposed an approa
h in whi
h the penalty fa
tor would be small at the beginning of the evolu-tionary pro
ess, and it would be in
reased whenever the sear
h gave too little attention to feasibility (i.e., when thepoint with highest �tness in the population was infeasible). Conversely, the penalty fa
tor would be de
reased if thesear
h gave too mu
h attention to feasibility (i.e., if all individuals in the population were feasible). The rationalebehind the approa
h was to insure proper sear
h of the regions adja
ent to 
onstraint boundaries, sin
e in many
ases the optimum lies pre
isely there. This approa
h was su

essfully applied to several engineering optimizationproblems (e.g., supersoni
 transport air
raft design).Crossley and Williams [32℄ experimented with several adaptive penalty 
oeÆ
ients based on the 
urrent gen-eration number (this would really be a dynami
 penalty fun
tion) and the standard deviation and varian
e ofthe population's �tness values. They tested their six di�erent penalty 
oeÆ
ients (in
luding a 
onstant value) onfour engineering problems. Their results showed supperiority of the adaptive approa
hes over the use of a 
on-stant penalty 
oeÆ
ient. A 
oeÆ
ient whose variation was linear with respe
t to the 
urrent generation numberwas found to provide the best results overall. However, they 
on
luded that the best adaptive penalty is reallyproblem-dependent if we are 
on
erned of �nding the best result in the minimum number of generations.Advantages and DisadvantagesThe obvious drawba
k of Bean and Hadj-Alouane's approa
h [10, 69℄ is how to 
hoose the generational gap (i.e.,the appropriate value of k) that provides reasonable information to guide the sear
h. More important yet is howdo we de�ne the values of �1 and �2 to penalize fairly a given solution.The most obvious drawba
k of Smith and Tate's [162℄ approa
h is how to 
hoose NFT , sin
e this parameterwill be problem dependent. Coit and Smith [28℄ have proposed to de�ne NFT as:NFT = NFT01 + �� t (35)where NFT0 is an upper bound for NFT , t is the generation number, and � is a 
onstant that assures thatthe entire region between NFT0 and zero (feasible region) is sear
hed. Care should be taken that NFT does notapproa
h zero either too qui
kly or too slowly [28℄. Although Coit and Smith [28℄ have provided some alternativesfor de�ning NFT , its value remains as an additional parameter to be determined by the user.Additionally, the fa
tor Bfeasible�Ball has some potential dangers: First, if Bfeasible is mu
h greater than Ball,then the penalty would be quite large for all individuals in the population. Coit and Smith [28℄ 
laim that thisdoes not seem to happen too often in pra
ti
e be
ause they use sele
tion strategies that pre
lude the possibility ofsele
ting solution ve
tors suÆ
iently far from the feasible region for this to happen, but in any 
ase, they propose
hanging the values of Bfeasible and Ball for the initial generations.The se
ond potential danger is that if Bfeasible and Ball are identi
al, then the penalty would be zero, whi
hmeans that all infeasible individuals would go unpenalized in that generation. The underlying assumption here isthat the best unpenalized individual in fa
t lies on the feasible region, but that might not be the 
ase, and it 
ouldintrodu
e a strong bias towards infeasible solutions. 11



The approa
h proposed by Gen and Cheng [63℄ assigns a relatively mild penalty with respe
t to Coit et al. [29℄,but the authors of this method argue that their approa
h is problem-independent [63℄. However, no informationis provided by Gen and Cheng [63℄ regarding the sort of problems used to test this te
hnique, and apparently theapproa
h was used only in one 
ombinatorial optimization problem, whi
h does not 
onstitute enough eviden
e ofthis statement.Similarly, the approa
h of Eiben & van der Hauw [52℄ also requires the de�nition of additional parameters(the weights wi assigned to ea
h node of the graph), and it has been applied only to 
ombinatorial optimizationproblems.Rasheed's approa
h [139℄ was inspired by Smith and Tate [162℄, and it seems to be the �rst attempt to useadaptive penalties in numeri
al optimization. This approa
h is interesting, but it requires the de�nition of aninitial value for the penalty fa
tor. Rasheed provides a way of 
omputing su
h a default value. However, hisformula is based on the assumption that the numeri
al magnitude of the 
onstraints is 
omparable to what he 
allsthe \measure of merit" (i.e., the obje
tive fun
tion). If this is not true, then a s
aling fun
tion will be required.Also, 
ertain limits have to be de�ned for the in
rements and de
rements of the penalty fa
tor, in order to avoidabrupt 
hanges.Crossley and Williams' study was in
on
lusive. For example, adaptive penalties based on the standard deviationand varian
e of the population's �tness values were found to be too expensive (
omputationally speaking). Apenalty fa
tor that in
reased quadrati
ally with respe
t to the number of generations was also found to providepoor results. However, from the remaining approa
hes, none of them was found to provide the best possible resultswith the lowest number of �tness fun
tion evaluations for all test problems. Obviously, more studies of this sortare required.2.5 Co-evolutionary penaltiesCoello [25℄ proposed the use of a penalty fun
tion of the form:�tness(~x) = f(~x)� (
oef � w1 + viol � w2) (36)where f(~x) is the value of the obje
tive fun
tion for the given set of variable values en
oded in a 
hromosome; w1and w2 are 2 penalty fa
tors (
onsidered as integers); 
oef is the sum of all the amounts by whi
h the 
onstraintsare violated (only inequality 
onstraints were 
onsidered):
oef = nXi=1 gi(~x) 8gi(~x) > 0 (37)viol is an integer fa
tor, initialized to zero and in
remented by one for ea
h 
onstraint of the problem that isviolated, regardless of the amount of violation (i.e., only the number of 
onstraints violated is 
ounted with thisvariable, but not the magnitude in whi
h ea
h 
onstraint is violated).In Coello's approa
h, the penalty is a
tually split into two values (
oef and viol), so that the EA has enoughinformation not only about how many 
onstraints were violated, but also about the 
orresponding amounts ofviolation. This follows Ri
hardson's suggestion [144℄ about using penalties that are guided by the distan
e tofeasibility.Coello [25℄ used two di�erent populations P1 and P2 with 
orresponding sizesM1 andM2. The se
ond of thesepopulations (P2) en
oded the set of weight 
ombinations (w1 and w2) that would be used to 
ompute the �tnessvalue of the individuals in P1 (i.e., P2 
ontained the penalty fa
tors that would be used in the �tness fun
tion).The idea of Coello's approa
h is to use one population to evolve solutions (as in a 
onventional EA), and anotherto evolve the penalty fa
tors w1 and w2. For ea
h individual Aj in P2 there is an instan
e of P1. However, thepopulation P1 is reused for ea
h new element Aj pro
essed from P2.Ea
h individual Aj (1 � j � M2) in P2 is de
oded and the weight 
ombination produ
ed (i.e., the penaltyfa
tors) is used to evolve P1 during a 
ertain number (Gmax1) of generations. The �tness of ea
h individual Bk(1 � k � M1) is 
omputed using equation (36), keeping the penalty fa
tors 
onstant for every individual in theinstan
e of P1 
orresponding to the individual Aj being pro
essed.12



After evolving ea
h P1 
orresponding to every Aj in P2 (there is only one instan
e of P1 for ea
h individual inP2), the best average �tness produ
ed is 
omputed using:average fitnessj = M1Xi=1 � �tness(~x)
ount feasible�+ 
ount feasible 8~x 2 F (38)In equation (38), the �tnesses of all feasible solutions in P1 are added, and an average of them is 
omputed(the integer variable 
ount feasible is a 
ounter that indi
ates how many feasible solutions were found in thepopulation). The reason for 
onsidering only feasible individuals is that if infeasible solutions are not ex
ludedfrom this 
omputation, the sele
tion me
hanism of the EA may bias the population towards regions of the sear
hspa
e where there are solutions with a very low weight 
ombination. Su
h solutions may have good �tness values,and still be infeasible. The reason for that is that low values of w1 and w2 may produ
e penalties that are not bigenough to outweight the value of the obje
tive fun
tion.Noti
e also the use of 
ount feasible to avoid stagnation (i.e., loss of diversity in the population) at 
ertainregions in whi
h only very few individuals will have a good �tness or will be even feasible. By adding this quantityto the average �tness of the feasible individuals in the population, the EA is en
ouraged to move towards regionsin whi
h lie not only feasible solutions with good �tness values, but there are also lots of them. In pra
ti
e, it maybe ne
essary to apply a s
aling fa
tor to the average of the �tness before adding 
ount feasible, to avoid that theEA gets trapped in lo
al optima. However, su
h s
aling fa
tor is not very diÆ
ult to 
ompute be
ause Coello [25℄assumes populations of 
onstant size (su
h size must be de�ned before running the EA). The range of the �tnessvalues 
an be also easily obtained at ea
h generation, be
ause the maximum and minimum �tness values in thepopulation are known at ea
h generation.The pro
ess indi
ated above is repeated until all individuals in P2 have a �tness value (the best average fitnessof their 
orresponding P1). Then, P2 is evolved one generation using 
onventional geneti
 operators (i.e., 
rossoverand mutation) and the new P2 produ
ed is used to start the same pro
ess all over again. It is important to noti
ethat the intera
tion between P1 and P2 introdu
es diversity in both populations, whi
h keeps the EA from easily
onverging to a lo
al optimum.Advantages and DisadvantagesThe problem with this approa
h is that it introdu
es the de�nition of four additional parameters: Gmax1, Gmax2,M1 and M2. Coello [25, 22℄ argues that those parameters have to be (empiri
ally) determined for an EA in anyparti
ular appli
ation, and showed that the approa
h was really more sensitive to 
hanges in the parameters of P1than to 
hanges in the parameters of P2. However, the de�nition of these parameters remains as an additionalissue to be settled. Furthermore, if these parameters are not 
arefully 
hosen, a lot of �tness fun
tion evaluationsmight be required due to the nested loops involved in the optimization pro
ess. A parallel algorithm may be aviable solution to this problem, but su
h an alternative has not been implemented yet.2.6 Segregated geneti
 algorithmLe Ri
he et al. [147℄ designed a (segregated) geneti
 algorithm whi
h uses two penalty parameters (for ea
h
onstraint) instead of one; these two values aim at a
hieving a balan
e between heavy and moderate penaltiesby maintaining two subpopulations of individuals instead of one. Even when individuals of the two populationsinterbreed (i.e., they are merged), they are \segregated" in terms of satisfa
tion of a 
ertain 
onstraint.The pro
edure is the following [147℄: a population of size 2 � m is generated. Ea
h individual is evaluateda

ording to two penalty fun
tions (one with heavy and one with moderate penalties). Two ranked lists aregenerated and then merged. Only m individuals are 
hosen from the new list to apply the geneti
 operators(
rossover and mutation): the best individuals from the two original ranked lists are 
hosen to be
ome parents forthe next generation. This aims to 
ombine feasible and infeasible individuals, and to help the geneti
 algorithm tostay out of lo
al minima.Another important di�eren
e of this approa
h with respe
t to a traditional geneti
 algorithm is that if the twopenalties have the same value, the m 
hildren produ
ed after applying the geneti
 operators are mixed with their13



m parents. Then the best m individuals from this merged list are 
hosen for further pro
essing. This repla
ementstrategy (
alled \super elitism" by Le Ri
he et al. [147℄) was taken from evolution strategies [156℄ and allows tobalan
e the in
uen
e of the two penalty fa
tors used.Linear ranking was used to de
rease the high sele
tion pressure that 
ould 
ause premature 
onvergen
e. Thisapproa
h was used to solve a laminated design problem, providing ex
ellent results [147℄.Advantages and DisadvantagesThe problem with this approa
h is again the way of 
hoosing the penalties for ea
h of the two sub-populations.Even when some guidelines have been provided by the authors of this method to de�ne su
h penalties [147℄, theyalso admit that it is diÆ
ult to produ
e generi
 values that 
an be used in any problem for whi
h no previousinformation is available.2.7 Death penaltyThe reje
tion of infeasible individuals (also 
alled \death penalty") is probably the easiest way to handle 
onstraintsand it is also 
omputationally eÆ
ient, be
ause when a 
ertain solution violates a 
onstraint, it is assigned a �tnessof zero. Therefore, no further 
al
ulations are ne
essary to estimate the degree of infeasibility of su
h a solution.The normal approa
h taken is to iterate re
ursively, generating a new point at ea
h re
ursive 
all, until a feasiblesolution is found [76℄. This might be a rather lengthy pro
ess in problems in whi
h is very diÆ
ult to approa
hthe feasible region.Advantages and DisadvantagesDeath penalty is very popular within the evolution strategies 
ommunity [156, 4℄, but it is limited to problems inwhi
h the feasible sear
h spa
e is 
onvex and 
onstitutes a reasonably large portion of the whole sear
h spa
e. Thisapproa
h has the drawba
k of not exploiting any information from the infeasible points that might be generatedby the EA to guide the sear
h.One potential problem of this approa
h is that if there are no feasible solutions in the initial population (whi
his normally generated at random) then the evolutionary pro
ess will \stagnate" be
ause all the individuals willhave the same �tness (i.e., zero).There are well-do
umented experiments in whi
h the use of death penalty with EAs is not a good 
hoi
e. Forexample, Coit & Smith [28℄ 
ompared this approa
h against an adaptive penalty in a reliability design optimizationproblem (a problem with highly 
onstrained sear
h spa
es), �nding that the adaptive penalty was superior in termsof both the quality of the �nal solutions found and the 
onvergen
e of the EA to the best solution found. Mi
halewi
z[102, 108, 109℄ has also shown that the use of death penalty is inferior to the use of penalties that are de�ned interms of the distan
e to the feasible region.3 Spe
ial representations and operatorsSome resear
hers have de
ided to develop spe
ial representation s
hemes to ta
kle a 
ertain (parti
ularly diÆ
ult)problem for whi
h a generi
 representation s
heme (e.g., the binary representation used in the traditional geneti
algorithm) might not be appropriate. Due to the 
hange of representation, it is ne
essary to design spe
ial geneti
operators that work in a similar way than the traditional operators used with a binary representation.A 
hange of representation is aimed at simplifying the shape of the sear
h spa
e and the spe
ial operators arenormally used to preserve the feasibility of solutions at all times. The main appli
ation of this approa
h is naturallyin problems in whi
h it is extremely diÆ
ult to lo
ate at least a single feasible solution.3.1 Davis' appli
ationsLawren
e Davis' Handbook of Geneti
 Algorithms [40℄ 
ontains several examples of EAs that use spe
ial represen-tations and operators to solve 
omplex real-world problems. For example, Yuval Davidor [37℄ (see also [36℄) used14



a varying-length geneti
 algorithm to generate robot traje
tories, and de�ned a spe
ial 
rossover operator 
alledanalogous 
rossover [35℄, whi
h uses phenotypi
 similarities to de�ne 
rossover points in the parent strings. Davi-dor also used Lamar
kian probabilities for 
rossover and mutation. This means that the 
rossover and mutationpoints were 
hosen a

ording to the error distribution along the string, whi
h was relatively easy to estimate inthis parti
ular appli
ation.Other appli
ations in
luded in Davis' book are: s
hedule optimization [170℄, synthesis of neural networks ar
hi-te
ture [73℄, and 
onformational analysis of DNA [98℄, among others.Advantages and DisadvantagesThe use of spe
ial representations and operators is, with no doubt, quite useful for the intended appli
ation forwhi
h they were designed, but their generalization to other (even similar) problems is by no means obvious.3.2 Random keysJames C. Bean [8, 9℄ proposed a spe
ial representation 
alled \random keys en
oding" whi
h (in 
ontrast withthe approa
hes reported in Davis' book) is used to eliminate the need of spe
ial 
rossover and mutation operatorsin 
ertain sequen
ing and optimization problems (e.g., job shop s
heduling, parallel ma
hine tool s
heduling, andfa
ility layout), be
ause it maintains the feasiblity of the permutations used in these domains at all times. It alsoadds no 
omputational overhead to the sear
h.The idea is to en
ode a solution with random numbers. Su
h random numbers are used as sort keys to de
odethe solution. For example, to represent an n-job m-ma
hine s
heduling problem using this approa
h, ea
h allele isa real number in whi
h the integer part belongs to the set f1; 2; : : : ;mg, whereas the de
imal fra
tion is randomlygenerated within the interval (0; 1). The integer part of the number is then interpreted as the ma
hine assignmentfor that job, whereas the sorted fra
tional parts provide the job sequen
e on ea
h ma
hine [121, 122℄.Advantages and DisadvantagesThis approa
h is with no doubt interesting, although some resear
hers have reported poor performan
e of thete
hnique in some appli
ations. For example, Parsons et al. [131, 132℄ found that the random keys geneti
 algorithmdid not perform as well as a standard permutation representation with spe
ial-purpose operators (transpositionand a form of inversion) in a DNA fragment-assembly problem (a TSP problem with noise, errors, and some other
ompli
ations).3.3 GENOCOPAnother example of this approa
h is GENOCOP (GEneti
 algorithm for Numeri
al Optimization for COnstrainedProblems), developed by Mi
halewi
z [101℄. GENOCOP eliminates equality 
onstraints together with an equalnumber of problem variables. This removes part of the spa
e to be sear
hed and simpli�es the problem for theEA. The remaining 
onstraints are linear inequalities, whi
h form a 
onvex set that must be sear
hed by the EA.GENOCOP tries to lo
ate an initial (feasible) solution by sampling the feasible region. If it does not su
eed after a
ertain number of trials, the user is asked to provide su
h a starting point. The initial population will then 
onsistof identi
al 
opies of this starting point. The geneti
 operators adopted perform linear 
ombinations of individualsto ensure that their o�spring will also be feasible (these operators rely on properties of 
onvex sets).Advantages and DisadvantagesGENOCOP assumes a feasible starting point (or feasible initial population), whi
h implies that the user or theEA must have a way of generating (in a reasonable time) su
h starting point. Also, the fa
t that GENOCOP onlyallows linear 
onstraints, limits its appli
ations to 
onvex sear
h spa
es [34℄.
15



3.4 Constraint Consistent GAsKowal
zyk [90℄ proposed the use of 
onstraint 
onsisten
y [93℄ to prune the sear
h spa
e by preventing variableinstantiations that are not 
onsistent with the 
onstraints of the problem (i.e., making sure that variables produ
eonly feasible solutions).Kowal
zyk used real-numbers representation and de�ned spe
ial geneti
 operators and a spe
ial initializationpro
edure that in
orporated the 
on
ept of 
onstraint 
onsisten
y. He indi
ated that his approa
h 
an be usedin 
ombination with any other 
onstraint-handling te
hnique, and was aware that in many 
ases partially feasiblesolutions may be preferred be
ause they 
an guide the sear
h in a more appropriate way or be
ause they are mu
heasier to �nd.Advantages and DisadvantagesThe main drawba
k of this approa
h is the extra 
omputational 
ost required to propagate 
onstraints, whi
h maybe
ome a pro
ess more expensive than the optimization itself. In any 
ase, the approa
h deserves some attentionand more experimentation is required, sin
e Kowal
zyk illustrated its performan
e with only two optimizationproblems.3.5 Lo
ating the boundary of the feasible regionThe main idea of this te
hnique is to sear
h areas 
lose to the boundary of the feasible region. Sin
e in manynonlinear optimization problems at least some 
onstraints are a
tive at the global optimum, it is perfe
tly justi�edto fo
us the sear
h to the boundary between the feasible and infeasible regions.The idea was originally proposed in an Operations Resear
h te
hnique known as strategi
 os
illation [65℄ andhas been used in 
ombinatorial and nonlinear optimization problems [66℄. The basi
 approa
h is to use adaptivepenalties or other similar me
hanism (e.g., gradients) to 
ross the feasibility boundary ba
k and forth by relaxingor tightening a 
ertain fa
tor that determines the dire
tion of movement [109℄.The two basi
 
omponents of this approa
h are: (a) an initialization pro
edure that 
an generate feasible points,and (b) geneti
 operators that explore the feasible region.Additionally, the geneti
 operators must satisfy the following 
onditions [136, 101℄: (1) 
rossover should beable to generate all points \between" the parents, (2) small mutations must result in small 
hanges in the �tnessfun
tion.In the work done by S
hoenauer and Mi
halewi
z [152℄, several examples are presented and spe
ial geneti
operators are designed for ea
h using geodesi
al 
urves and plane-based operators. In a further paper, S
hoenauerand Mi
halewi
z [153℄ analyze in more detail the use of sphere operators in 
onvex feasible sear
h spa
es.Advantages and DisadvantagesThe main drawba
k of this approa
h is that the operators designed are either highly dependent on the 
hosenparameterization [152℄, or more 
omplex 
al
ulations are required to perform 
rossover and mutation. Also, manyproblems have disjoint feasible regions and the use of operators of this sort would not be of mu
h help in those
ases sin
e they would explore only one of those feasible regions.Finally, the use of these operators is limited to a single problem, although some of the 
on
epts involved 
an begeneralized. Whenever appli
able, however, the approa
h is quite eÆ
ient and produ
es very good results.3.6 De
odersIn this 
ase, a 
hromosome \gives instru
tions" on how to build a feasible solution. Ea
h de
oder imposes arelationship T between a feasible solution and a de
oded solution [34℄. When using de
oders, however, it isimportant that several 
onditions are satis�ed [127℄: (1) for ea
h feasible solution s there must be a de
odedsolution d, (2) ea
h de
oded solution d must 
orrespond to a feasible solution s, and (3) all feasible solutionsshould be represented by the same number of de
odings d. Additionally, it is reasonable to request that (4) the16



transformation T is 
omputationally fast and (5) it has lo
ality feature in the sense that small 
hanges in thede
oded solution result in small 
hanges in the solution itself [34℄.Koziel and Mi
halewi
z [91, 92℄ have re
ently proposed a homomorphous mapping between an n-dimensional
ube and a feasible sear
h spa
e (either 
onvex or non-
onvex). The main idea of this approa
h is to transform theoriginal problem into another (topologi
ally equivalent) fun
tion that is easier to optimize by the EA.Kim and Husbands [86, 87℄ had an earlier proposal of a similar approa
h that used Riemann mappings totransform the feasible region into a shape that fa
ilitated the sear
h for the EA.Advantages and DisadvantagesDespite the several advantages of Koziel and Mi
halewi
z's approa
h [92℄, it also has some disadvantages [92℄:� It uses an extra parameter v whi
h has to be found empiri
ally, performing a set of runs.� Requires extra 
omputational e�ort be
ause of the binary sear
h required to �nd the interse
tion of a linewith the boundary of the feasible region (whi
h is the 
ore of the te
hnique).� It violates the lo
ality feature mentioned before when used in non-
onvex sear
h spa
es: small 
hanges in theen
oded solution may result in huge 
hanges in the de
oded value (e.g., when dealing with disjoint sear
hspa
es).However, in the experiments reported by Koziel and Mi
halewi
z [92℄, this te
hnique provided mu
h better resultsthan those reported with any other 
onstraint-handling method, and seems a very promising area of resear
h.Kim and Husbands' approa
h [86, 87℄ 
ould only be used with problems of low dimensionality (no more thanfour variables) and required the obje
tive fun
tion to be given in algebrai
 form. The mapping proposed by Kozieland Mi
halewi
z [91, 92℄, however, 
an be used with problems of any dimensionality and does not require that theobje
tive fun
tion is given in algebrai
 form.4 Repair algorithmsIn many 
ombinatorial optimization problems (e.g., traveling salesman problem, knapsa
k problem, set 
overingproblem, et
.) is relatively easy to `repair' an infeasible individual (i.e., to make feasible an infeasible individual).Su
h a repaired version 
an be used either for evaluation only, or it 
an also repla
e (with some probability) theoriginal individual in the population.Liepins et al. [96, 97℄ have shown, through an empiri
al test of EA performan
e on a diverse set of 
onstrained
ombinatorial optimization problems, that a repair algorithm is able to surpass other approa
hes in both speedand performan
e.GENOCOP III [108℄ also uses repair algorithms. The idea is to in
orporate the original GENOCOP system[107℄ (whi
h handles only linear 
onstraints) and extend it by maintaining two separate populations, where resultsin one population in
uen
e evaluations of individuals in the other population. The �rst population 
onsists ofthe so-
alled sear
h points whi
h satisfy linear 
onstraints of the problem; the feasibility (in the sense of linear
onstraints) of these points is maintained by spe
ialized operators. The se
ond population 
onsists of feasiblereferen
e points. Sin
e these referen
e points are already feasible, they are evaluated dire
tly by the obje
tivefun
tion, whereas sear
h points are \repaired" for evaluation.Xiao et al. [110, 176, 175℄ used a repair algorithm to transform an infeasible path of a robot trying to movebetween two points in the presen
e of obsta
les, so that the path would be
ome feasible (i.e., 
ollision-free). Therepair algorithm was implemented through a set of 
arefully designed geneti
 operators that used knowledge aboutthe domain to bring infeasible solutions into the feasible region in an eÆ
ient way.Other authors that have used repair algorithms are Orvosh and Davis [126℄, M�uhlenbein [115℄, Le Ri
he andHaftka [146℄, and Tate and Smith [171℄.There are no standard heuristi
s for the design of repair algorithms: normally, it is possible to use a greedyalgorithm (i.e., an optimization algorithm that pro
eeds through a series of alternatives by making the best de
ision,as 
omputed lo
ally, at ea
h point in the series), a random algorithm or any other heuristi
 whi
h would guide the17



repair pro
ess. However, the su

ess of this approa
h relies mainly on the ability of the user to 
ome up with su
ha heuristi
.Another interesting aspe
t of this te
hnique is that normally an infeasible solution that is repaired is only usedto 
ompute its �tness, but the repaired version is returned to the population only in 
ertain 
ases (using a 
ertainprobability). The question of repla
ing repaired individuals is related to the so-
alled Lamar
kian evolution, whi
hassumes that an individual improves during its lifetime and that the resulting improvements are 
oded ba
k intothe 
hromosome [166℄. Some resear
hers like Liepins et al. [96, 97℄ have taken the never repla
ing approa
h (thatis, the repaired version is never returned to the population), while other authors su
h as Nakano [119℄ have takenthe always repla
ing approa
h.Orvosh and Davis [125, 126℄ reported a so-
alled 5% rule for 
ombinatorial optimization problems, whi
h meansthat EAs (applied to 
ombinatorial optimization problems) with a repairing pro
edure provide the best result when5% of the repaired 
hromosomes repla
e their infeasible originals. Mi
halewi
z et al. [104℄ have reported, however,that a 15% repla
ement rule seems to be the best 
hoi
e for numeri
al optimization problems with nonlinear
onstraints.Advantages and DisadvantagesWhen an infeasible solution 
an be easily (or at least at a low 
omputational 
ost) transformed into a feasiblesolution, repair algorithms are a good 
hoi
e. However this is not always possible and in some 
ases repair operatorsmay introdu
e a strong bias in the sear
h, harming the evolutionary pro
ess itself [161℄. Furthermore, this approa
his problem-dependent, sin
e a spe
i�
 repair algorithm has to be designed for ea
h parti
ular problem.5 Separation of 
onstraints and obje
tivesThere are several approa
hes that handle 
onstraints and obje
tives separately (i.e., without 
ombining the amountof 
onstraint violation and the obje
tive fun
tion value). In this se
tion we will review some of the most represen-tative proposals.5.1 Co-evolutionParedis [128℄ proposed a te
hnique based on a 
o-evolutionary model in whi
h there are two populations: the �rst
ontains the 
onstraints to be satis�ed (in fa
t, this is not a population in the general sense of the term, sin
eits 
ontents does not 
hange over time) and the se
ond 
ontains potential (and possibly invalid) solutions to theproblem to be solved. Using an analogy with a predator-prey model, the sele
tion pressure on members of onepopulation depends on the �tness of the members of the other population [128℄.An individual with high �tness in the se
ond population represents a solution that satis�es a lot of 
onstraintswhereas an individual with high �tness in the �rst population represents a 
onstraint that is violated by a lot ofsolutions.Solutions and 
onstraints have en
ounters in whi
h individuals belonging to both populations are evaluated.Ea
h individual keeps a history of its en
ounters, and its �tness is 
omputed a

ording to the sum of the last nen
ounters (Paredis [128℄ used n = 25). The idea of the approa
h is to in
rease the �tness of those 
onstraintsthat are harder to satisfy so that the evolutionary sear
h 
on
entrates on them. In fa
t, the relevan
e of a 
ertain
onstraint 
an be 
hanged over time using this approa
h.Advantages and DisadvantagesParedis [128℄ indi
ated that his approa
h was similar to a self-adaptive penalty fun
tion in whi
h the relevan
e ofa 
ertain 
onstraint 
an be 
hanged over time, a

ording to its diÆ
ulty. The results reported by Paredis [128℄are very impressive, and the approa
h seems very eÆ
ient be
ause not all 
onstraints have to be 
he
ked at alltimes. One problem with this approa
h is that the use of a histori
al re
ord to 
ompute �tness of an invidualmight introdu
e \stagnation" (i.e., the sear
h may not progress anymore) if all the 
onstraints (or at least mostof them) are equally diÆ
ult to satisfy. Also, there is no further eviden
e of the e�e
tiveness of the approa
h in18



other 
ombinatorial optimization problems, and apparently, it has not been extended to numeri
al optimizationproblems either.5.2 Superiority of feasible pointsPowell and Skolni
k [134℄ in
orporated a heuristi
 rule (suggested by Ri
hardson et al. [144℄) for pro
essinginfeasible solutions: evaluations of feasible solutions are mapped into the interval (�1, 1), and infeasible solutionsinto the interval (1, 1). Individuals are evaluated using [134℄:�tness(~x) = ( f(~x) if feasible1 + r �Pni=1 gi(~x) +Ppj=1 hj(~x)� otherwise (39)f(~x) is s
aled into the interval (�1,1), gi(~x) and hj(~x) are s
aled into the interval (1, 1), and r is a 
onstant.Noti
e that in this approa
h the obje
tive fun
tion and the amount of 
onstraint violation are not 
ombined whenan individual is infeasible (as when using penalty fun
tions).Powell and Skolni
k [134℄ used linear ranking sele
tion [6, 7, 40℄ in su
h a way that at early generations therewould be slow 
onvergen
e, and later on 
onvergen
e 
ould be for
ed by in
reasing the number of 
opies of thehighest ranked individuals.Deb [44℄ proposed more re
ently a similar approa
h in whi
h an individual is evaluated using:�tness(~x) = � f(~x) if gi(~x) � 0; 8i = 1; 2; : : : ; nfworst +Pni=1 gi(~x) otherwise (40)where fworst is the obje
tive fun
tion value of the worst feasible solution in the population, and gi(~x) refers onlyto inequality 
onstraints (Deb transformed equality 
onstraints to inequality 
onstraints using eq. (2)). If there areno feasible solutions in the population, then fworst is set to zero.Using binary tournament sele
tion, Deb applies the following rules to 
ompare two individuals [44℄:1. A feasible solution is always preferred over an infeasible one.2. Between two feasible solutions, the one having a better obje
tive fun
tion value is preferred.3. Between two infeasible solutions, the one having smaller 
onstraint violation is preferred.No penalty fa
tor is required, sin
e the sele
tion pro
edure only performs pairwise 
omparisons. Therefore,feasible solutions have a �tness equal to their obje
tive fun
tion value, and the use of 
onstraint violation in the
omparisons aims to push infeasible solutions towards the feasible region. Due to the fa
t that 
onstraints arenormally non-
ommensurable (i.e., they are expressed in di�erent units), Deb normalized them to avoid any sortof bias toward any of them.The main di�eren
e between these two approa
hes (Powell & Skolni
k's and Deb's) is that the se
ond does notrequire a penalty fa
tor r, be
ause of the pairwise 
omparisons performed during the sele
tion pro
ess. However,Deb's approa
h requires ni
hing to maintain diversity in the population [100℄. This means that in this approa
h thesear
h is fo
used initially on �nding feasible solutions and then uses te
hniques to maintain diversity to approa
hthe optimum.Another similar approa
h 
alled CONGA (COnstraint based Numeri
 Geneti
 Algorithm) was proposed byHinterding and Mi
halewi
z [75℄. The idea is to perform the sear
h in two phases, as S
hoenauer and Xanthakis'behavioral memory algorithm [154℄. In the �rst phase, the sear
h 
on
entrates on �nding feasible individuals(assuming that there is none in the initial population) and the obje
tive fun
tion value is not used (only theinformation about 
onstraint violation of ea
h individual). As the amount of feasible individuals in
reases, thesear
h fo
uses on �ne-tuning the best of them. Hinterding and Mi
halewi
z [75℄ use two sele
tion fun
tions: onethat sele
ts an individual for mutation or the �rst parent for 
rossover (only one operator 
an be applied) usingthe same 
riteria as Deb [44℄ (an individual is randomly 
hosen when there is a tie). The se
ond sele
tion fun
tion�nds a mate for a parent sele
ted with the �rst fun
tion. This se
ond sele
tion fun
tion 
hooses the individualwith the least number of satis�ed 
onstraints in 
ommon with the parent already sele
ted. The idea is to sele
t the19



mate who best \
omplements" the parent previously sele
ted. This mate should satisfy the 
onstraints than the�rst sele
ted parent does not satisfy. Therefore, the aim is that 
rossover will 
reate new individuals who satisfymore 
onstraints than any of their parents. The idea of 
omplementary mat
hing was borrowed from Ronald [148℄,only that in his 
ase, the sele
tion of the se
ond parent did not depend on the �rst one but on a di�erent global
riterion.Advantages and DisadvantagesAlthough some might think that the de�nition of r in Powell and Skolni
k's approa
h introdu
es the traditionalproblems of using a penalty fun
tion, this is not true, sin
e the linear ranking sele
tion s
heme used makes irrelevantthe value of this 
onstant. The approa
h has, however, other problems.The key 
on
ept of this approa
h is the assumption of the superiority of feasible solutions over infeasible ones,and as long as su
h assumption holds, the te
hnique is expe
ted to behave well [134℄. However, in 
ases where theratio between the feasible region and the whole sear
h spa
e is too small (for example, when there are 
onstraintsvery diÆ
ult to satisfy), this te
hnique will fail unless a feasible point is introdu
ed in the initial population [104℄.Deb's results [44℄ are very en
ouraging, but his te
hnique seems to have problems to maintain diversity in thepopulation, and the use of ni
hing methods [45℄ 
ombined with higher than usual mutation rates is apparentlyne
essary to avoid stagnation. Sharing is an expensive pro
ess (O(n2)), and its use introdu
es an extra parameter(�share), whose de�nition is normally determined using an empiri
al pro
edure similar to the one used with theother parameters of an EA (e.g., 
rossover and mutation rates, population size, et
.).Hinterding andMi
halewi
z's approa
h relies on the same assumption as Powell and Skolni
k's te
hnique: feasibleindividuals are always better than infeasible ones. Therefore, it shares its same problems. The other problem withthis approa
h is how to keep diversity in the population, sin
e the tournament sele
tion strategy adopted mightintrodu
e a high sele
tion pressure (e.g., if there is only one feasible individual in the population, it will drive theothers to a possible lo
al optimum). The authors used a very high repla
ement rate (the 97% worst individualsfrom ea
h generation are repla
ed by new individuals, and dupli
ates are not allowed in the population). This triesto keep a large number of infeasible individuals in the population when at least one feasible individual has beenfound, as to de
rease the sele
tion pressure. However, the approa
h still needs further re�nement and validation(it was tested only with �ve ben
hmark fun
tions and 
ompared against GENOCOP II and III).5.3 Behavioral memoryS
hoenauer and Xanthakis [154℄ proposed to extend a te
hnique 
alled behavioral memory, whi
h was originallyproposed for un
onstrained optimization [41℄. The main idea of this approa
h is that 
onstraints are handled in aparti
ular order. The algorithm is the following [154℄:� Start with a random population of individuals� Set j = 1 (j is the 
onstraint 
ounter)� Evolve this population to minimize the violation of the j-th 
onstraint, until a given per
entage of thepopulation (this is 
alled the 
ip threshold �) is feasible for this 
onstraint. In this 
ase�tness(~x) =M � g1(~x) (41)where M is a suÆ
iently large positive number whi
h is dynami
ally adjusted at ea
h generation.� j = j + 1� The 
urrent population is the starting point for the next phase of the evolution, minimizing the violation ofthe j-th 
onstraint, �tness(~x) =M � gj(~x) (42)During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j � 1)-th 
onstraints areeliminated from the population. The 
ondition required to stop this stage of the algorithm is again thesatisfa
tion of the j-th 
onstraint by the 
ip threshold per
entage � of the population.20



� If j < m, repeat the last two steps, otherwise (j = m) optimize the obje
tive fun
tion f reje
ting infeasibleindividuals.The idea of this te
hnique is to satisfy sequentially (one by one) the 
onstraints imposed on the problem. Thisis similar to an approa
h 
alled \lexi
ographi
 ordering" that is used in multiobje
tive optimization [21℄. On
ea 
ertain per
entage of the population (de�ned by the 
ip threshold) satis�es the �rst 
onstraint, an attempt tosatisfy the se
ond 
onstraint (while still satisfying the �rst) will be made. Noti
e that in the last step of thealgorithm, S
hoenauer and Xanthakis [154℄ use death penalty, be
ause infeasible individuals are eliminated fromthe population.Advantages and DisadvantagesThis method requires that there is a linear order of all 
onstraints, and the order in whi
h the 
onstraints arepro
essed in
uen
es the results provided by the algorithm (in terms of total running time and pre
ision a
hieved)[104℄.S
hoenauer and Xanthakis also re
ommended the use of a sharing s
heme (to keep diversity in the population),whi
h adds to the 
ip threshold � and the order of the 
onstraints as extra parameters required by the algorithm.Furthermore, sin
e this approa
h violates the minimum penalty rule [145, 147℄, it has a high 
omputational 
ost(in
reased by the use of sharing to keep diversity in the population). As S
hoenauer and Xanthakis [154℄ admit,the extra 
omputational 
ost of this approa
h is not justi�ed when the feasible region is quite large. However, it isparti
ularly suitable for appli
ations in whi
h 
onstraints have a natural hierar
hy of evaluation, like the problemof generating software test data used by the authors of this te
hnique [154℄.5.4 Multiobje
tive Optimization Te
hniquesThe main idea is to rede�ne the single-obje
tive optimization of f(~x) as a multiobje
tive optimization problemin whi
h we will have m + 1 obje
tives, where m is the total number of 
onstraints. Then, we 
an apply anymultiobje
tive optimization te
hnique [60℄ to the new ve
tor �v = (f(~x); f1(~x); : : : ; fm(~x)), where f1(~x); : : : ; fm(~x)are the original 
onstraints of the problem. An ideal solution ~x would thus have fi(~x)=0 for 1 � i � m andf(~x) � f(~y) for all feasible ~y (assuming minimization).Surry et al. [168, 167℄ proposed the use of Pareto ranking [59℄ and VEGA [151℄ to handle 
onstraints using thiste
hnique. In their approa
h, 
alled COMOGA, the population was ranked based on 
onstraint violations (
ountingthe number of individuals dominated by ea
h solution). Then, one portion of the population was sele
ted basedon 
onstraint ranking, and the rest based on real 
ost (�tness) of the individuals.Parmee and Pur
hase [129℄ implemented a version of VEGA [151℄ that handled the 
onstraints of a gas turbineproblem as obje
tives to allow an EA to lo
ate a feasible region within the highly 
onstrained sear
h spa
e of thisappli
ation. However, VEGA was not used to further explore the feasible region, and instead Parmee and Pur
hase[129℄ opted to use spe
ialized operators that would 
reate a variable-size hyper
ube around ea
h feasible point tohelp the EA to remain within the feasible region at all times.Camponogara & Talukdar [16℄ proposed the use of a pro
edure based on an evolutionary multiobje
tive opti-mization te
hnique. Their proposal was to restate a single obje
tive optimization problem in su
h a way that twoobje
tives would be 
onsidered: the �rst would be to optimize the original obje
tive fun
tion and the se
ond wouldbe to minimize �(~x) = nXi=1 max[0; gi(~x)℄ (43)On
e the problem is rede�ned, non-dominated solutions with respe
t to the two new obje
tives are generated.The solutions found de�ne a sear
h dire
tion d = (xi � xj)=jxi � xjj, where xi 2 Si, xj 2 Sj , and Si and Sj arePareto sets. The dire
tion sear
h d is intended to simultaneously minimize all the obje
tives [16℄. Line sear
h isperformed in this dire
tion so that a solution x 
an be found su
h that x dominates xi and xj (i.e., x is a better
ompromise than the two previous solutions found). Line sear
h takes the pla
e of 
rossover in this approa
h, andmutation is essentially the same, where the dire
tion d is proje
ted onto the axis of one variable j in the solution21



spa
e [16℄. Additionally, a pro
ess of eliminating half of the population is applied at regular intervals (only the less�tted solutions are repla
ed by randomly generated points).Jim�enez and Verdegay [81℄ proposed the use of a min-max approa
h [19℄ to handle 
onstraints. The main ideaof this approa
h is to apply a set of simple rules to de
ide the sele
tion pro
ess:1. If the two individuals being 
ompared are both feasible, then sele
t based on the minimum value of theobje
tive fun
tion.2. If one of the two individuals being 
ompared is feasible and the other one is infeasible, then sele
t the feasibleindividual.3. If both individuals are infeasible, then sele
t based on the maximum 
onstraint violation (max gj(~x); for j =1; : : : ;m, and m is the total number of 
onstraints). The individual with the lowest maximum violation wins.Noti
e the great similarity between this approa
h and the te
hnique proposed by Deb [44℄ that was des
ribedin se
tion 5.2. The main di�eren
e is that in this 
ase, no extra me
hanism is used to preserve diversity in thepopulation.Coello [24℄ proposed the use of a population-based multiobje
tive optimization te
hnique su
h as VEGA [151℄ tohandle ea
h of the 
onstraints of a single-obje
tive optimization problem as an obje
tive. At ea
h generation, thepopulation is split into m+1 sub-populations (m is the number of 
onstraints), so that a fra
tion of the populationis sele
ted using the (un
onstrained) obje
tive fun
tion as its �tness and another fra
tion uses the �rst 
onstraintas its �tness and so on.For the sub-population guided by the obje
tive fun
tion, the evaluation of su
h obje
tive fun
tion for a givenve
tor ~x is used dire
tly as the �tness fun
tion (multiplied by (-1) if it is a minimization problem), with no penaltiesof any sort. For all the other sub-populations, the algorithm used is the following [24℄:if gj(~x) < 0:0 then �tness = gj(~x)else if v 6= 0 then �tness = �velse �tness = f(~x)where gj(~x) refers to the 
onstraint 
orresponding to sub-population j + 1 (this is assuming that the �rst sub-population is assigned to the obje
tive fun
tion f(~x)), and v refers to the number of 
onstraints that are violated(� m).There are a few interesting things that 
an be observed from this pro
edure. First, ea
h sub-population asso
iatedwith a 
onstraint will try to redu
e the amount in whi
h that 
onstraint is violated. If the solution evaluated doesnot violate the 
onstraint 
orresponding to that sub-population, but it is infeasible, then the sub-population willtry to minimize the total number of violations, joining then the other sub-populations in the e�ort of driving theEA to the feasible region. This aims at 
ombining the distan
e from feasibility with information about the numberof violated 
onstraints, whi
h is the same heuristi
 normally used with penalty fun
tions.Finally, if the solution en
oded is feasible, then this individual will be `merged' with the �rst sub-population,sin
e it will be evaluated with the same �tness fun
tion (i.e., the obje
tive fun
tion).It is interesting to noti
e that the use of the un
onstrained obje
tive fun
tion in one of the sub-populationsmay assign good �tness values to infeasible individuals. However, sin
e the number of 
onstraints will normally begreater than one, the other sub-populations will drive the EA to the feasible region. In fa
t, the sub-populationevaluated with the obje
tive fun
tion will be useful to keep diversity in the population, making then unne
essarythe use of sharing te
hniques. The behavior expe
ted under this s
heme is to have few feasible individuals atthe beginning, and then gradually produ
e solutions that may be feasible with respe
t to some 
onstraints butnot with respe
t to others. Over time, these solutions will 
ombine to produ
e individuals that are feasible, butnot ne
essarily optimum. At that point the dire
t use of the obje
tive fun
tion will help the EA to approa
hthe optimum, but sin
e some infeasible solutions will still be present in the population, those individuals will beresponsible to keep the diversity required to avoid stagnation.More re
ently, Coello [23℄ proposed another approa
h based on nondominan
e. In this 
ase, �tness is assignedto an individual using the following algorithm:Let the ve
tor ~xi (i = 1; : : : ; pop size) be an individual in the 
urrent population whose size is pop size. Theproposed algorithm is the following: 22



� To 
ompute the rank of an individual ~xi is feasible, following pro
edure is used:rank(~xi) = 
ount(~xi) + 1 (44)where 
ount(~xi) is 
omputed a

ording to the following rules:1. Compare ~xi against every other individual in the population. Assuming pairwise 
omparisons, we will
all ~xj (j = 1; : : : ; pop size and j 6= i) the other individual against whi
h xi is being 
ompared at anygiven time.2. Initialize 
ount(~xi)(for i = 1; : : : ; pop size) to zero.3. If both ~xi and ~xj are feasible, then both are given a rank of zero and 
ount(~xi) remains without 
hanges.4. If ~xi is infeasible and ~xj is feasible, then 
ount(~xi) is in
remented by one.5. If both ~xi and ~xj are infeasible, but ~xi violates more 
onstraints than ~xj , then 
ount(~xi) is in
rementedby one.6. If both ~xi and ~xj are infeasible, and both violate the same number of 
onstraints, but ~xi has a totalamount of 
onstraint violation larger than the 
onstraint violation of ~xj , then 
ount(~xi) is in
rementedby one.If any 
onstraint gk(~x) (k = 1; : : : ;m, where m is the total amount of 
onstraints) is 
onsidered satis�edif gi(~x) � 0, then, the total amount of 
onstraint violation for an individual ~xi (denoted as 
oef(~xi)) isgiven by: 
oef(~xi) = pXk=1 gk(~xi) for all gk(~xi) > 0 (45)� Compute �tness using the following rules:1. If ~xi is feasible, then rank(~xi) = fitness(~xi), else2. rank(~xi) = 1rank(~xi)� Individuals are sele
ted based on rank(~xi) (sto
hasti
 universal sampling is used).� Values produ
ed by fitness(~xi) must be normalized to ensure that the rank of feasible individuals is alwayshigher than the rank of infeasible ones.This approa
h uses a real-
oded GA with a simple self-adaptive me
hanism for 
rossover and mutation (see[23℄ for details) and it does not require any additional parameters to maintain diversity in the population (as isnormally the 
ase of evolutionary multiobje
tive optimization te
hniques [21℄).Ray et al. [140℄ proposed an approa
h in whi
h solutions are ranked separately based on the value of theirobje
tive fun
tions and their 
onstraints. Then, a set of mating restri
tions are applied based on the informationthat ea
h individual has of its own feasibility (this idea was inspired on an earlier approa
h by Hinterding andMi
halewi
z [75℄), so that the global optimum 
an be rea
hed through 
ooperative learning.Finally, Runarsson & Yao [149℄ proposed a 
onstraint-handling approa
h based on sto
hasti
 ranking that hassome resemblan
e with Surry & Rad
li�e's te
hnique [168℄. In this 
ase, however, the population is ranked using asto
hasti
 version of bubble sort in whi
h individuals are 
ompared to their adja
ent neighbors through a 
ertainnumber of sweeps (this number is probabilisti
ally determined). The approa
h aims to �nd whether the obje
tivefun
tion or the penalty fun
tion is dominanting the sear
h so that an appropriate balan
e 
an be found and theevolutionary algorithm 
an be guided to the global optimum in an eÆ
ient way. The authors used a multi-memberevolution strategy with this approa
h and were able to mat
h (and even improve in some 
ases) the results produ
edby Koziel & Mi
halewi
z [92℄ in the ben
hmark fun
tions of Mi
halewi
z [104℄, at a lower 
omputational 
ost.23



Advantages and DisadvantagesCOMOGA 
ompared fairly with a penalty-based approa
h in a pipe-sizing problem, sin
e the resulting EA wasless sensitive to 
hanges in the parameters. However, the results a
hieved were not better than those found with apenalty fun
tion [167℄. It should be added that COMOGA [168, 167℄ requires several extra parameters, althoughits authors argue that the te
hnique is not parti
ularly sensitive to their values [167℄. This te
hnique uses Paretoranking based on 
onstraint violation [168℄. From Operations Resear
h we know that determining whi
h solutionsin some set are Pareto optimal is a 
omputationally expensive pro
ess (it is O(k �M2), where k is the number ofobje
tives and M is the population size)).Parmee and Pur
hase's [129℄ approa
h was developed for a heavily 
onstrained sear
h spa
e and it proved to beappropriate to rea
h the feasible region. However, this appli
ation of a multiobje
tive optimization te
hnique doesnot aim at �nding the global optimum of the problem, and the use of spe
ial operators suggested by the authors
ertainly limits the appli
ability of their approa
h.Camponogara & Talukdar's approa
h [16℄ has obvious problems to keep diversity (a 
ommon problem whenusing evolutionary multiobje
tive optimization te
hniques [21℄). This is indi
ated by the fa
t that the te
hniquedis
ards the worst individuals at ea
h generation. Also, the use of line sear
h in
reases the 
ost (
omputationallyspeaking) of the approa
h. Finally, it is not 
lear what is the impa
t of the segment 
hosen to sear
h in the overallperforman
e of the algorithm.Jim�enez and Verdegay's approa
h [81℄ 
an hardly be said to be using a multiobje
tive optimization te
hniquesin
e it only ranks infeasible individuals based on 
onstraint violation. A subtle problem with this approa
h is thatthe evolutionary pro
ess �rst 
on
entrates only on the 
onstraint satisfa
tion problem and therefore it samplespoints in the feasible region essentially at random [168℄. This means that in some 
ases (e.g., when the feasibleregion is disjoint) we might land in an inappropriate part of the feasible region from whi
h we will not be able toes
ape. However, this approa
h (as in the 
ase of Parmee and Pur
hase's [129℄ te
hnique) may be a good alternativeto �nd a feasible point in a heavily 
onstrained sear
h spa
e.The main drawba
k of Coello's population-based approa
h [24℄ is the number of sub-populations that maybe needed in larger problems, sin
e they will in
rease linearly with the number of 
onstraints. However, it ispossible to deal with that problem in two di�erent ways: �rst, some 
onstraints 
ould be tied; that means that twoor more 
onstraints 
ould be assigned to the same sub-population. That would signi�
antly redu
e the numberof sub-populations in highly 
onstrained problems. Se
ond, the approa
h 
ould be parallelized, in whi
h 
ase ahigh number of sub-populations would not be a serious drawba
k, sin
e they 
ould be pro
essed 
on
urrently.The 
urrent algorithm would however need modi�
ations as to de
ide the sort of intera
tions between a masterpro
ess (responsible for a
tually optimizing the whole problem) and the slave sub-pro
esses (all the sub-populationsresponsible for the 
onstraints of the problem).Spe
ialists in evolutionary multiobje
tive optimization may indi
ate that VEGA is not a very good 
hoi
ebe
ause of its well-known limitations (it tries to �nd individuals that ex
el only in one dimension regardless ofthe others [151, 60℄). However, that drawba
k turns out to be an advantage in the 
ontext of 
onstraint-handling,be
ause what we want to �nd are pre
isely solutions that are feasible, instead of good 
ompromises that may notsatisfy one of the 
onstraints.Coello's approa
h based on nondominan
e [25℄ tends to perform well. However, as it is normally the 
ase of
onstraint-handling te
hniques based on evolutionary multiobje
tive optimization 
on
epts, this approa
h tendsto generate good trade-o�s that may be more bene�tial in highly 
onstrained sear
h spa
es (sin
e they will allowus to approa
h the feasible region more eÆ
iently). This implies that this approa
h may have more diÆ
ulties torea
h the global optimum eÆ
iently.Ray et al.'s approa
h [140℄ is a promising venue of future resear
h in 
onstraint-handling, sin
e it uses not only
on
epts from multiobje
tive optimization, but it also in
orporates spe
i�
 domain knowledge into the 
onstraint-handling me
hanism of their GA. This makes the approa
h very eÆ
ient (
omputationally speaking) with respe
tto other 
onstraint-handling te
hniques, although there are some sa
ri�
es (as in Coello's approa
h) in terms ofquality of the solutions produ
ed.The approa
h of Runarsson & Yao [149℄ 
onstitutes another promising path of future resear
h in 
onstraint-handling. Their approa
h is eÆ
ient and highly 
ompetitive with other (more sophisti
ated) te
hniques. Its only
urrent drawba
k is the need of a parameter (
alled Pf by the authors of the te
hnique) that de�nes the probability24



of using only the obje
tive fun
tion for 
omparisons in the ranking pro
ess (when lying in the infeasible region).The authors of the te
hnique, however, have provided some guidelines to 
ompute the most appropriate value ofthis parameter1 [149℄.6 Hybrid methodsWithin this 
ategory we are 
onsidering methods that are 
oupled with another te
hnique (normally a numeri
aloptimization approa
h) to handle 
onstraints in an EA.6.1 Lagrangian multipliersAdeli and Cheng [1℄ proposed a hybrid EA that integrates the penalty fun
tion method with the primal-dualmethod. This approa
h is based on sequential minimization of the Lagrangian method, and uses a �tness fun
tionof the form: �tness = f(~x) + 12 mXj=1 
j �[gj(~x) + �j ℄+	2 (46)where 
i > 0, �i is a parameter asso
iated with the ith 
onstraint, and m is the total number of 
onstraints. Also:[gj(~x) + �j ℄+ = max[0; gj(~x) + �j ℄ (47)The proposal of Adeli and Cheng [1℄ was to de�ne �j in terms of the previously registered maximum violationof its asso
iated 
onstraint and s
ale it using a parameter �. This parameter is de�ned by the user and has tobe greater than one. 
j is in
reased using also the parameter �, whose value (kept 
onstant through the entirepro
ess) is multiplied by the previous value adopted for 
j . This is to ensure that the penalty is in
reased overgenerations.This approa
h follows Powell's early proposal [135℄ of 
ombining the penalty fun
tion method with the primaldual method. By using an outer loop we 
an update the Lagrange multiplier �i = 
i�i automati
ally a

ordingto the information obtained in previous iterations. This makes unne
essary that penalty fun
tion 
oeÆ
ients orLagrange multipliers go to in�nity to ensure 
onvergen
e.Additionally, no derivatives of the obje
tive fun
tion or the 
onstraints are required to update the 
oeÆ
ientsused by the Lagrange multipliers [1℄.Kim and Myung [88, 117℄ proposed the use of an evolutionary optimization method 
ombined with an augmentedLagrangian fun
tion that guarantees the generation of feasible solutions during the sear
h pro
ess. This proposalis an extension of a system 
alled Evolian [118, 116℄, whi
h uses evolutionary programming with a multi-phaseoptimization pro
edure in whi
h the 
onstraints are s
aled. During the �rst phase of the algorithm, the obje
tiveis to optimize: �tness(~x) = f(~x) + C2 0� nXi=1(max[0; gi℄)2(~x) + pXj=1 jhj(~x)j21A (48)where C is a 
onstant. On
e this phase is �nished (i.e., on
e 
onstraint violations have been de
reased as mu
has the user wants), the se
ond phase starts. During this se
ond phase, the optimization algorithm of Maa andShanblatt [99℄ is applied to the best solution found during the �rst phase.The se
ond phase uses Lagrange multipliers to adjust the penalty fun
tion a

ording to the feedba
k informationre
eived from the environment during the evolutionary pro
ess, in a way akin to the proposal of Adeli and Cheng[1℄.1The te
hnique also requires another parameter (the number of sweeps to be performed) whi
h, however, 
an be �xed.
25



Advantages and DisadvantagesAdeli and Cheng's te
hnique [1℄ provided them with good results, but the additional parameters needed to makeit work properly do not seem to over
ome the most serious drawba
ks of a traditional penalty fun
tion. Theyinitialize these parameters following Belegundu and Arora's [11℄ re
ommendations, but it is not 
lear what is theimpa
t of these parameters when 
hosen in an arbitrary manner.The main drawba
k of Kim and Myung's approa
h [88, 117℄ is the same as before: despite the fa
t that theyprovide more guidelines regarding the de�nition of some of the extra parameters needed by their pro
edure, thereare still several values that have to be adjusted using an empiri
al pro
edure.6.2 Constrained optimization by random evolutionBelur [12℄ proposed a hybrid te
hnique 
alled Constrained Optimization by Random Evolution (CORE). The mainidea of this approa
h is to use random evolutionary sear
h 
ombined with a mathemati
al programming te
hniquefor un
onstrained optimization (the author used the Nelder and Mead's simplex method [120℄, but any othersimilar te
hnique should work as well). Whenever a solution is not feasible, the following 
onstraint fun
tional isminimized: C(~x) = Xi2C1 h2i (~x)� Xj2C2 gj(~x) (49)where C1 = fi = 1; : : : ; n=jhi(~x)j > "
g (50)C2 = fj = 1; : : : ; q=gj(~x) < 0g (51)and "
 is the toleran
e allowed in the equality 
onstraints hi(~x).Advantages and DisadvantagesThis minimization pro
ess 
an be seen as a repair algorithm for numeri
al optimization, whi
h implies that thiste
hnique has the same problems of the repair algorithms des
ribed in se
tion 4.6.3 Fuzzy logi
T. Van Le [95℄ proposed a 
ombination of fuzzy logi
 and evolutionary programming to handle 
onstraints. Themain idea was to repla
e 
onstraints of the form gi(~x) � bi by a set of fuzzy 
onstraints C1; : : : ; Cm, i = 1; : : : ;mde�ned as: �Ci(~x) = ��(bi;�i)(gi(~x)); i = 1; : : : ;m (52)where �i is a positive real number that represents the tolerable violation of the 
onstraints, and:��(a;s)(~x) = 8><>: 1 if x � a;e�p( x�as )2�e�p1�e�p if a < x � a+ s0 if x > a+ s (53)The rationale behind this fuzzi�
ation pro
ess is to allow a higher degree of toleran
e if gi(~x) is (greater than bibut) 
lose to bi and then the toleran
e de
reases rapidly when the error in
reases.The �tness fun
tion is then rede�ned as:�tness(~x) = f(~x)�min(�C1 (~x); : : : ; �Cm(~x)) (54)26



Advantages and DisadvantagesThe idea of using degrees of 
onstraint satisfa
tion as weight fa
tors for the �tness of potential solutions is interestingand the use of fuzzy logi
 to determine the a

eptability of a 
ertain solution seems a natural way of pro
essing
onstraints. However, the main problem with this approa
h is that it requires the de�nition of �i (the tolerableviolation of 
onstraints) and p for ea
h parti
ular problem. Furthermore, Van Le provides very little empiri
aleviden
e of the performan
e of his te
hnique, although this is 
ertainly a resear
h path that is worth exploring.6.4 Immune systemForrest and Perelson [61℄ and Smith et al. [163, 164℄ explored the use of a 
omputational model of the immunesystem in whi
h a population of antibodies is evolved to 
over a set of antigens. In this proposal, binary stringswere proposed to model both antibodies and antigens, and an antibody was said to mat
h an antigen if their bitstrings were 
omplementary (maximally di�erent).Although Smith el al. [163, 164℄ proposed this approa
h as a way to keep diversity in multimodal optimizationproblems, Hajela and Lee [70, 71℄ extended it to handle 
onstraints.The algorithm proposed by Hajela and Lee is the following [70℄:1. Generate a random population. Compute obje
tive fun
tion values and a 
umulative measure of 
onstraintviolation.2. Separate feasible and infeasible individuals. Rank individuals within ea
h group based on their obje
tivefun
tion values. Compute an average obje
tive fun
tion value of a subset of feasible individuals.3. Choose a number of feasible individuals with obje
tive fun
tion value 
losest to the average value 
omputedin the previous step. Sort these individuals. They are 
alled the antigen population.4. Infeasible individuals are subje
t to an immune system simulation, generating antibodies to the antigenpopulation of the previous step. This simulation yields a subpopulation of designs with a redu
tion in thelevel of 
onstraint violations.5. Condu
t a traditional simulation of an EA with the obje
tive fun
tion as the only measure of �tness. Thepopulation is seeded with all 
urrently feasible individuals from step 2), and enough 
opies of 
onstraint
onditioned individuals obtained in step 4). Several approa
hes are possible to introdu
e these 
onstraint
onditioned individuals. Hajela and Lee used two: a) introdu
e multiple 
opies of the best 
onstraint 
on-ditioned individual, and b) introdu
e multiple 
opies, drawn at random from the best 25% of 
onstraint
onditioned individuals.The immune system simulation 
onsists of using a simple mat
hing fun
tion that 
omputes the similarity (ona bit-per-bit basis, assuming binary en
oding) between two 
hromosomes. Then, the population of antibodies is
o-evolved until they be
ome suÆ
iently similar to their antigens by maximizing their degree of mat
hing.The idea is to adapt infeasible solutions to the 
urrent feasible individuals. The performan
e of the approa
hdepends on the sele
tion of antibodies (infeasible individuals) that are exposed to the antigens during the simulation.There are several 
hoi
es. For example, all the infeasible individuals 
ould be in
luded in the antibody group that isexposed to the antigens from step 3). In this 
ase, we would try to adapt infeasible individuals to the 
hara
teristi
sof the average feasible population. Another approa
h 
ould be to use only those infeasible individuals that are
lose to the average obje
tive fun
tion value of the antigen population. Su
h an approa
h would be based on thepremise that individual features that determine obje
tive fun
tion value are similar for the antibodies and antigens.Therefore the antibodies would inherit those features from the antigens that promote 
onstraint satisfa
tion [70, 71℄.A simpler instan
e of this te
hnique, 
alled expression strategies was proposed by Hajela and Yoo [72℄. Inthis 
ase, feasible and infeasible individuals are 
ombined using uniform 
rossover [169℄ in su
h a way that their
hromosomi
 material is ex
hanged.It is worth mentioning that Hajela and Yoo [72℄ proposed the use of the Kreisselmeir-Steinhauser fun
tion [165℄to handle equality 
onstraints. The idea is that if hi(~x) is the ith equality 
onstraint, then it 
an be representedby a pair of inequality 
onstraints as: 27



hi(~x) � 0 � hi(~x) � 0 (55)The Kreisselmeir-Steinhauser fun
tion 
an then be used to fold these 
onstraints into a 
umulative measure 
:
 = (1=�) ln(e�hi(~x) + e��hi(~x))� (1=�) ln 2 + 
1 (56)where 
1 represents the width of a band that repla
es the original stri
t equaliy 
onstraint, and � is a user-de�ned
onstant that s
ales the amount of 
onstraint violation (� must take a non-zero non-negative value). As � grows,the s
aling fa
tor be
omes one (i.e., there is no s
aling of the 
onstraint violation). If the equality 
onstraint hi(~x)is satis�ed, then hi(~x) = 0, and thus 
 = 
1. By redu
ing 
1 the solutions are for
ed to move 
loser to the equality
onstraint. Therefore, we 
an see 
1 as a toleran
e value. The idea then, is to repla
e 
onstraints of the formhi(~x) = 0, by 
onstraints of the form 
 � 
1.Advantages and DisadvantagesSin
e the bit mat
hing pro
ess used by this approa
h does not require evaluating the �tness fun
tion, its 
ompu-tational 
ost is not really signi�
ant. However, some other issues remain to be solved. For example, it is not 
learwhat is the e�e
t (in terms of performan
e) of mixing di�erent proportions of ea
h population (antibodies andantigens). It is also un
lear what is the behavior of the algorithm when there are no feasible individuals in theinitial population.The underlying assumption of this approa
h might rise some 
ontroversy: by making the genotype of an infeasibleindividual more similar to the genotype of a feasible individual we 
an a
tually de
rease its amount of 
onstraintviolation. Smith et al. [164℄ provide some theoreti
al analysis regarding the expe
ted �tness of an individualwhen either perfe
t or partial mat
hing is required. However, their work was done in the 
ontext of �tness sharing(where the emphasis is to keep diversity in the population), and is not ne
essarily appli
able to 
onstraint handling.Therefore, the only support to this hypothesis are the empiri
al results reported by Hajela and Lee [70, 71℄.Finally, although it is always possible to 
ompute genotypi
 distan
es regardless of the en
oding used by theEA, it is not entirely 
lear if it is possible to use this approa
h with non-binary representations.6.5 Cultural algorithmsSome so
ial resear
hers have suggested that 
ulture might be symboli
ally en
oded and transmitted within andbetween populations, as another inheritan
e me
hanism [49, 141℄. Using this idea, Reynolds [142℄ developed a
omputational model in whi
h 
ultural evolution is seen as an inheritan
e pro
ess that operates at two levels: themi
ro-evolutionary and the ma
ro-evolutionary levels.At the mi
ro-evolutionary level, individuals are des
ribed in terms of \behavioral traits" (whi
h 
ould be so
iallya

eptable or una

eptable). These behavioral traits are passed from generation to generation using several so
iallymotivated operators. At the ma
ro-evolutionary level, individuals are able to generate \mappa" [141℄, or generalizeddes
riptions of their experien
es. Individual mappa 
an be merged and modi�ed to form \group mappa" using aset of generi
 or problem spe
i�
 operators. Both levels share a 
ommuni
ation link.Reynolds [142℄ proposed the use of geneti
 algorithms to model the mi
ro-evolutionary pro
ess, and VersionSpa
es [112℄ to model the ma
ro-evolutionary pro
ess of a 
ultural algorithm.The main idea behind this approa
h is to preserve beliefs that are so
ially a

epted and dis
ard (or prune)una

eptable beliefs. The a

eptable beliefs 
an be seen as 
onstraints that dire
t the population at the mi
ro-evolutionary level [103℄. Therefore, 
onstraints 
an in
uen
e dire
tly the sear
h pro
ess, leading to an eÆ
ientoptimization pro
ess. In fa
t, Reynolds et al. [143℄ and Chung & Reynolds [20℄ have explored this area ofresear
h with very en
ouraging results in numeri
al optimization. A 
ultural algorithm models the evolution ofthe 
ulture 
omponent of an evolutionary 
omputational system over time. This 
ulture 
omponent provides anexpli
it me
hanism for a
quisition, storage and integration of individual and group's problem solving experien
e andbehavior [82℄. In 
ontrast, traditional EAs only use impli
it me
hanisms for representing and storing individual'sglobal a
quired knowledge, whi
h is passed from generation to generation.The approa
h taken by Chung and Reynolds [20℄ was to use a hybrid of evolutionary programming and GENO-COP [107℄ in whi
h they in
orporated an interval 
onstraint-network [38, 80℄ to represent the 
onstraints of the28



problem at hand. An individual is 
onsidered as \a

eptable" when it satis�es all the 
onstraints of the problem.When that does not happen, then the belief spa
e is adjusted (the intervals asso
iated with the 
onstraints areadjusted). This approa
h is really a more sophisti
ated version of a repair algorithm in whi
h an infeasible solutionis made feasible by repla
ing its genes by a di�erent value between its lower and upper bounds. Sin
e GENOCOPassumes a 
onvex sear
h spa
e, it is relatively easy to design operators that 
an exploit a sear
h dire
tion towardsthe boundary between the feasible and infeasible regions.In more re
ent work, Jin and Reynolds [82℄ proposed an n-dimensional regional-based s
hema, 
alled belief-
ell, as an expli
it me
hanism that supports the a
quisition, storage and integration of knowledge about non-linear 
onstraints in a 
ultural algorithm. This belief-
ell 
an be used to guide the sear
h of an EA (evolutionaryprogramming in this 
ase) by pruning the instan
es of infeasible individuals and promoting the exploration ofpromising regions of the sear
h spa
e. The key aspe
t of this work is pre
isely how to represent and save theknowledge about the problem 
onstraints in the belief spa
e of the 
ultural algorithm.The idea of Jin and Reynolds' approa
h is to build a map of the sear
h spa
e similar to the \Divide-and-Label"approa
hes used for robot motion planning [94℄. This map is built using information derived from evaluating the
onstraints of ea
h individual in the population of the EA. The map is formed by dividing the sear
h spa
e insub-areas 
alled 
ells. Ea
h 
ell 
an be 
lassi�ed as: feasible (if it lies 
ompletely on a feasible region), infeasible (ifit lies 
ompletely on an infeasible region), semi-feasible (if it o

upies part of the feasible and part of the infeasibleregions), or unknown (if that region has not been explored yet). This map is used to derive rules about how toguide the sear
h of the EA (avoiding infeasible regions and promoting the exploration of feasible regions). In otherwords, these 
ells are used to form a \navigation map" for the EA.Advantages and DisadvantagesThis approa
h presents an interesting hybrid of knowledge-based approa
hes and evolutionary 
omputation te
h-niques. However, it does not require the expli
it de�nition of rules by the user, sin
e the algorithm is able to learnits own rules over time. The approa
h has been re�ned in the last few years, and proposals su
h as the one 
on-tained in Jin and Reynolds' paper [82℄ are appli
able even to problems with disjoint feasible regions (normally quitediÆ
ult for most 
onstraint-handling te
hniques). However, the te
hnique requires more re�nement and validation.For example, in Jin and Reynolds' paper, only one test fun
tion was used. Also, they had to experiment withdi�erent strategies to update the 
onstraint knowledge of the problem. The other issue that deserves 
onsiderationis the eÆ
ien
y of the method. Jin and Reynolds' do not dis
uss the 
omputation 
ost of building belief maps inthe presen
e of non-linear optimization 
onstraints, and their approa
h might be sensitive to high dimensionality.6.6 Ant 
olony optimizationThis te
hnique was proposed by Dorigo et al. [30, 48, 47, 46℄ and it 
onsists of a meta-heuristi
 intended for hard
ombinatorial optimization problems su
h as the traveling salesperson. The main algorithm is really a multi-agentsystem where low level intera
tions between single agents (i.e., arti�
ial ants) result in a 
omplex behavior of thewhole ant 
olony. The idea was inspired by 
olonies of real ants, whi
h deposit a 
hemi
al substan
e on the ground
alled pheromone [46℄. This substan
e in
uen
es the behavior of the ants: they will tend to take those paths wherethere is a larger amount of pheromone.Re
ently, some resear
hers [13, 173℄ have extended this te
hnique to numeri
al optimization problems, with verypromising results. The main issue when extending the basi
 approa
h to deal with 
ontinuous sear
h spa
es is howto model a 
ontinuous nest neighborhood with a dis
rete stru
ture. Bil
hev and Parmee [14℄ for example, proposedto represent a �nite number of dire
tions whose origin is a 
ommon base point 
alled the nest. Sin
e the idea is to
over eventually all the 
ontinuous sear
h spa
e, these ve
tors evolve over time a

ording to the �tness values ofthe ants.To handle 
onstraints, Bil
hev and Parmee [13, 14℄ proposed to make a food sour
e \una

eptable" in 
aseit violated a 
onstraint regardless of the value of its obje
tive fun
tion (i.e., death penalty). As evolution pro-gresses, some food sour
es that were a

eptable before, will vanish, as 
onstraints are tightened (i.e., the amountof \a

eptable" 
onstraint violation is de
reased). 29



To make this model e�e
tive, three di�erent levels of abstra
tion were 
onsidered: (a) the individual sear
hagent (the lowest level in whi
h any lo
al sear
h te
hnique 
ould be used), (b) the 
ooperation between agents (themiddle level, whi
h 
onsists of a joint sear
h e�ort in a 
ertain dire
tion), and (
) the meta-
ooperation betweenagents (the highest level, whi
h determines 
ooperation among di�erent paths rather than just among di�erentindividuals).The results obtained by Bil
hev & Parmee [13, 14℄ were very en
ouraging and showed 
learly the high potentialof this te
hnique in multimodal and/or heavily 
onstrained sear
h spa
es.Advantages and DisadvantagesThe �rst drawba
k of this approa
h is that it needs several parameters to work: �rst, an additional pro
edurehas to be used to lo
ate the nest (Bil
hev and Parmee [13℄ suggest the use of a ni
hing EA), whi
h implies extra
omputational e�ort. Se
ond, it requires a sear
h radius R, whi
h de�nes the portion of the sear
h spa
e that willbe explored by the ants and has an obvious impa
t on the performan
e of the algorithm. Third, it is ne
essaryto provide a model for the exhaustion of the food sour
e to avoid that the ants pass through the same (alreadyexhausted) path more than on
e.Finally, it is ne
essary to be very 
areful about the equilibrium between lo
al and global exploration, be
ausein some 
ases (e.g., highly multimodal lands
apes), too mu
h CPU time 
ould be spent in lo
al sear
hes.7 Some Experimental ResultsTo have an idea of the di�eren
es among some of the te
hniques dis
ussed in this paper, we have 
ondu
ted asmall experimental study in whi
h we implemented and tested six di�erent penalty-based approa
hes 
oupled to ageneti
 algorithm and an approa
h based on nondominan
e. The te
hniques sele
ted are the following:� Stati
 penalty [78℄ (see Se
tion 2.1)� Dynami
 penalty [83℄ (see Se
tion 2.2)� Annealing penalty [105℄ (see Se
tion 2.3)� Adaptive penalty [10, 69℄ (see Se
tion 2.4)� Death penalty (see Se
tion 2.7)� Co-evolutionary penalty [25℄ (see Se
tion 2.5)� Use of nondominan
e [23℄ (see Se
tion 5.4)Additionally, we will 
ompare results against those found by other resear
hers using mathemati
al programmingte
hniques and/or other types of GAs.The �rst �ve penalty-based approa
hes previously indi
ated are representative of the te
hniques most 
ommonlyused in the standard literature on evolutionary optimization. The sixth and seventh approa
hes are proposals ofthe author. The 
o-evolutionary penalty uses two nested GAs so that one tries to adjust the penalty fa
tors thatthe other one uses to optimize the obje
tive fun
tion. The last approa
h (whi
h we will denote as MGA, formultiobje
tive geneti
 algorithm) was proposed as an alternative to the manual �ne tuning of the penalty fa
tors.This last approa
h 
onsists of a real-
oded GA with arithmeti
al 
rossover [104℄, non-uniform mutation, elitism,tournament sele
tion, and a simple self-adaptation me
hanism for de�ning the 
rossover and mutation rates alongthe evolutionary pro
ess (see [23℄ for details).All the penalty-based approa
hes indi
ated above (ex
ept for the 
o-evolutionary penalty) were implementedusing a GA with binary representation, two-point 
rossover, tournament sele
tion, and uniform mutation. The
o-evolutionary penalty was implemented using a GA with �xed point representation [26℄, uniform 
rossover andnon-uniform mutation [104℄.Three test fun
tions were sele
ted to perform our small 
omparative study. Their 
orresponding des
riptiontogether with our 
omparison of results follows. 30



7.1 Example 1 : Himmelblau's Nonlinear Optimization ProblemThis problem was originally proposed by Himmelblau [74℄, and it has been used before as a ben
hmark for severalother GA-based te
hniques that use penalties [64℄. In this problem, there are �ve design variables (x1; x2; x3; x4; x5),6 nonlinear inequality 
onstraints and ten boundary 
onditions. The problem 
an be stated as follows:Minimize f(~x) = 5:3578547x23+ 0:8356891x1x5 + 37:293239x1 � 40792:141 (57)Subje
t to: g1(~x) = 85:334407+ 0:0056858x2x5 + 0:00026x1x4 � 0:0022053x3x5 (58)g2(~x) = 80:51249+ 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 (59)g3(~x) = 9:300961+ 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 (60)0 � g1(~x) � 92 (61)90 � g2(~x) � 110 (62)20 � g3(~x) � 25 (63)78 � x1 � 102 (64)33 � x2 � 45 (65)27 � x3 � 45 (66)27 � x4 � 45 (67)27 � x5 � 45 (68)The 
omparison of results for several 
onstraint-handling approa
hes for the �rst example are shown in Tables 1and 2. This problem was originally solved using the Generalized Redu
ed Gradient method (GRG) [74℄. Gen andCheng [64℄ solved this problem using a geneti
 algorithm based on both lo
al and global referen
e (they used apopulation size of 400 individuals, a 
rossover rate of 0.8, and a mutation rate of 0.0882). The solutions reportedfor the penalty-based approa
hes (stati
 penalty, dynami
 penalty, annealing penalty, adaptive penalty and deathpenalty) in Table 1 were produ
ed after performing 30 runs, using the following parameters: population size =50, 
rossover rate = 0.8, mutation rate = 0.005, maximum number of generations = 100. Spe
i�
 parameters forthe dynami
 penalty are: C = 0:5, � = � = 2:0 (equation (12) was used to assign �tness). Spe
i�
 parametersfor annealing penalties are: �0 = 1:0, �f = 0:000001, and � is updated every 20 generations (equation (18) is usedto assign �tness). Spe
i�
 parameters for the adaptive penalty are: �1 = 1:0, �2 = 2:0, k = 20, �(0) = 100:0(equation (24) is used to assign �tness). For the stati
 penalty, lo
al and global penalty fa
tors were de�ned asindi
ated by Homaifar et al. for this example [p. 253℄[78℄.The 
o-evolutionary penalty used the following parameters: 
rossover rate = 0.8, initial mutation rate = 0.1,Pop size1 = 60, Pop size2 = 30, Gmax1 = 25, Gmax2 = 20.The solutions shown for the MGA were produ
ed after performing 30 runs, and using the following parameters:population size = 50, and maximum number of generations = 100 (
rossover and mutation rates were obtainedthrough self-adaptation along the evolutionary pro
ess).As expe
ted, the death penalty, whi
h does not use any 
onstraint-violation information, had a poorer perfor-man
e than the other GA-based approa
hes. Also, the dynami
 penalty approa
h was better than a stati
 penalty,and there was not mu
h di�eren
e between using an adaptive penalty fun
tion and the dynami
 penalty suggestedby Joines & Hou
k [83℄. The annealing penalty, however, had a poorer performan
e than the dynami
 and adaptivepenalties.2The maximum number of generations used is unknown. 31



Results MGA [23℄ Gen [64℄ stati
 penalty [78℄ GRG [74℄ 
o-evolutionary penalty [25℄Best -31005.7966 -30183.576 -30790.27159 -30373.949 -31020.859Mean -30862.8735 N=A -30446.4618 N=A -30984.2407Worst -30721.0418 N=A -29834.3847 N=A -30792.4077Std. dev. 73.240 N=A 226.3428 N=A 73.6335Table 1: Comparison of several 
onstraint-handling te
hniques for the �rst example (Himmelblau's fun
tion)(N=A= Not Available)(PART I).Results dynami
 [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest -30903.877 -30829.201 -30903.877 -30790.271Mean -30539.9156 -30442.126 -30448.007 -30429.371Worst -30106.2498 -29773.085 -29926.1544 -29834.385Std. dev. 200.035 244.619 249.485 234.555Table 2: Comparison of several 
onstraint-handling te
hniques for the �rst example (Himmelblau's fun
-tion)(PART II).The best approa
hes were the 
o-evolutionary penalty and the MGA, with the �rst reporting slightly betterresults than the se
ond. Note however that while all penalty-based approa
hes and the MGA performed only5,000 �tness fun
tion evaluations, the 
o-evolutionary penalty te
hnique performed a 
onsiderably higher numberof �tness fun
tion evaluations (900,000). One of the main advantages of the MGA is that no �ne-tuning of thepenalty fa
tors are required. The 
o-evolutionary penalty also presents this advantage, but its use implies asigni�
antly higher 
omputational 
ost.Also, note that the other penalty-based approa
hes 
an provide better results if some �ne-tuning of their param-eters (in
luding their penalty fa
tors) takes pla
e. Finally, it should be 
lear from these results that all GA-basedapproa
hes performed better than the mathemati
al programming te
hnique used in this 
ase (GRG).7.2 Example 2 : Welded Beam DesignA welded beam is designed for minimum 
ost subje
t to 
onstraints on shear stress (�), bending stress in the beam(�), bu
kling load on the bar (P
), end de
e
tion of the beam (Æ), and side 
onstraints [138℄. There are four designvariables as shown in Figure 1 [138℄: h (x1), l (x2), t (x3) and b (x4).The problem 
an be stated as follows:Minimize: f(~x) = 1:10471x21x2 + 0:04811x3x4(14:0 + x2) (69)
b

b

P

l

L

t

h

Figure 1: The welded beam used for the se
ond example.32
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Figure 2: Center and end se
tion of the pressure vessel used for the �rst example.Subje
t to : g1(~x) = �(~x)� �max � 0 (70)g2(~x) = �(~x)� �max � 0 (71)g3(~x) = x1 � x4 � 0 (72)g4(~x) = 0:10471x21 + 0:04811x3x4(14:0 + x2)� 5:0 � 0 (73)g5(~x) = 0:125� x1 � 0 (74)g6(~x) = Æ(~x)� Æmax � 0 (75)g7(~x) = P � P
(~x) � 0 (76)where �(~x) =r(� 0)2 + 2� 0� 00 x22R + (� 00)2 (77)� 0 = Pp2x1x2 ; � 00 = MRJ ;M = P �L+ x22 � (78)R =sx224 +�x1 + x32 �2 (79)J = 2(p2x1x2 "x2212 +�x1 + x32 �2#) (80)�(~x) = 6PLx4x23 ; Æ(~x) = 4PL3Ex33x4 (81)P
(~x) = 4:013Eqx23x6436L2  1� x32Lr E4G! (82)P = 6000 lb; L = 14 in; Æmax = 0:25 inE = 30� 106 psi; G = 12� 106 psi�max = 13; 600 psi; �max = 30; 000 psi33



Results MGA [23℄ Deb [42℄ Siddall [158℄ Ragsdell [137℄ 
o-evolutionary penalty [25℄Best 1.8245 2.4331 2.3815 2.3859 1.7483Mean 1.9190 N=A N=A N=A 1.7720Worst 1.9950 N=A N=A N=A 1.7858Std. dev. 0.05377 N=A N=A N=A 0.01122Table 3: Comparison of several 
onstraint-handling te
hniques for the se
ond example (welded beam)(N=A = NotAvailable)(PART I).Results stati
 [78℄ dynami
 [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest 2.0469 2.1062 2.0713 1.9589 2.0821Mean 2.9728 3.1556 2.9533 2.9898 3.1158Worst 4.5741 5.0359 4.1261 4.84036 4.5138Std. dev. 0.6196 0.7006 0.4902 0.6515 0.6625Table 4: Comparison of several 
onstraint-handling te
hniques for the se
ond example (welded beam)(PART II).For this example, we used the same parameters for all the approa
hes, ex
ept the stati
 penalty, for whi
h weused a value of 50.0 for all 
ases (lo
al and global penalty fa
tors).The 
omparison of results for several 
onstraint-handling approa
hes for the se
ond example are shown in Tables 3and 4. This problem has been solved before by Deb [42℄ using a simple geneti
 algorithm with binary representation,and a traditional penalty fun
tion as suggested by Goldberg [67℄, and by Ragsdell and Phillips [137℄ using geometri
programming. Ragsdell and Phillips also 
ompared their results with those produ
ed by the methods 
ontainedin a software pa
kage 
alled \Opti-Sep" [158℄, whi
h in
ludes the following numeri
al optimization te
hniques:ADRANS (Gall's adaptive random sear
h with a penalty fun
tion), APPROX (GriÆth and Stewart's su

essivelinear approximation), DAVID (Davidon-Flet
her-Powell with a penalty fun
tion), MEMGRD (Miele's memorygradient with a penalty fun
tion), SEEK1 & SEEK2 (Hooke and Jeeves with two di�erent penalty fun
tions),SIMPLX (Simplex method with a penalty fun
tion) and RANDOM (Ri
hardson's random method). In the 
ase ofSiddall's te
hniques [158℄, only the best solution produ
ed by the te
hniques 
ontained in \Opti-Sep" is displayed.In this 
ase, the results were somewhat more surprising. The dead penalty turned out to be better than thedynami
 penalty. This may due to the use of an inappropriate penalty fa
tor, but it illustrates well the idea of whythe �ne tuning of the penalty fa
tors be
omes an important issue when using penalty-based 
onstraint-handlingte
hniques. Regarding the other approa
hes, the use of a stati
 penalty was again no better than using an adaptivepenalty or a death penalty. However, the stati
 penalty was better than the annealing penalty in this example.This is due to an inappropriate 
ooling s
hedule for the annealing penalty. The best results were produ
ed by the
o-evolutionary penalty (even its worst results was better than the best result of the MGA). Note however that the
omputational 
ost of this te
hnique remains signi�
antly higher (900,000 �tness fun
tion evaluations vs. 5,000 ofthe other approa
hes). On
e again, all the mathemati
al programming te
hniques provided mu
h poorer resultsthan any of the GA-based approa
hes.7.3 Example 3 : Design of a Pressure VesselA 
ylindri
al vessel is 
apped at both ends by hemispheri
al heads as shown in Figure 2. The obje
tive is tominimize the total 
ost, in
luding the 
ost of the material, forming and welding. There are four design variables:Ts (thi
kness of the shell), Th (thi
kness of the head), R (inner radius) and L (length of the 
ylindri
al se
tion of thevessel, not in
luding the head). Ts and Th are integer multiples of 0.0625 in
h, whi
h are the available thi
knessesof rolled steel plates, and R and L are 
ontinuous. Using the same notation given by Kannan and Kramer [84℄, theproblem 
an be stated as follows: 34



Results MGA [23℄ Deb [43℄ Kannan [84℄ Sandgren [150℄ 
o-evolutionary penalty [25℄Best 6069.3267 6410.3811 7198.0428 8129.1036 6288.7445Mean 6263.7925 N=A N=A N=A 6293.8432Worst 6403.4500 N=A N=A N=A 6308.1497Std. dev. 97.9445 N=A N=A N=A 7.4133Table 5: Comparison of several 
onstraint-handling te
hniques for the third example (pressure vessel)(N=A = NotAvailable)(PART I).Results stati
 [78℄ dynami
 [83℄ annealing [105℄ adaptive [10, 69℄ death penaltyBest 6110.8117 6213.6923 6127.4143 6110.8117 6127.4143Mean 6656.2616 6691.5606 6660.8631 6689.6049 6616.9333Worst 7242.2035 7445.6923 7380.4810 7411.2532 7572.6591Std. dev. 320.8196 322.7647 330.7516 330.4483 358.8497Table 6: Comparison of several 
onstraint-handling te
hniques for the third example (pressure vessel)(PART II).Minimize : f(~x) = 0:6224x1x3x4 + 1:7781x2x23 + 3:1661x21x4 + 19:84x21x3 (83)Subje
t to : g1(~x) = �x1 + 0:0193x3 � 0 (84)g2(~x) = �x2 + 0:00954x3 � 0 (85)g3(~x) = ��x23x4 � 43�x33 + 1; 296; 000 � 0 (86)g4(~x) = x4 � 240 � 0 (87)The 
omparison of results for several 
onstraint-handling approa
hes for the se
ond example are shown in Tables 5and 6. This problem has been solved before by Deb [43℄ using GeneAS (Geneti
 Adaptive Sear
h), by Kannan andKramer using an augmented Lagrangian Multiplier approa
h [84℄, and by Sandgren [150℄, using Bran
h & Bound.All the penalty-based te
hniques (ex
ept for the 
o-evolutionary penalty that kept the same parameters indi
atedbefore) used a population size of 500 and a maximum number of generations of 5,000 for this example. This
hange was required so that these approa
hes 
ould provide 
ompetitive results (the population size and maximumnumber of generations were empiri
ally determined). All their other parameters remained the same (lo
al andglobal penalties were de�ned with a value of 50 for the stati
 penalty approa
h, as in the previous example). Forthe MGA, we only extended the maximum number of generations to 1,000 (using the same population size of 50,as before).This example illustrates how the use of penalty-based approa
hes is highly dependant on the problem at hand.Despite the fa
t that all the penalty-based approa
hes performed 2; 500; 000 �tness fun
tion evaluations (ex
ept forthe 
o-evolutionary penalty approa
h that performed 900; 000 evaluations, as before), they were not able to mat
hthe results of the dominan
e-based approa
h (MGA), whi
h only performed 50; 000 �tness fun
tion evaluations.Note that the 
o-evolutionary penalty approa
h did not perform very well in this example, mainly due to its 
hoi
eof parameters (allowing a larger number of �tness fun
tion evaluations 
ould slightly improve its performan
e).Again, the mathemati
al programming te
hniques produ
ed poorer results than any of the GA-based approa
hes.8 Some Re
ommendationsHaving su
h a wide variety of possible te
hniques to handle 
onstraints in evolutionary optimization may beoverwhelming for a new
omer. However, as suggested by our small 
omparative study, even the simple use of a35



death penalty may be suÆ
ient in some appli
ations, if nothing about the problem is known. Our suggestion forbeginners in the use of evolutionary algorithms is therefore to use penalty-based approa
hes �rst (maybe a simplestati
 or dynami
 penalty approa
h), sin
e they are the easiest to implement and are also quite eÆ
ient. Lateron, and depending on the appli
ation at hand, other te
hniques may be desirable. For example, if a 
ombinatorialoptimization problem has to be solved, then repair algorithms (see Se
tion 4) may be the best 
hoi
e. If dealingwith linear 
onstraints, then the use of spe
ial representations and operators (see Se
tion 3) may be
ome ne
essary.If dealing with highly 
onstrained sear
h spa
es, then the use of te
hniques that separate 
onstraints and obje
tives(see Se
tion 5) may be useful. If something about the problem is known, or if there is a need of saving time �netuning the penalty fa
tors of a penalty fun
tion of any type, then one 
an 
onsider the use of approa
hes su
has those dis
ussed in Se
tion 5.4 or in Se
tion 6. More sophisti
ated te
hniques are normally reserved for more
omplex problems in whi
h the results found by penalty-based approa
hes are far from satisfa
tory, or when the
omputational 
osts related to these te
hniques are too high.Also, it is important to add that most of the 
omparative studies of 
onstraint-handling te
hniques reported inthe literature are in
on
lusive. Whereas some te
hnique may perform better in a 
ertain 
lass of fun
tions (e.g.,nonlinear optimization problems), it will tend to be inferior in a di�erent domain (e.g., 
ombinatorial optimization).Despite the goal of generality that should 
hara
terize new 
onstraint-handling te
hniques, it is known that be
auseof the No Free-Lun
h Theorems [174℄, it is expe
ted that the best 
onstraint-handling te
hniques for a 
ertain typeof problems will tend to exploit spe
i�
 domain knowledge.9 Con
lusions and future resear
h pathsIn this paper we have given a very 
omprehensive review of the most important 
onstraint-handling te
hniquesdeveloped for evolutionary algorithms. We reviewed a wide variety of te
hniques that go from several variationsof a simple penalty fun
tion to biologi
ally inspired te
hniques that emulate the behavior of the immune system,
ulture, or ant 
olonies. However, there is still plenty of room for new te
hniques and more resear
h in this area.For example, regarding the development of new approa
hes, the following issues deserve spe
ial attention:� Generality. Ideally, the same 
onstraint-handling approa
h should work with any kind of problem and
onstraints. If modi�
ations are required, they should be minor. There are several approa
hes su
h asde
oders and the use of spe
ial representations, that depend on 
ertain 
hara
teristi
s of the problem and
annot be easily generalized. Although we should not aim to produ
e a single (universal) 
onstraint-handlingte
hnique that will defeat any other [174℄, it is reasonable to aim to make it easier to be adapted to di�erenttypes of problems/
onstraints.� Minimum �ne tuning. Finding an appropriate penalty fun
tion for an optimization problem in generalnormally requires a lot of �ne tuning. Ideally, a good 
onstraint-handling te
hnique should minimize therequirement of this �ne tuning, or should not need it at all. When �ne tuning is ne
essary, the performan
eof the algorithm tends to depend on it. Furthermore, this trial and error pro
ess adds up to the parametertuning required by most EAs (i.e., how to de�ne the values of: population size, 
rossover and mutation rates,maximum number of generations, et
.).� EÆ
ien
y. In many real-world appli
ations, a single evaluation of the �tness fun
tion might be very expen-sive. Therefore, a good 
onstraint-handling te
hnique should not require a high evaluation 
ost. In se
tion 2.5we saw an example of a te
hnique that requires a high number of �tness fun
tion evaluations to obtain theinformation that will guide the sear
h. As we mentioned before, in some appli
ations, the problem of �ndinga feasible solution might be itself NP-hard [161℄.� Well-known Limitations. If we assume that no single 
onstraint-handling te
hnique will be the best forall kinds of problems, then it is important to identify 
learly the limitations of ea
h available te
hnique toknow when to use them. Mi
halewi
z and S
hoenauer [109℄ dis
ussed this issue, but the question remainsopen regarding the 
hara
teristi
s that we 
ould use from a problem to de
ide what te
hnique to use.36



� In
orporation of knowledge about the domain. In
orporating knowledge about an spe
i�
 domainredu
es the generality of an evolutionary approa
h [67℄. However, in highly 
omplex problems (e.g., heavily
onstrained sear
h spa
es) some knowledge about the domain 
an 
onsiderably improve performan
e of anEA. Therefore, it is desirable that a good 
onstraint-handling approa
h has the 
apability to in
orporateeÆ
iently su
h domain knowledge whenever is available.The \utopi
al" 
onstraint-handling te
hnique for EAs should 
ombine the best of these issues. The developmentof su
h a te
hnique, however, might prove impossible in pra
ti
e [174℄. For example, if we emphasize eÆ
ien
y,our 
onstraint-handling te
hnique might lose generality. The 
onverse is also normally true. Nevertheless, even ifthese issues are in
ompatible to a 
ertain extent, they should at least be taken into 
onsideration when developinga new approa
h and aim to obtain reasonable trade-o�s among these obje
tives.Regarding open areas of resear
h, the following are parti
ularly important:� Comparisons of approa
hes: Despite the several 
omparative studies of 
onstraint-handling te
hniquesused with EAs reported in the literature (see for example [109, 101, 102, 103℄), more work is required. Itis desirable, for example, to study in more detail the behavior of 
ertain approa
hes under di�erent sorts of
onstraints (linear, non-linear, et
.), so that we 
an establish under what 
onditions is more 
onvenient touse them.Mi
halewi
z et al. [106℄ argue that any problem 
an be 
hara
terized by a 
ertain set of parameters in
ludingthe following: number of linear and nonlinear 
onstraints, number of equality 
onstraints, number of a
tive
onstraints, ratio between the feasible sear
h spa
e and the whole sear
h spa
e, and the type of obje
tivefun
tion (number of variables, number of lo
al optima, 
ontinuity of the fun
tion, et
.). However, testsperformed in the past regarding eleven (now 
onsidered 
lassi
al) test fun
tions (see [109℄) have produ
edin
on
lusive eviden
e about the behavior of several 
onstraint-handling te
hniques. This means that theappropriate 
hoi
e of a 
ertain te
hnique in the absen
e of knowledge about the domain remains as an openresear
h problem [109, 106℄.� Test suites: A very important issue 
losely related to the previous one is the existen
e of good test suitesthat are publi
ly available. Regarding this issue, there is some literature that 
an be used (see for example3[56, 102℄). Chung and Reynolds [20℄ have provided a test suite for 
ultural algorithms. More re
ently,Mi
halewi
z et al. [106℄ have proposed the design of a s
alable test suite of 
onstrained optimization problemsin whi
h many features 
an be easily tuned to allow the evaluation of the advantages and disadvantages of a
ertain 
onstraint-handling te
hnique. The test 
ase generator proposed by Mi
halewi
z et al. [106℄ has sixparameters that 
an be tuned to investigate advantages and disadvantages of a 
ertain 
onstraint-handlingte
hnique: dimensionality of the sear
h spa
e, multimodality of the sear
h spa
e, number of 
onstraints used,
onne
tedness of the feasible subspa
es, ratio between the feasible sear
h spa
e and the whole sear
h spa
e,and fun
tion ruggedness. However, more work in this dire
tion is desirable.� Metri
s: Closely related to the previous issue is the development of good metri
s that allow to 
omparedi�erent te
hniques in a quantitative way. Beyond the obvious 
omparative issues su
h as quality of the�nal solution found and amount of �tness fun
tion evaluations required, there are other aspe
ts of a 
ertainte
hnique that might be relevant in 
ertain 
ases. For example, it would be interesting to have a metri
 thattra
es down the behavior of a te
hnique in terms of the number of feasible solutions found. Also, metri
s thatdetermine that robustness and 
onvergen
e rate of a 
ertain te
hnique are highly desirable. These metri
swould be very useful to determine the limitations of a 
onstraint-handling approa
h in quantitative form.� Multiobjetive Optimization: Despite the 
onsiderably large amount of resear
h on evolutionary multiob-je
tive optimization (EMO) [21℄, little emphasis has been made on 
onstraint-handling. In fa
t, many of theearly EMO approa
hes 
onsidered only un
onstrained problems. As we saw in Se
tion 5.4, EMO te
hniques
an be used also to handle 
onstraints, but ironi
ally, their use in multiobje
tive optimization has been verylimited until now. Most EMO resear
hers tend to use traditional (stati
) penalty fun
tions instead of tryingto exploit the power of EMO te
hniques to handle 
onstraints as additional obje
tives.3The web page http://solon.
ma.univie.a
.at/~neum/glopt/test.html also 
ontains test problems for 
onstrained optimizationalgorithms. 37
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