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Abstract

The change of two orders of magnitude in the new DCF of SRE’10,
relative to the old DCF evaluation criterion, posed a difficult challenge
for participants and evaluator alike. Initially, participants were at a loss
as to how to calibrate their systems, while the evaluator underestimated
the required number of evaluation trials. After the fact, it is now obvious
that both calibration and evaluation require very large sets of trials. This
poses the challenges of (i) how to decide what number of trials is enough,
and (ii) how to process such large data sets with reasonable memory and
CPU requirements.

After SRE’10, at the BOSARIS Workshop, we built solutions to these
problems into the freely available BOSARIS Toolkit. This paper explains
the principles and algorithms behind this toolkit. The main contributions
of the toolkit are:

1. The Normalized Bayes Error-Rate Plot, which analyses likelihood-
ratio calibration over a wide range of DCF operating points. These
plots also help in judging the adequacy of the sizes of calibration
and evaluation databases.

2. Efficient algorithms to compute DCF and minDCF for large score
files, over the range of operating points required by these plots.

3. A new score file format, which facilitates working with very large
trial lists.

4. A faster logistic regression optimizer for fusion and calibration.

5. A principled way to define equal error rate, which is of practical
interest when the absolute error count is small.

1 Introduction
The BOSARIS Toolkit provides MATLAB code for calibrating, fusing and eval-
uating scores from (automatic) binary classifiers. It was developed to provide
solutions for automatic speaker recognition, but we envision that much of the
code will have wider applicability for other biometric and/or forensics problems,
where the calibration of likelihood-ratios is of interest. This document serves
as a user guide, to explain theory and algorithms and is complementary to the
user manual.
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The theory behind the toolkit is based on the Ph.D. dissertation [1], which
can be consulted for further details. The core implementation (code) was written
by the authors of this document, as part of the ABC: AGNITIO, BUT, CRIM
submission for the 2010 NIST Speaker Recognition Evaluation (SRE’10) [2].
After the evaluation, at the BOSARIS Workshop,1 we collaborated with a wider
group of researchers to make these algorithms available in toolkit form.2

This document is organized in three sections: Theory is the bulk of the
document, which explains what the toolkit does and why. Algorithms explains
how the toolkit does it. Code gives a high-level summary of the implementation.

2 Theory
This section provides the theoretical framework which is necessary for a good
understanding of the BOSARIS Toolkit. For the typical speaker recognition
expert, part of this material should be very familiar, while other parts may
be new. All readers should nevertheless review the familiar parts, where the
terminology for discussing the new material will be established. This section is
organized as follows:

• Subsection 2.1 discusses the problem of running out of errors and the way
this is addressed in the toolkit.

• Subsection 2.2 reviews Bayes decision theory, while 2.3 reviews NIST’s
DCF criterion for evaluating goodness of decisions.

• Subsection 2.4 introduces the idea that we can evaluate system outputs in
the form of likelihood-ratios, rather than decisions. The key is to let the
evaluator make the decisions, at the theoretically optimal Bayes threshold.
Subsection 2.5 develops this idea into practical evaluation criteria.

• Subsection 2.6 discusses perhaps unfamiliar relationships between the fa-
miliar evaluation tools, ROC/DET, EER and minDCF.

• Subsection 2.7 discusses solutions for fusing and calibrating scores.

2.1 Sampling effects
All of the evaluation methods used in this toolkit explicitly or implicitly depend
on estimating various error-rates by counting occurrences of those errors in a
supervised evaluation database. The error-rates depend not only on the accur-
acy of the system under evaluation, but also on the operating point. We explain
operating points in more detail later. What is important here is that no matter
what the accuracy of the system under evaluation, or no matter what the size
of the evaluation database, there will be operating points where the error-rates
become so small that no more errors are observed. More generally, there will
be operating points where the numbers of observed errors become so small that
the error-rate estimates become unreliable.

There are various frequentist (confidence interval) or Bayesian (credible in-
terval) methods to theoretically quantify the accuracy of such estimates—see

1See http://speech.fit.vutbr.cz/workshops/bosaris2010
2Available at: http://sites.google.com/site/bosaristoolkit/
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for example [3] and references therein. The results of any such analysis will
depend on various modelling assumptions.

For the speaker recognition problem, one such analysis, Doddington’s Rule of
30 [4], is rendered tractable via the assumption of independent Bernoulli trials.3
This rule suggests one needs at least 30 errors to get a probably approximately
correct error-rate estimate. In practice, we have found this rule to work well.
We get sensible results in both training and test, if we ensure that there are at
least 30 misses and at least 30 false-alarms at the operating point of interest.

2.1.1 Toolkit solution

In the BOSARIS Toolkit, we address the problem by flagging on our plots (DET
curves as well as normalized Bayes error-rate curves) the points at which the
various error-rates drop below 30. It is up to the user of the toolkit to understand
that regions on the plot beyond these flags must be treated with caution.

2.1.2 In SRE’10

In SRE’10, at the ‘new DCF’ operating point of interest, there was a scarcity
of false-alarms, which we addressed by manufacturing many more non-target
trials. (This was possible because the number of possible non-target trials grows
quadratically with the number of speakers in the available data.)

We used the rule of thumb that:

• If we want to use a database for calibration/fusion, that database has to
be sufficiently large so that the calibrated/fused system makes at least 30
training errors of both types, at all operating points of interest.

• If we want to use an independent database for testing/evaluation, the same
holds. That database has to be sufficiently large so that the system makes
at least 30 test errors of both types, at all operating points of interest.

2.2 Bayes decision theory
The toolkit is focused on the canonical speaker detection problem, where inde-
pendent decisions must be made for independent trials, based on the output
scores of an automatic speaker recognition system. In most of this section, we
consider the case of making decisions by using the output scores of a single
system. We defer fusion of multiple systems to subsection 2.7.

The input to the toolkit is in the form of scores calculated by the automatic
system. We assume that for every trial, the system has calculated a scalar
detection score and that a decision has to be made based on this score. The
recipe for doing so is given by Bayes decision theory [5].

In the canonical detection problem, there are two alternative hypotheses,
called target and non-target, exactly one of which must be true for every trial.
By convention, larger (more positive) scores favour the target hypothesis and
smaller (more negative) scores favour the non-target hypothesis.

For every trial, an accept/reject decision is required. We define the out-
come of a trial as the pair (hypothesis,decision), so that there are four possible

3Are different scores of the same speaker independent? Are miss and false-alarm rates
independent?
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outcomes. Two of these are considered to be errors: miss = (target, reject)
and false-alarm = (non-target, accept). The other two outcomes are the correct
outcomes.

The consequence of an outcome is expressed as a cost function, which maps
outcomes to positive real numbers. Without loss of generality (see [1, section
3.4] and [5]), we restrict attention to cost functions which assign zero cost to
correct outcomes. This leaves two costs to be specified: Cmiss, the cost of a
miss; and Cfa, the cost of a false-alarm.

When given a score, say s, the Bayes decision chooses the option, accept or
reject, that minimizes the risk. That is, we choose to accept if

P (target|s, π)Cmiss ≥ P (non-target|s, π)Cfa (1)

and to reject otherwise. The two risks being compared are products of costs
and posterior probabilities. The posteriors are conditioned not only on s, but
also on some independent prior information, which we represent as:

π = P (target) = 1− P (non-target) (2)

We refer to π as the target prior, or simply as the prior. By using Bayes’ rule
and taking logs, we can rewrite the decision rule as follows:

accept, if `(s) ≥ η, or reject otherwise. (3)

where we have defined the log-likelihood-ratio:

`(s) = log
P (s|target)

P (s|non-target)
(4)

the Bayes decision threshold :

η = log
Cfa

Cmiss
− logitπ (5)

and the prior log odds:4

logitπ = log
π

1− π
(6)

We refer to the function ` : R 7→ R as the calibration mapping. It maps the
score, s, to the log-likelihood-ratio, `(s). Since log-likelihood-ratios follow the
same convention as the scores (larger values favour the target hypothesis), they
are also scores. We shall therefore also refer to them as calibrated scores. On the
other hand, scores are generally not calibrated and cannot do the work of log-
likelihood-ratios: when scores are thresholded at the Bayes decision threshold,
they usually do not make good decisions.

The toolkit is concerned with: (i) evaluating the potential ability of the
scores, s, to make Bayes decisions, even if the calibration mapping, `, is not
available; (ii) creating such mappings, by training on a supervised calibration
database; and (iii) evaluating the ability of the calibrated log-likelihood-ratios
`(s) to make Bayes decisions.

4The invertible function logit(p) = log p
1−p maps probabilities in [0, 1] to log odds in

[−∞,∞].
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2.3 DCF: criterion for goodness of hard decisions
The Bayes decision paradigm leads naturally to a recipe for evaluating the good-
ness of detection decisions made on a database of supervised trials. In the
Speaker Recognition Evaluations (SREs) of 1997 to the present (2010), NIST
has required systems under evaluation to submit a hard accept/reject decision,
as well as a score, for each trial. The primary evaluation criterion, called DCF
(detection cost function), evaluated the goodness of the hard decisions, while
secondary criteria (minDCF and DET-curves) evaluated the goodness of the
scores.5

In what follows, we shall always assume that hard decisions, if made by
the evaluee, are made by thresholding all scores against a single fixed system-
dependent threshold, set by each evaluee. If the evaluee believes the scores to
be well-calibrated log-likelihood-ratios, then (s)he may use the Bayes decision
threshold η. Otherwise, the threshold may be tuned by the evaluee to minimize
DCF on a supervised calibration database.

The errors that result from the hard decisions on the supervised evaluation
database are summarized as the empirical error-rates: Pmiss, the ratio of misses
to target trials; and Pfa, the ratio of false-alarms to non-target trials. The
primary evaluation criterion is defined as:

DCF = πCmissPmiss + (1− π)CfaPfa (7)

It is important to realize that π is a synthetic parameter, which models the
target prior in the domain of application. It does not necessarily reflect the
proportion of targets in the evaluation database.

The DCF parametrization, π,Cmiss, Cfa, can loosely be referred to as the
DCF operating point. The DCF recipe requires the operating point to be fixed
and known to the evaluee. Below we show how to relax this requirement.

2.4 Bayes Risk: criterion for goodness of log-likelihood-
ratios

A small modification [6] to the DCF evaluation recipe makes it applicable to
calibrated log-likelihood-ratios, rather than hard decisions: The evaluee sub-
mits log-likelihood-ratios (rather than decisions) and the evaluator makes the
decisions. The requirement for well-calibratedness is enforced by the fact that
the evaluator applies the above-defined Bayes decision threshold, η.

The error-rates now depend on the evaluator’s threshold and we indicate this
by the notation Pmiss(η) and Pfa(η). Since the submitted log-likelihood-ratios
are also scores, it should be clear that if the evaluator were to sweep η from −∞
to ∞, then Pmiss(η), Pfa(η) would map out the familiar ROC/DET curve.

Let L = `1, `2, · · · , `t, · · · be the log-likelihood-ratios computed by the sys-
tem under evaluation for every trial, t, in the whole supervised evaluation data-
base, so that:

Pmiss(η) =
1

|T |
∑
t∈T

I(`t < η), Pfa(η) =
1

|N |
∑
t∈N

I(`t ≥ η) (8)

5DCF as defined here is often referred to as actual DCF, to distinguish it from minDCF,
which will be defined later.
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where I is the indicator function and T and N are the sets of indices belonging
to target and non-target trials.

The resulting evaluation criterion, the empirical Bayes risk, is given by:

R(L|π,Cmiss, Cfa) = πCmissPmiss(η) + (1− π)CfaPfa(η)

where η = log
Cfa

Cmiss
− logitπ

(9)

If the evaluator always applies a fixed, known DCF parametrization,
π,Cmiss, Cfa, then nothing essential has changed. For a ‘calibrated’ log-
likelihood-ratio, the evaluee could just submit `t = st − γ + η, where st is
his original uncalibrated score and st ≥ γ is his original decision rule. In this
case R would be numerically equal to DCF.

But, if the evaluator sweeps η over a range of values, then everything changes.
Now mere shifting will not adequately calibrate the scores. Now scaling as well
as finer details of the calibration mapping also matter. (After taking care of a
few more details below, we will demonstrate this experimentally.)

The empirical Bayes risk as evaluation criterion for log-likelihood-ratios is
discussed in detail in [7, 8, 1]. It can be interpreted as:

• A proper scoring rule, which encourages both good discrimination (i.e. a
good DET-curve) as well as good probabilistic calibration (in the sense
of [9]). See for example [10], Chapter 13, the section entitled ‘The honest
weatherman’, for an insightful explanation.

• Generalized cross-entropy [11] between the evaluator’s perfect empirical
posterior given by the labels and the posterior P (target|s, π) of the eval-
uee. This information-theoretical analysis provides useful inequalities to
understand the essential properties of this evaluation criterion [1, Chapter
2].

2.4.1 The default system

Define the default system, which always outputs log-likelihood-ratio of zero, so
that L0 = 0, 0, · · · for every trial. Notice that the posterior of the default system
is the same as the prior: P (target|`t = 0, π) = π. Making Bayes decisions with
the default system is the same as making decisions with the prior alone.

It is easy to show [1, Chapter 2] that if the likelihood-ratios of a system, L,
are sufficiently well calibrated, then R(L|π,Cmiss, Cfa) ≤ R(L0|π,Cmiss, Cfa),
for every operating point π,Cmiss, Cfa. A system that fails this test at some
operating point can be said to be badly calibrated at that operating point. At
such operating points, on average, better Bayes decisions are obtained by not
using the system.

2.4.2 Simplifying risk to error-rate

As shown above, a system that outputs well-calibrated likelihood-ratios can be
expected to make useful (better than default) Bayes decisions at every operating
point. It therefore seems reasonable to expect of an evaluation procedure to
test calibration over a wide range of such operating points. The problem is
that the Bayes risk, as we have defined it, is parametrized by three independent
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parameters, π,Cmiss, Cfa. How can we design our evaluation recipe to take
account of all operating points in this three-dimensional space?

This problem is solved by realizing that all these operating points can be
represented by an equivalent one-dimensional range of operating points, which
is much easier to cover with an evaluation recipe. We show how this is done.

Define the effective prior as:

π̃ =
πCmiss

πCmiss + (1− π)Cfa
(10)

and now parametrize the Bayes risk with π̃ and C̃miss = C̃fa = 1. This repara-
metrization leaves the Bayes decision threshold, η, unchanged :

η = − logit π̃ = log
Cfa

Cmiss
− logitπ (11)

and the evaluation criterion, R is merely scaled :

R(L|π̃, 1, 1) =
1

πCmiss + (1− π)Cfa
R(L|π,Cmiss, Cfa) (12)

where the scaling factor is positive and is not a function of L or of the error-
rates. This means that if we are comparing the relative benefits of two systems,
say L1 and L2, then:

R(L1|π̃, 1, 1) ≤ R(L2|π̃, 1, 1) ⇔ R(L1|π,Cmiss, Cfa) ≤ R(L2|π,Cmiss, Cfa)

from which we conclude that the two criteria are equivalent for evaluation pur-
poses.6

2.5 Empirical Bayes error-rate: a practical evaluation re-
cipe

We now define our final evaluation criterion for evaluating the goodness of log-
likelihood-ratios. The empirical Bayes error-rate is E(L|π̃) = R(L|π̃, 1, 1), so
that:

E(L|π̃) = π̃Pmiss(− logit π̃) + (1− π̃)Pfa(− logit π̃) (13)

This criterion is parametrized by the single, scalar parameter, π̃, or equivalently
by the Bayes decision threshold, − logit π̃. Again, we refer to this parameter as
the operating point.

The old operating point defined by NIST for the SREs between 1997 and
2008 was at π̃ ≈ 0.092, while the new operating point of 2010 was at π̃ = 0.001.

In this toolkit, we are interested in evaluation that spans operating points.
By having confined the operating point to one dimension, this becomes do-able.
By sweeping over the threshold, this criterion exercises the decision-making abil-
ity of log-likelihood-ratios in a similar way that the ROC/DET-curve exercises
the potential decision-making ability of uncalibrated scores. In subsections be-
low, we shall discuss two ways of sweeping the operating point: one is an integral,
the other a plot.

6This equivalence still holds if we allow more general cost functions, which can have negative
costs (i.e. rewards) for correct decisions. In this case, the relationship between the criteria is
affine, rather than linear. [5]
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2.5.1 The default system: reference for bad calibration

We provide two references which can be compared to E(L|π̃) to judge calibration
of L. The first, discussed here, is the upper boundary where calibration fails.
The other (the familiar minDCF), discussed in the next subsection, is an ideal
lower bound, where calibration is optimal.

The default system, L0, provides the reference error-rate:

E(L0|π̃) = min(π̃, 1− π̃) (14)

As mentioned above, a system L, for which E(L|π̃) > E(L0|π̃), is said to be
badly calibrated at the operating point π̃, because then it would be better not
to use the system.

2.5.2 minDCF: reference for ideal calibration

NIST’s minDCF is obtained by allowing the evaluator, who has access to the
true class labels, to choose an optimal threshold at every operating point:

minDCF(L|π,Cmiss, Cfa) = min
−∞≤γ≤∞

πCmissPmiss(γ) + (1− π)CfaPfa(γ) (15)

Here we are interested in the specialization of minDCF, where the costs are
unity. In analogy with E , we denote it Emin:

Emin(L|π̃) = minDCF(L|π̃, 1, 1) (16)

Note:

E(L|π̃) ≥ Emin(L|π̃) ≤ E(L0|π̃) (17)

Like minDCF, Emin is a secondary evaluation criterion, which fulfils two func-
tions:

• It provides an ideal reference value for judging calibration. If E and Emin
are close, then the system can be said to be very well calibrated.

• In the earlier stages of the development of a speaker recognition algorithm,
one is typically not interested in calibration, but just in the potential to
make good decisions at some operating point. Emin provides a calibration-
insensitive criterion, which can be evaluated over a range of different op-
erating points.

2.5.3 Cllr: scalar summary of goodness of log-likelihood-ratios

The BOSARIS Toolkit provides two ways to sweep the operating point: one
integrates out the operating point to give a scalar, summary criterion; and the
other plots the error-rate as a function of the operating point. We discuss the
integral here and the plot in the next subsection.

We can define the calibration-sensitive, scalar summary criterion of the good-
ness of log-likelihood-ratios, known as Cllr, by integrating out the operating
point [7]:

Cllr(L) = k

∫ ∞
−∞
E(L| logit−1 x) dx

=
0.5

|T |
∑
t∈T

log2(1 + e−`t) +
0.5

|N |
∑
t∈N

log2(1 + e`t)
(18)
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where k > 0 is an unimportant scale factor and logit−1 x = (1 + e−x)−1 is the
inverse7 of the logit function.

This criterion is further discussed in [1, 7, 8, 12]. It can be interpreted as a
strictly proper scoring rule, empirical cross-entropy, negative log-likelihood and
as optimization objective for logistic regression.

2.5.4 Normalized Bayes-error-rate plots

To plot E(L|π̃) as a function of the operating point, it is helpful to transform
both the horizontal and vertical axes.

Using π̃ ∈ [0, 1] as the horizontal axis would compress interesting parts of the
graph against the sides of the interval. We therefore use logit π̃ on the horizontal
axis instead. This axis now becomes infinite in both directions and we plot only
a suitable interval, near the origin, logit 0.5 = 0. Plotting an interval that is too
wide is meaningless anyway, because in those regions the prior becomes so close
to 0 or 1 that either the miss or the false-alarm counts drop to zero.

The vertical axis is non-linearly amplified by normalizing with E(L0|π̃) =
min(π̃, 1 − π̃). If this were not done, low error-rates would compress all the
interesting action against the bottom of the plot.

The normalized Bayes-error-rate plot can be described as a plot of (x, y)
such that:

y =
E(L| logit−1 x)

E(L0| logit−1 x)
(19)

Figure 1 gives an example, using synthetic Gaussian scores to compare the true
log-likelihood-ratio against some deliberately miscalibrated versions. This plot
demonstrates:

• The deliberately miscalibrated ‘systems’ have worse error-rates than the
(green) ‘true LR’ system, almost everywhere.

• The only region where the green system does worse than the miscalibrated
dashed magenta is due to small sample effects. This is to the left of the red
triangle, where the number of false-alarms becomes very low. The red and
green triangles indicate the points were false-alarms and misses become
scarce (less than 30) and therefore indicate the boundaries were small-
sample effects may become a problem for meaningful evaluation. The safe
region is between the two triangles. The error-rates that determine the
horizontal positions of these triangles are obtained from the dashed black
curve, where the evaluator has optimized the thresholds.

• The dashed black curve is Emin(L|π̃). Between the triangles, it coincides
closely to the theoretically optimal ‘true LR’ green curve. In real cases,
we are not given a true probability model that generated the data, so that
Emin forms a useful practical reference for judging calibration.

• The solid black line at y = 1 represents the default performance of E(L0|π̃).
In places, the miscalibrated systems do worse than this reference. The only
one which does not is the underoptimistic 0.5× logLR.

7logit−1 is also known as the logistic sigmoid.
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(The reason why the dashed and solid black lines meet just to the right of +2
for this dataset is that the Gaussian log-likelihood-ratio as a function of the
score is a parabola, with a minimum just below −2. The system never outputs
log-likelihood-ratios with smaller values, so that in the far right of the plot, all
decisions are identical to those made by the default system (i.e. accept).)
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Figure 1: Normalized Bayes error-rate plot for a synthetic system with Gaus-
sian scores: targets ∼ N (µ = 3, σ = 2) and non-targets ∼ N (0, 1). The true
likelihood-ratio is compared against deliberate additive and multiplicative mis-
calibrations.

Figures 2 and 3 show further examples of normalized Bayes error-rate plots,
but now for real speaker recognition scores of systems submitted to SRE’10.

The plots show curves for tests on two databases: dev is the database used
to train the calibration (SRE2008 eval database in this case) and eval is the
evaluation database (SRE2010). The Bayes error-rate for the dev database is
shown in dashed red and that for the eval database in solid red. The minimum
Bayes error-rate (thick red) is only shown for the eval database. The toolkit can
also plot the contributions of the misses and false alarms to both the minimum
Bayes error-rate and actual Bayes error-rate. In the example plots, only the
contributions to the actual Bayes error-rate are shown (misses in blue, false
alarms in green). The new (SRE’10) operating point is shown on the plots by
the vertical dashed magenta line at −6.91.
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Figure 2: Normalized Bayes error-rate plot for an SRE 2010 speaker detector
with good calibration. Here eval denotes the evaluation database and dev the
development database. Ptar = π̃, while act DCF and min DCF refer to E and
Emin. Pmiss and normalized Pfa are shown separately. DR30 refers to the point
to the left of which there are fewer than 30 false-alarms. The vertical magenta
dashed line represents the new operating point at π̃ = 0.001.

In the region of interest, x < 0, which we plot in these figures, the vertical
axis (normalized error-rate) is:

y =
E(L|π̃)

min(π̃, 1− π̃)
(20)

=
π̃Pmiss(η) + (1− π̃)Pfa(η)

π̃
(21)

= Pmiss(η) + exp(− logit π̃)Pfa(η) (22)

= Pmiss(− logit−1 x) + exp(−x)Pfa(− logit−1 x) (23)

The exponential amplification of false-alarms induced by this normalization ex-
plains the shape of the curves for regions of bad calibration. Some form of
amplifying normalization is needed to make the effects of calibration visible in
regions of low error-rate. This normalization is the main difference between
these curves and APE-curves [7]. The normalized Bayes error-rate plot is able
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Figure 3: Normalized Bayes error-rate plot for an SRE 2010 speaker detector
with bad calibration. See caption of figure 2 for details.

to display a wider range of operating points than the APE-curve.
The points in the plot marked with asterisks (we used triangles in the first

plot), labelled DR30 refer to Doddington’s Rule of 30 [4]. This rule suggests you
need at least 30 false-alarms and at least 30 misses for meaningful evaluation.
The toolkit can plot both the DR30 point for the misses (to the right of which the
absolute number of misses drops below 30) and the one for the false alarms (to
the left of which the absolute number of false-alarms drops below 30). These
points are on the Emin curve, because we use the false-alarm count and miss
count that result from the evaluator’s optimized threshold.

2.6 ROC/DET and related criteria for goodness of scores
This subsection deals with ROC/DET curves and associated summaries such
as EER and minDCF, all of which can be applied for calibration-insensitive
evaluation of the goodness of uncalibrated scores. This is useful for the earlier
stages of algorithm development, when calibration is not of immediate interest.

We assume the reader is familiar with the ROC (receiver operating charac-
teristic) [13]. In this section we concentrate on perhaps unfamiliar relationships
that exist between the ROC, minDCF and EER. In summary: the ROC spans
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operating points by plotting error-rates as a function of the threshold; minDCF
samples the ROC at a fixed operating point; EER summarizes the span of oper-
ating points by maximizing over minDCF as a function of the operating point.
The ROC convex hull is central to this analysis and also provides the key to
efficient minDCF and EER calculation.

In our discussion below, we use the term ROC, but (unless otherwise noted)
everything applies also to DET-curves [14]. For ROC, we assume the speaker-
recognition convention where x = Pfa is on the horizontal axis and y = Pmiss
on the vertical axis.8 The DET-curve differs from the ROC by axis warping:9
x = probit(Pfa) and y = probit(Pmiss).

There are some aspects of the ubiquitous ROC/DET that seem to be mis-
understood by many of its users. Here we highlight the following:

• The ROC is an optimistic view of the decision-making ability of scores,
because calibration is not tested. If Bayes risk is minimized (i.e. minDCF)
at a particular operating point ‘on the ROC curve’, then the calibration
problem remains of how to choose a threshold that will place the actual
performance at this operating point. This actual performance is usually
worse (and cannot be better) than minDCF.

• The empirical ROC is not a continuous curve. It is a collection of discrete
points in (Pfa, Pmiss) space, where every point corresponds to a decision
threshold between adjacent scores. If the points are connected with line
segments10 then those segments are either vertical or horizontal, corres-
ponding to target and non-target scores. We shall refer to this plot as the
steppy ROC.

• minDCF operating points do not live exactly on the steppy ROC. They
live on the ROCCH curve: the lower left boundary of the convex hull
around the discrete points of the ROC.

• Although the EER is fixed at Pmiss = Pfa, it nevertheless forms a summary
of the whole curve: it is a tight upper bound of the decision making ability
over all operating points. Using EER as optimization objective is a good
idea, because forcing the tight upper bound down, forces the whole curve
down. This can be generalized to any other point on the ROCCH curve
by fixing the ratio Pmiss

Pfa
.

We elaborate on the last two points below.

2.6.1 The ROCCH is where minDCF lives

Let there be n points, [pfa(i), pmiss(i)] in the empirical ROC. A point in R2 is in
the convex hull of the ROC, if and only if it is a two-dimensional interpolation
between all of the ROC points. That is, a point

[x, y] =

n∑
i=1

αi[pfa(i), pmiss(i)] (24)

8In other fields, the vertical axis is 1− Pmiss.
9The probit function maps [0, 1] to [−∞,∞] in a very similar way to the logit function:

probit(p) =
√
2 erf−1(2p− 1).

10assuming no two scores coincide
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is in the convex hull if and only if all αi ≥ 0 and
∑n
i=1 αi = 1.

We already know that minDCF can be expressed either as a continuous
minimization over the threshold (γ), or as a discrete minimization over the
ROC points. But it can also be expressed [15, 1] as a continuous minimization
over the convex hull, or as a discrete minimization over the set of vertices, Vch,
of the convex hull:

minDCF(π,Cmiss, Cfa) = min
γ
πCmissPmiss(γ) + (1− π)CfaPfa(γ)

=
n

min
i=1

πCmisspmiss(i) + (1− π)Cfapfa(i)

= min
α

n∑
i=1

αi
(
πCmisspmiss(i) + (1− π)Cfapfa(i)

)
= min
i∈Vch

πCmisspmiss(i) + (1− π)Cfapfa(i)

(25)

where α = [α1, . . . , αn] is subject to the above-mentioned convexity constraint.
This means that although parts of the convex hull seem more optimistic than
the steppy ROC, these parts do not give lower minDCF, no matter what the
operating point.

The DCF minima live on the lower left boundary of the convex hull, which
forms a continuous, piecewise linear, convex curve between the points (0, 1) and
(1, 0). We shall refer to this curve as the ROCCH curve.

The BOSARIS Toolkit provides the functionality to compute the ROCCH
curve, as well as the associated DET-curve obtained by applying the non-linear
(probit) mapping to the axes.11 Figure 4 shows two examples. For further
examples, see [1, Chapter 7], or [16], or try to plot some of your own, using the
toolkit.

The ROCCH vertex set, Vch, is typically much, much smaller than the em-
pirical ROC. Since the convex hull can be computed efficiently (see the PAV
algorithm below), and since it is valid for all operating points, this is the key
to efficient minDCF computations for large score sets, over a large range of
operating points.

2.6.2 EER as upper bound

The EER (equal-error-rate) is usually defined as the ‘point on the ROC’, where
Pmiss = Pfa. For the empirical ROC, in general, no point exactly satisfies this
equality, but it can be satisfied by interpolation. If we choose to interpolate
between all points in the ROC, we again find ourselves on the ROCCH curve.
We denote the point on the ROCCH curve where Pmiss = Pfa as the ROCCH-
EER. We propose to use the ROCCH-EER as a well-defined, practical version
of the EER and this functionality is provided as such by the toolkit.

The ROCCH-EER has the following interesting property [1]:

ROCCH-EER = max
π̃

min
−∞≤γ≤∞

π̃Pmiss(γ) + (1− π̃)Pfa(γ)

= max
π̃

minDCF(π̃, 1, 1)
(26)

Figure 4 demonstrates this.
11The convexity does not hold when these curves are translated to DET space.
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Figure 4: Two examples of ROCCH-DET vs classical steppy DET. The equality
of ROCCH-EER and max minDCF is demonstrated. (Here π̃ = Ptar).

ROCCH-EER is obtained by maximizing w.r.t. the operating point, while
minimizing w.r.t. the threshold. The minimization confines us to the ROCCH
curve, while the maximization finds the most pessimistic operating point on this
curve. The ROCCH-EER therefore forms a tight upper bound on the Bayes
error-rate that can be obtained with perfect calibration. By pushing down on
the EER, we are pushing down the whole curve.

Another way to see this is the fact that minDCF(π̃, 1, 1) is a concave function
(see figure 4). If we push down at the maximum of this curve (by trying to build
a system that gets better EER) it cannot form a dent in the curve that violates
concavity. If anything moves, the whole curve has to go down in such a way as
to respect concavity.

This does not guarantee that if we reduce ROCCH-EER, we will have re-
duced minDCF at all operating points. Even if the value of the maximum is
reduced, its position, π̃, can move in such a way that error-rates can increase
somewhere far from the maximum. This lateral movement is roughly analogous
to tilting of the DET-curve. If, however, we want to target a specific region of
operating points of interest, we can generalize this idea. This is shown in the
next subsection.
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2.6.3 UER: Unequal-error-rate

We can generalize ROCCH-EER by considering a point, [P̌fa, P̌miss], on the
ROCCH curve where P̌fa = rP̌miss. For any r 6= 1, this is an unequal-error-rate.

Such points also have the interpretation that they form tight upper bounds
on minDCF. To see this, choose any costs such that: Cmiss = rCfa. We can
show [1] that there exists a point, [P̌fa(r), P̌miss(r)], on the ROCCH curve, such
that:

CmissP̌miss(r) = CfaP̌fa(r) = max
π

minDCF(π,Cmiss, Cfa) (27)

The point on the curve depends just on the ratio r. By varying r between zero
and infinity, we can map out the whole ROCCH curve.12 If we arbitrarily set
Cfa = 1 and Cmiss = r, we can define the unequal-error-rate as:

UER(r) = P̌fa(r) = rP̌miss(r) = max
π

minDCF(π, r, 1) (28)

Again, this value forms a tight upper bound of a concave function of π, so that
using UER as optimization objective pushes down the whole curve. If we choose
r = π̃, then we will be targeting operating points in the vicinity of π̃.

In summary, the whole ROC/DET curve has this ‘stiffness’ property induced
by the concavity, so that trying to optimize some point on the curve will tend
to also improve the decision-making ability of the curve over a larger region.

2.6.4 PRBEP

Finally, we mention another variant on this idea, where we re-weight the error-
rates to represent absolute error counts. By choosing Cmiss = T , the number of
target trials; and Cfa = N , the number of non-target trials, the toolkit provides
the functionality to compute the precision-recall-break-even-point :

PRBEP = N ×UER
( T
N

)
= T P̌miss = NP̌fa = max

π
minDCF(π, T,N) (29)

which represents the point on the ROCCH curve where the absolute number of
misses and false alarms are equal.13

If the error-rates of the recognizer are low relative to the number of available
evaluation trials, then this forms a sensible evaluation objective, which balances
the two error-counts, keeping them both from becoming too small for as long
as possible.

Here we prefer to present the result as an absolute number of errors, rather
than as an error-rate, so that if the number of errors becomes small, the user is
effectively warned that this is happening.

PRBEP cannot be used for meaningful comparisons across databases of dif-
ferent sizes. It is meant for comparison of different systems on the same data-
base.

12Interestingly, if we exchange max and min, the error-rates that satisfy
minγ maxπ DCF(γ|π, r, 1), map out the steppy ROC as we vary r.

13Since the ROCCH curve is an interpolation, this will in general not be a whole number.
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2.7 Fusion and Calibration
The toolkit provides two solutions for calibration, which is the task of find-
ing a mapping `, that maps scores to log-likelihood-ratios. In both cases, the
mapping is ‘trained’ on a supervised calibration database. One solution is non-
parametric, based on isotonic regression. The other is parametric, based on
logistic regression. The logistic regression solution generalizes also to a fusion
recipe.14

The non-parametric calibration finds a solution that is (on the training data)
simultaneously optimal for any sensible objective function15 for measuring the
goodness of calibration [1, Appendix C]. In practice however, we have found
that the parametric solution usually performs better on independent test data.

2.7.1 PAV: Non-parametric calibration

The convention that the larger the score, the more it favours the target hypo-
thesis, suggests that the calibration mapping, `, should be monotonically rising
(isotonic) [17]. Since we have a finite number of training scores, each of which
must be mapped to a log-likelihood-ratio, this can be done in a non-parametric
way. We can independently choose the value for each point, subject only to the
monotonicity constraint. This problem is known as isotonic regression and an
efficient implementation is given by the PAV (pool adjacent violators) algorithm,
which we discuss in the next section.

Attractive features of this solution are:

• On training data, as mentioned above, it is optimal, no matter how you
measure optimality.

• It corresponds exactly to Emin (minDCF): If a data set is optimized with
PAV, and then evaluated on the same data set with E (DCF), then DCF
= minDCF.

• It also corresponds exactly to using the slope of the ROCCH curve as
calibrated likelihood-ratio [18].

• The type of the score distribution is unimportant. In fact, the procedure
is invariant to any monotonic warping of the scores. In contrast, the
parametric logistic regression calibration solution below works best for
approximately normal score distributions.

2.7.2 Logistic regression: parametric fusion and calibration

The toolkit provides a logistic regression solution, which can:

• train a calibration mapping, `(s), for a single system;

• train combination weights to fuse multiple subsystems into a single sub-
system which outputs well-calibrated log-likelihood-ratios; and

• also incorporate certain kinds of side-information, or quality measures.
14It is shown in [15], that isotonic regression can also be used for fusion, but this is not yet

implemented in the toolkit.
15This is, any strict, or non-strict proper scoring rule, or Bayes risk criterion.
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All of this functionality is provided by optimization of the parameters of the
following mapping:

`t = a+

N∑
i=1

bisit + q′tWrt (30)

where `t is the fused and calibrated output log-likelihood-ratio for trial t; N is
the number of subsystems to be fused (if N = 1, then the result is just calibra-
tion); sit is the score of subsystem i for trial t; qt and rt are optional ‘quality
vectors’, derived from the two sides (enrol, verify) of trial t. The parameters
to be optimized are the scalar offset a, the scalar combination weights bi and a
symmetric matrix W, which effectively combines the two quality vectors into a
quality score for the trial.

The parameters are optimized with logistic regression, which minimizes an
objective function, which is very similar to the above-defined Cllr. This ob-
jective function is the evaluation criterion for a supervised calibration database,
which must be provided by the user. Since the objective function is calibration
sensitive, optimizing it causes the fused output to be well calibrated. See [19],
or [1, Chapter 8] for more details.

3 Algorithms
This section describes the key algorithms that help the toolkit to efficiently
process very large sets of scores.

3.1 Efficient DCF and minDCF
This subsection describes efficient algorithms for computing DCF and minDCF.
With more traditional implementations, computation of E (DCF) and Emin
(minDCF), over the range required by a normalized Bayes error-rate plot, may
take several minutes for large trial lists (a few million scores). By comparison,
the implementation in the BOSARIS Toolkit takes a few seconds to execute.

3.1.1 DCF

To efficiently compute E , pool all the scores, L = `1, `2, . . ., with all the dif-
ferent thresholds, − logit π̃i, at which E(L|π̃i) is to be evaluated. Sort them all
together, in increasing order, keeping track of where the thresholds end up. The
miss and false-alarm rates at threshold i are given by

Pmiss(i) = {ti − (D − i+ 1)}/T (31)
Pfa(i) = {N − (ni − (D − i+ 1))}/N (32)

where ti is the position of the ith threshold in the sorted list (after deleting
non-target scores), ni is the position of the ith threshold in the sorted list (after
deleting target scores), D is the number of thresholds, T is the number of target
scores and N is the number of non-target scores. Equation 13 then gives E .
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3.1.2 minDCF

To efficiently compute Emin, compute the vertices of the ROCCH curve, using
the PAV algorithm (see section 3.2). There are typically very few of these
vertices and as shown in section 2.6.1, the original large ROC can be replaced
with these vertices, without changing the value of minDCF. Then use the last
line of (25).

3.2 The PAV Algorithm
The PAV (pool adjacent violators) algorithm is central to the efficient imple-
mentation of many of the toolkit functions. We use it to efficiently compute the
vertices16 of the ROCCH curve [18]. Once we have these vertices, we can com-
pute minDCF, EER, UER, PRBEP and the non-parametric calibration mapping
(see the relevant subsections in the theory section).

The PAV algorithm solves the problem of assigning a likelihood-ratio to
each score in some supervised database of target and non-target scores. The
likelihood-ratios are adjusted non-parametrically and independently, subject
only to the monotonicity constraint that if the scores are sorted, then the
likelihood-ratios must also be sorted. The PAV solution turns out to be simul-
taneously optimal for any proper scoring rule and therefore for any Bayes risk
criterion, with any cost function and any prior [1, Appendix C].

The PAV algorithm complexity is linear in the number of scores and the
preceding sort has complexity of order T log(T ). In our implementation, sorting
and applying PAV takes a few seconds for a few million scores.

3.3 New logistic regression optimizer
The BOSARIS Toolkit uses a general-purpose, unconstrained convex optimiza-
tion algorithm to train the logistic regression fusion and calibration solutions.
It uses a quasi-Newton method, which is faster, generally better behaved and
converges to a better solution than the conjugate gradient optimizer which was
used in its predecessor, the FoCal Toolkit.17

The new optimizer uses the trust region Newton conjugate gradient algorithm
for large-scale unconstrained minimization [20, 21].

4 Code
This section gives a high-level overview of some of the salient features of the
implementation of the algorithms. More detail is available in the user manual
which is distributed with the toolkit.

The current implementation is written in MATLAB, with an object-oriented
API (application programmer’s interface). The objects are not an essential part
of the code,18 they are just a way to organize the API. If this type of interface
turns out to be a hindrance rather than a help to users, it would be possible to
replace this API.

16The vertices of the whole convex hull are the same as the vertices (cusps) of the piece-wise
linear ROCCH curve.

17Available at: http://sites.google.com/site/nikobrummer/focal
18MATLAB object oriented code does not scale well to large problems.
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The main feature of the code that remains to be highlighted in this last
section is the efficient, binary, platform-independent score file format. The effi-
ciency of the format relies on the assumption that trial lists can be represented
as dense matrices, where the row and column indices are the two sides (enrol,
verify) of a trial. We assume that each enrolment or each verification side is
to be matched against many—or even all—others. (Such dense score matrices
were necessary for ensuring an adequate number of non-target trials and there-
fore an adequate number of false-alarms at the new operating point, π̃ = 0.001,
of SRE’10.)

We use a platform-independent HDF5 binary score format to encourage in-
teroperability with other tools. Text files would also give interoperability, but
are much larger and much slower to process.

4.1 Data
The code in the toolkit is primarily concerned with storing and manipulating
the following data types:

indexes list model and test segment names and indicate which pairs of model
and test segment are in the trial list described by the index.

keys are similar to indexes, but also give the answers i.e. which trials are target
trials and which are non-target trials.

scores store scores for a list of trials (specified by an index or a key). In
addition to the actual scores, a score object contains all the information
that an index describes.

quality measures can be seen as scores for a model or test segment (instead
of for a trial). These can be fused with ordinary scores (see section 2.7).

Indexes can be used:

• for aligning scores from different systems before fusing them

• for selecting parts of score objects of interest (e.g. those for male trials)

• by external code that produces scores. This code can load an index file
which indicates which segment pairs to produce scores for.

Two score objects can be merged to make a new score object provided that
they don’t provide scores for the same trial. Parts of score objects can be
selected (to produce a new score object) either by using an index or by using
lists of models or segments to discard.

4.2 Plots
The toolkit can produce two types of plots:

DET plots (see section 2.6) either from points on the ROC or from the
ROCCH curve.
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Normalized Bayes error-rate plots (see section 2.5.4). Both minimum and
actual Bayes error-rate curves can be plotted, as well as curves showing
the contributions of the misses and false alarms, respectively, to those
curves. A vertical line indicating the operating point can be placed on the
plot.

DR30 points (see section 2.1) for misses and false alarms can be placed on
both of types of plots.

4.3 Calibration
The high level wrapper functions for calibration have two variants: those that
train the calibration transformation on a single set 19 of scores and then apply
that transformation to the same set, and those that train the transformation on
one set of scores (dev) and apply it to another set (eval). A second partitioning
of the functions can be made according to whether the transformation is affine
or whether it uses the PAV algorithm (see section 3.2).

4.4 Fusion
The main functions for doing fusion can again be divided (as for calibration)
according to whether there is a set of unsupervised eval scores in addition to
the dev scores or not. There are separate wrapper functions for doing fusion
when quality measures are to be used.

4.5 Other functions
There are functions for calculating EER, minimum DCF, actual DCF, PRBEP
and the effective prior.

4.6 File format
With approximately eight million trials in our development list for SRE’10,
loading and saving score files in text format became unfeasible. We therefore
created a binary file format which both reduced the size of the file on disk and
made loading and saving faster. For example, one of our tel-tel development
files is about 60 times larger on disk in text format than in binary format and
the binary file loads about 160 times faster than the text file.

The binary score files contain two lists and two matrices. The lists contain
the model and test segment names. One matrix contains the scores as real
numbers and the other matrix is a logical matrix of the same size which indicates
which scores correspond to valid trials. The dimensions of the matrices are the
number of models by the number of test segments and the score at position (i, j)
is for a trial between the ith model in the model list and the jth test segment
in the test segment list.

The toolkit provides both Matlab .mat and HDF5 versions of the binary
format, as well as functions for converting between binary and text formats.

19By set, we mean multiset, because the collection should retain duplicate values.
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