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REVIEWS

Cryopreservation 
of Human Pancreatic Islets
Jonathan R. T. Lakey, Philip W. Burridge, and Ray V. Rajotte

Islet transplantation has the potential to permanently restore glucose homeostasis in
type 1 diabetics, thereby eliminating insulin injections and possibly even reversing neu-
rovascular complications and preventing end-stage organ failure. The severe shortage
of human pancreata and the inability to consistently isolate large numbers of healthy
islets have made it necessary to pool islets from several donors. Cryopreservation is
cost-effective, is less labor-intensive, minimizes the chance of microbial contamination,
and requires less storage space. It allows time to find the best tissue match while en-
suring strict quality control. Frozen tissue stored in liquid nitrogen is easy to transport.
The freeze-thaw procedures improve the purification of the islets. Cryopreservation also
has a uniquely positive feature in that it modifies how the donor islets will respond when
transplanted into the hostile immune environment of an unrelated recipient. But the most
compelling reason for using cryopreservation is that transplant centers can store islet
cells indefinitely.
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Historical Perspective
Transplantation of insulin-producing tissue as the

definitive treatment for diabetes was independently
proposed more than 100 years ago by Williams and
Ssobolew.1,2 Transplantation of isolated islets of
Langerhans offers a physiological solution that
reestablishes glucose homeostasis with precise
feedback controls, leading to a permanent state of
normoglycemia.

A total of 447 attempts to treat Type 1 diabetes
with islet allografts were reported to the Interna-
tional Islet Transplant Registry between 1974 and
2000, 394 of which were performed during the last
decade. Islet-kidney transplants composed the ma-
jority. The allografts were composed of freshly iso-
lated or cultured or cryopreserved islets or a combi-
nation of freshly isolated or cryopreserved islets. In
some cases, immunosuppression was induced with
anti-lymphocyte serum while maintenance im-
munotherapy was largely based on a combination
of glucocorticoids, cyclosporine, and azathioprine.
As of 1999, Brendel et al. reported that 65% of
grafts lost function within 1 year of transplanta-
tion. Less than 10% of patients were insulin-inde-

pendent at 1 year posttransplant, although 28%
had sustained C-peptide secretion.3 Conventional
immunosuppressive agents used to abrogate islet re-
jection and autoimmune recurrence have diabeto-
genic side effects, which can also cause islet graft
failure.4,5 Using a glucocorticoid-free immunosup-
pression regimen of daclizumab, sirolimus, and
low-dose tacrolimus, designed to prevent both au-
toimmune recurrence and allograft rejection while
avoiding diabetogenic toxicity from highly concen-
trated drug delivery in the liver, the rate of insulin-
independence at 1 year rose from 8% to 100%.6,7

Despite significant advances during the last 30
years, inconsistency remains in the overall success
of the islet isolation procedure.8 We, as well as oth-
ers, have identified donor and islet isolation vari-
ables that affect islet recovery and in vitro func-
tion.9 In our study, increased donor age and body
mass index and skills of the local procurement team
have a positive correlation with islet recovery. In
contrast, pancreas weight, hyperglycemia greater
than 10 mmol/L, frequency and duration of cardiac
arrest, cold storage greater than 16 h, and collage-
nase digestion time have a negative correlation.

2 6 6 v o l u m e  5 i s s u e  5 j u l y / a u g u s t  2 0 0 2 g r a f t s a g e p u b . c o m
 © 2002 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.

 at LOCKSS on December 9, 2007 http://gft.sagepub.comDownloaded from 

http://gft.sagepub.com


REVIEWS

Data from the International Islet Transplant Reg-
istry have shown that an islet allograft in excess of
6000 islet equivalents per kilogram body weight is
necessary to restore insulin independence.10 The in-
ability to isolate large numbers of viable islets from
each human pancreas has made it necessary to pool
islets from several donors. Low-temperature bank-
ing of isolated islets has been one approach to sup-
plement freshly isolated or cultured islets.11

Several methods for the preservation of human
islets have been proposed, but cryopreservation is
the safest and most effective method.11 Long-term
subzero storage has several advantages. Pooling islet
preparations makes it easier to create the critical β-
cell mass necessary to reverse hyperglycemia.12-14 A
tissue bank of cryopreserved islets with a diverse va-
riety of ABO and HLA (histocompatibility locus
antigen) phenotypes allows time to optimize match-
ing between donor and recipient before transplan-
tation.15 Cryopreservation permits time to ensure
strict pretransplant quality control testing of islet
viability and for microbiological sterility.15 Frozen
tissue stored in liquid nitrogen is easy to transport
between collaborative transplant centers.16 The freez-
ing and thawing procedures improve the purifica-
tion of the endocrine tissue by selective removal of
exocrine tissue.17,18 Cryopreservation modulates iso-
lated pancreatic islet immunogenicity17,19-22 by elim-
inating antigen-presenting (dendritic) cells23,24 or by
down-regulation of islet MHC (major histocom-
patibility complex) Class I antigen expression.25,26

But the most compelling reason to pursue human
islet cryopreservation is that it enables clinical trans-
plant centers to store islet allografts indefinitely while
specific immune unresponsiveness (tolerance) is in-
duced in the recipient, thereby eliminating the need
for posttransplantation immunosuppression.17,27,28

Cryopreservatin of Animal Islets
Several cryopreservation protocols29-40 utilizing

widely different free-thaw conditions have been de-
veloped since 1977 when Rajotte et al.41 and Fergu-
son et al.42 first demonstrated that frozen-thawed
islets could normalize hyperglycemia in streptozo-
tocin-induced diabetic rats. Protocols have been de-
veloped for rodent,27,41-44 dog,45-51 pig,52-56 and human
islets,30,33 with postcryopreservation viability demon-
strated both in vivo and in vitro.

In 1989, Rajotte et al. compared a variety of re-
ported cryopreservation protocols using dimethyl
sulfoxide (DMSO) and found that slow cooling to
–40 °C and rapid thawing from –196 °C resulted
in similar in vitro function as assessed by perifusion
and transplantation.57 This was confirmed by Rich
et al. who, when comparing various protocols, found
that slow cooling to –40 °C in combination with
rapid thawing from –196 °C resulted in the best in
vivo survival.58 Current methods used to cryopre-
serve human islets have been extrapolated from em-
pirically derived protocols originally developed for
rodent islets. Many of these protocols reported a
loss of 20% to 40% of recovered viable islets, im-
paired insulin secretion in response to glucose
stimulation, and reduced survival in nude diabetic
mice.59-61 Further loss of islets after cryopreserva-
tion, coupled with reductions in viability, indicates
that islet cryopreservation protocols can be refined.

Using a modified protocol developed by Sakon-
ju,62 Korbutt et al. demonstrated that a new perme-
ating cryopreservative, ethylene glycol (EG), per-
mitted a high recovery of rodent islets following
cryopreservation.63 EG-cryopreserved islets also
contained more viable glucagon-secreting α-cells,
suggesting that α-cell function in the rat is critical
to β-cell function, particularly in vivo.63,64

Cryopreservation of Human Islets
Lakey et al. developed an automated stepwise cry-

opreservation method using DMSO and a single
500 ml freezer bag.65,66 This method of bulk cryop-
reservation is cost-effective, less labor-intensive,
minimizes the chance of microbial contamination,
and requires less dewar storage space. Recently,
Miyamoto et al. introduced a computer-controlled
cryopreservation procedure using EG and a single
250 ml freezer bag.67

A comparative study of the effects of DMSO and
EG on human islets by Lakey et al. demonstrated
that DMSO provided superior survival and preser-
vation of postculture in vitro function, regardless of
the addition protocol (Table 1).65 This observation
may be attributable to qualities inherent to human
islets or to differences in the storage, transport, or
islet isolation procedures. Furthermore, there was
no difference between groups of islets treated with
either 1.5 M DMSO or the standard concentration

ALLOGRAFT

Transplantation of cells, tissue, or an organ
from one genetically dissimilar individual to
another of the same species
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TOLERANCE

Donor-specific immune unresponsiveness
can be induced by manipulating key path-
ways of T-cell activity (usually using mono-
clonal antibodies).
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Table 1 EFFECT OF CRYOPRESERVATION ON HUMAN ISLET RECOVERY
a

ISOLATED ISLET FRACTION STIMULATION

ISLET RECOVERY (%) (INSULIN SECRETORY ACTIVITY [% CONTENT]) INDEX

EXPERIMENTAL CONDITION N POST-THAW POST-CULTURE 2.8 MM GLUCOSE 20 MM GLUCOSE HIGH:LOW

DMSO 2.0 M stepwise 6 70 ± 4 62 ± 4 0.9 ± 0.1† 3.9 ± 0.3 4.5 ± 0.5†

DMSO 1.5 M stepwise 6 80 ± 2* 74 ± 3* 0.7 ± 0.1 3.9 ± 0.3 6.0 ± 0.4*†

DMSO 1.5 M one-step, 30 min 6 82 ± 2* 69 ± 3 0.6 ± 0.1 4.0 ± 0.3 6.5 ± 0.8*
DMSO 1.5 M one-step, 45 min 6 — 53 ± 5 0.9 ± 0.1†‡ 1.9 ± 0.2†‡ 2.2 ± 0.4*†‡

EG 2.0 M stepwise 6 69 ± 3 52 ± 4 1.2 ± 0.1† 3.9 ± 0.6 3.4 ± 0.7†

EG 1.5 M stepwise 6 71 ± 3 64 ± 5 0.7 ± 0.1 2.5 ± 0.4† 4.0 ± 0.4†

EG 1.5 M one-step, 30 min 6 68 ± 5 51 ± 7 1.0 ± 0.1† 3.3 ± 0.4† 3.5 ± 0.5†

EG 1.5 M one-step, 45 min 6 — 46 ± 5* 1.1 ± 0.1† 2.0 ± 0.3†‡ 1.8 ± 0.3*†‡

Nonfrozen control 6 — — 0.6 ± 0.0 4.7 ± 0.4 8.2 ± 0.9

a. Values are mean  ± SEM of 6 independent experiments. Statistical significance of differences was calculated with an unpaired stu-
dent’s t-test: *P = 0.05 vs. DMSO 2.0 M stepwise, †P < 0.05 vs. nonfrozen controls, ‡P < 0.05 vs. 1.5 M cryoprotectant one-step
added at 30 min.

REVIEWS

of 2.0 M DMSO added in either a stepwise or one-
step protocol, suggesting that the cryoprotectant
could be added in a single step, perhaps by auto-
matic means, without significantly compromising
islet survival and function. Although EG permits a
high recovery of functionally viable rodent islets
following cryopreservation,63 it did not improve the
recovery of human islets.65

Cryopreservation and Clinical 
Islet Transplantation

Despite considerable success transplanting cryop-
reserved islets in small and large animal models, in-
sulin independence in humans has not been
achieved with transplantation of cryopreserved
islets alone. Transplants have been performed using
combinations of freshly isolated and cryopreserved
islets when insufficient islet yields from a single hu-
man donor necessitated the pooling of islets from
multiple donors.68,69 According to data from the In-
ternational Islet Transplant Registry, only 18% of
recipients transplanted with a combination of
freshly isolated and cryopreserved islets were in-
sulin-independent at 1 year, whereas 11% of cases
were insulin-independent when only freshly isolat-
ed islets from a single cadaveric donor were trans-
planted.69 To date, the longest duration of insulin-
independence in a Type 1 diabetic receiving an islet
transplant simultaneously with a kidney transplant
received a combination of freshly isolated and cry-

opreserved islets.14,69 However, the ideal scenario
would be to transplant an adequate number of
functional islets from one carefully matched human
donor to one human recipient, thereby eliminating
the need for future supplementation, and minimiz-
ing host cell–mediated destruction of the graft by
avoiding the adverse effects of chronic immuno-
suppressive therapy.

Human Islet Cryopreservation Protocol
Standard procedures of islet cryopreservation uti-

lize DMSO, slow cooling, and rapid thawing.70,71

The method used to cryopreserve human islets in
our research laboratory is based on a preclinical ca-
nine model (Fig. 1).11,72,73

Islet Isolation, Purification, and Quantification
After obtaining informed consent, the pancreas is

recovered from a cadaveric donor following in situ
vascular perfusion with cold University of Wiscon-
sin (UW) solution as part of a multiorgan procure-
ment.74,75 The pancreas is immediately transported
to the islet isolation laboratory for processing. Islets
are isolated using previously described techniques
of controlled Liberase perfusion via the pancreatic
duct and Ficoll purification.76-82

Islet Culture
Following tissue culture in supplemented medi-

um for 24 h, islets are recombined and duplicate
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DIABETES MELLITUS

A metabolic disease characterized by hyper-
glycemia that results from defects in insulin
secretion, insulin action, or both.
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aliquots are stained with dithizone and assessed for
quantity and purity.

Islet Cryopreservation
During cryopreservation, there are 3 distinct steps

(Fig. 1): 1) a prefreeze phase during which the islets
are equilibrated with the cryoprotectant; 2) freez-
ing, storage, and thawing; and 3) removal of cry-
oprotectant and return of the islets to a physiologi-
cal medium.11

Prefreezing Phase
The islets are suspended in freeze media and the

cryoprotectant (EG or DMSO) is added in step-
wise fashion to bring the final concentration of cry-
oprotectant to 1.5 M or 2.0 M, or added in a sin-
gle step to a final concentration of 1.5 M.11

Stepwise Protocol
When the cryoprotectant is added in a stepwise

protocol (Fig. 2), islets are equilibrated with 0.67

M cryoprotectant for 5 min followed by equilibra-
tion with 1.0 M cryoprotectant for 25 min at 22 °C.
The concentration of cryoprotectant is then in-
creased to 1.5 M or 2.0 M at 22 °C. The islets are
allowed to equilibrate for 15 min before proceed-
ing.

One-Step Protocol
When the cryoprotectant is added in a one-step

fashion (Fig. 3), islets are held at 22 °C for 30 or 45
min, at which point 1.5 M cryoprotectant is intro-
duced in a single addition step (Fig. 3). When the
cryoprotectant is added at 30 min, 15 additional
minutes are allowed for the final equilibration to
occur. When the cryoprotectant is added at 45 min,
the islets are transferred directly into the 4 °C ice
bath without an equilibration period.

Freezing, Storage, and Thawing
After addition of the cryoprotectant (Fig. 4), the

tubes are transferred to a 4 °C ice bath for 15

s a g e p u b . c o m g r a f t j u l y / a u g u s t  2 0 0 2 v o l u m e  5 i s s u e  5 2 6 9

Figure 1. Flow diagram indicating the three distinct steps that are needed for cryopreservation of islets.

IMMUNE REJECTION

A process initiated by naturally occurring
antibodies in the recipient’s sera that bind to
antigens on the surface of endothelial (and
other) cells within the graft, which, in turn,
activates a complex series of events that re-
sults in the rapid destruction of the trans-
planted organ or tissue.
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Figure 2. Protocol for stepwise addition of cryoprotectant.

Figure 3. Protocol for one-step addition of cryoprotectant.
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min11,65 and then supercooled to –7.4 °C in an
ethanol bath for 5 min and manually nucleated us-
ing a metal rod dipped in liquid nitrogen.11,65 After
a 15-min period allowing for the release of the la-
tent heat of fusion, the samples are slowly cooled at
0.25 °C/min to –40 °C, and then plunged into liq-
uid nitrogen for low temperature storage.11,65 After
storage in liquid nitrogen for at least 1 week, the
islets are thawed rapidly to 0 °C in a 37 °C water
bath at a rate of 200 °C/min.11,65

Removal of Cryoprotectant and 
Return to a Physiological Medium

Following centrifugation and removal of the su-
pernatant, the intracellular cryoprotectant is re-
moved by the addition of 0.75 M sucrose for 30
min at 0 °C, followed by stepwise addition of sup-
plemented medium at 5-min intervals over a 20-
min period.11 The islets are then again centrifuged,
washed in supplemented medium, and transferred
to tissue culture plates containing supplemented
medium. Islets are maintained for 48 h at 37 °C in
an atmosphere of 95% air and 5% CO2 to allow for
metabolic recovery prior to quantification and in
vitro viability assessment.83,84

Current Limitations of 
Human Islet Cryopreservation

β-Cell Dysfunction
The ability of islets to restore physiological glu-

cose homeostasis following cryopreservation is a
key prerequisite if this technology is to be utilized
in clinical transplantation. In our clinical studies,
we have clearly demonstrated long-term insulin re-
lease from frozen-thawed islets transplanted into
Type 1 diabetics, including periods of insulin inde-
pendence. Although encouraging results have been
observed in other centers, clinical trials using cry-
opreserved islets have been limited with moderate
success.

In 1999, a study by Piemonti et al. described the
effects of cryopreservation on in vitro and in vivo
long-term function of human islets.85 First, islet re-
covery was about 70%, which is similar to that re-
ported in other studies. Second, they also con-
firmed abnormal insulin secretion. Compared to
unfrozen islets, high basal insulin secretion was ob-

served while total insulin secretion was reduced in
response to glucose challenge. Cryopreserved islets
also responded abnormally to several glucose secre-
tagogues (tolbutamide, arginine, and 3-isobutyl-1-
methylxanthine). However, amperometric studies
have shown that canine β-cells recovered following
cryopreservation are capable of secreting insulin at
levels and frequencies comparable to those of cul-
tured nonfrozen islet preparations.86

Third, proinsulin-like molecule secretion, a bio-
logical marker of glucose toxicity or increased se-
cretory demand on β-cells, was also increased. This
suggests that proinsulin was released prematurely,
reflecting damage to the proximal signals that con-
trol insulin release. Fourth, electron microscopy
showed no gross morphological damage, which
suggests abnormal islet function is not due to a loss
of β-cell integrity. And most important, glucose
tolerance was observed to decline in diabetic nude
mice bearing human cryopreserved islets, a change
not observed in mice implanted with freshly har-

vested islets. This evidence strongly suggests that
islet graft failure may be due to either a reduction
in islet mass or a subtle decline in function over
time. This latter mechanism may be due to either
β-cell overstimulation and subsequent exhaustion
or, more likely, an impairment of the key paracrine
relationships between endocrine cell types (α-cells,
β-cells, γ-cells) within the islet. The latter observa-
tion has been observed in two of our patients sup-
plemented with cryopreserved islets who were ini-
tially insulin-independent for 2 years but had to
resume exogenous insulin therapy when graft func-
tion declined.87 However, the islets are still func-
tioning in these patients 10 years after transplanta-
tion. Amperometric studies have confirmed that
the β-cell insulin receptor can mediate positive
feedback for insulin secretion. Disruption of this
mechanism could explain the existence of both im-
paired insulin secretion and insulin resistance.88

Refinements in Cryopreservation Protocols
Successful cryopreservation of islets requires that

the addition and removal of cryoprotectants as well

AUTOIMMUNE RECURRENCE

T-cell-mediated pancreatic β-cell destruction
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Figure 4. Freezing protocol, including nucleation, controlled
slow cooling, and storage.
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as cooling and warming are carried out within cer-
tain biophysical and cell physiological tolerance
limits. Cryopreservation is a complex procedure
with a series of steps that subject cells to major os-
motic stresses, which can result in potentially dam-
aging changes in cell volume.89 Cells shrink tran-
siently upon the addition of cryoprotective agents
and then swell as the cryoprotectant permeates.
Cells undergo a second shrinkage when cooled at
rates low enough to preclude intracellular freezing
as growing extracellular ice concentrates the solutes
in the diminishing volume of nonfrozen water,
causing exosmosis. The cells return once again to
their normal volume during warming and thawing.
Finally, cells undergo a potentially damaging os-
motic volume excursion during the removal of the
cryoprotectant.89-91

Current methods of islet cryopreservation utilize
permeating cryoprotectants combined with isoton-
ic solutions without specifically addressing issues of
ionic balances, buffering capacity, or oxygen-free
radicals that occur during hypothermic stresses.
The standard method uses a cell culture solution,
Medium 199 (Gibco, Carlsbad, CA), supplement-
ed with 10% fetal calf serum, and a cryoprotectant,
DMSO, in combination with slow cooling and
rapid thawing.11

Cryopreservation of islets with solutions specifi-
cally derived for cells, tissues, and organs at hy-
pothermic temperatures have many theoretical ad-
vantages over standard tissue culture solutions. UW
solution (DuPont Merck Pharmaceutical Compa-
ny, Wilmington, DE) was developed in the early
1980s as an intracellular-based preservation solu-
tion. It is the universal standard vascular flush and
preservation solution for kidney, liver, and pan-
creas.92-95 BioLife Solutions, Inc. (Binghamton, NY)
has developed two crystalloid-colloid blood substi-
tutes for whole organ preservation, which have
been shown to greatly improve cell viability and in-
hibit cryopreservation-induced apoptosis (cellular
suicide) and freeze-induced traumatic necrosis.96-102

Hypothermosol-M (HTS-M) is a hyperkalemic
intracellular-like solution specifically designed to
prevent intracellular acidosis and maintain cellular
integrity under hypothermic conditions. Its coun-
terpart, Hypothermosol-P (HTS-P), is an “extracel-
lular” flush solution designed to purge the mainte-

nance solution, accumulated toxins, and metabolic
by-products from the donor organ.

The properties that make these solutions effective
for low-temperature organ storage may also aug-
ment the recovery of cryopreserved cells. Lakey et
al. demonstrated that the nonpermeating cryopro-
tective components in UW solution and an early
version of HTS did not protect canine islets from
the damaging effects of cryopreservation. However,
post-freeze-thaw survival improved significantly
when DMSO was added to either solution.103 Be-
cause cryopreservation of islets has been primarily
based on an empirical approach,104 little is known
about the biophysical parameters of human islets.
Recent canine islet studies of basic cryobiological
parameters, including the determination of the mem-
brane permeability to water and cryoprotectants,
have enabled the development of mathematical
models to predict several key cellular responses that
occur during the cryopreservation process.105 These
simulated responses of islet cells to different osmot-
ic environments make important predictions about
key factors involved in cryopreservation, including
cryoprotectant permeation, cellular volume changes,
and incidence of intracellular ice formation.

These data should challenge researchers to exam-
ine new strategies for successful cryopreservation of
human islets. For example, new cryoprotective ad-
ditives may achieve better results with preservation
of the individual endocrine cell types.67 Combina-
tions of permeating and nonpermeating cryopro-
tectants may be needed. Optimal cooling and
thawing rates must be determined for human en-
docrine cells based on the permeability coefficient
of the cryoprotectant. Protective strategies to im-
prove insulin biosynthesis or, at least, protect
against chronic oversecretion may be required. And
lastly, it is important to define the factors that lead
to long-term decline in β-cell function, which is
more pronounced with cryopreserved islets.

Transplantation of cryopreserved islets into an al-
logeneic environment exposes them to the rigors of
immunosuppressive drugs and cytokines. Current
studies in a large animal model in our research lab-
oratory have shown that cryopreserved islets need
to be augmented to overcome the adverse effects of
cryopreservation before insulin independence can
be assured. Also, cryopreserved human islets are

Β-CELLS

Insulin-producing cells within the islets of
Langerhans of the pancreas
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more susceptible to cytokines that induce extreme-
ly high levels of reactive superoxide radicals.106 Hu-
man β-cells, in turn, are very vulnerable to these
toxins, which may explain the poor performance of
cryopreserved islets during long-term follow-up.
The addition of antioxidants (glutathione) and free
radical scavengers (glutathione and mannitol) to
prevent β-cell destruction in an allogeneic hyper-
glycemic environment may be required.

Future Prospects
Restricting HLA matching to cases with zero or

only one antigen mismatch is rarely encountered
(except with a very prolonged waiting period), of-
ten necessitating a compromise and the acceptance
of a marginal solid organ. To date, well-matched
single-donor islet allografts have rarely been per-
formed. HLA matching might not be as much a
critical factor as originally thought. None of the
Type 1 patients who became insulin-independent
with a single-donor allograft received a 5- or 6-anti-
gen-matched islet allograft.107

Cryopreservation of human islets would allow
sufficient time to modulate the recipient immune
system before transplantation. Diabetic recipients
of a renal transplant could receive later infusions of
donor-specific islets following the induction of tol-
erance by an earlier renal allograft. This rationale
has been validated by rodent studies.108 The induc-
tion of unresponsiveness to functional extrathymic
islets has been achieved with intrathymic islet
transplants. This was then followed by an ex-
trathymic graft of cryopreserved islets to normalize
blood glucose.109 Another method involves induc-
ing tolerance with donor bone marrow–derived
dendritic cells before transplantation.110-113 These
potent “passenger” antigen-presenting cells are cru-
cial in initiating immune responses, but evidence
also exists for their tolerogenicity, particularly in
the liver. This approach has great potential for ju-
venile Type 1 diabetics, particularly if hyperglycemia
can be reversed before end-stage organ failure and
neurovascular complications occur, thereby negat-
ing the need for long-term immunosuppression.

Summary
The ability to successfully bank human islets re-

mains a promising technology. Caution must be ex-

ercised before any definite conclusions can be
drawn from new research studies. First, careful
comparison of cryopreserved islets with unfrozen
control islets from the same donor is needed. It is
well known that human islets suffer damage during
prolonged pancreas cold storage as well as during
the isolation process, and that these islets withstand
cryopreservation extremely poorly. Second, inter-
pretation of the outcome of cryopreservation must
incorporate in vivo as well as in vitro data.

In conclusion, cryopreservation of pancreatic
islets will greatly assist the application of im-
munomodulatory strategies in clinical islet trans-
plantation, but further in-depth studies are re-
quired to evaluate the effective quality of
cryopreserved islets and the capacity of these islets
to maintain function for a long period.
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