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Abstract—This paper presents a link model which captures the
queue dynamics in response to a change in a transmission control
protocol (TCP) source’s congestion window. By considering both
self-clocking and the link integrator effect, the model generalizes
existing models and is shown to be more accurate by both open loop
and closed loop packet level simulations. It reduces to the known
static link model when flows’ round trip delays are identical, and
approximates the standard integrator link model when there is sig-
nificant cross traffic. We apply this model to the stability analysis of
fast active queue management scalable TCP (FAST TCP) including
its filter dynamics. Under this model, the FAST control law is lin-
early stable for a single bottleneck link with an arbitrary distribu-
tion of round trip delays. This result resolves the notable discrep-
ancy between empirical observations and previous theoretical pre-
dictions. The analysis highlights the critical role of self-clocking in
TCP stability, and the proof technique is new and less conservative
than existing ones.

Index Terms—Acknowledgments (ACKs), fast active queue
management scalable transmission control protocol (FAST TCP).

I. INTRODUCTION

W ITHIN the field of network congestion control [23],
[30], one line of work of fundamental interest is the

dynamics of congestion control protocols, such as transmission
control protocol (TCP). These use feedback to adapt sources’
sending rates to the network resources. Control theory provides
a suitable mathematical framework for the analysis and syn-
thesis of such systems [10]. Conversely, the emerging field of
networked control systems [11], in which control messages are
transmitted over networks, requires accurate knowledge of the
delay and jitter introduced by the network. Both of these require
sufficiently accurate yet tractable dynamical models of network
elements.

Initial TCP performance analysis relied heavily on simula-
tion, but since the late 90s [17], network fluid flow models have
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dominated. These models abstract away packet level details by
viewing a flow of packets as a smooth fluid, and explicitly model
feedback from the network to senders. These models have al-
lowed control theory to be applied to analyze both local stability
[6], [13], [16], [20], [21], [24]–[26], [35] and global stability [1],
[8], [9], [12], [27], [38], [41] of congestion control algorithms.
Stability is important to ensure fluctuations due to stochastically
varying cross traffic are damped, and the network operates in
a favorable region of the state space. Unstable protocols cause
small fluctuations in cross traffic to produce large fluctuations
in queue lengths, which reduce throughput and increase jitter,
which interferes with interactive services such as voice-over-IP.

Despite their success, existing fluid models discard too much
packet level information, and can produce qualitatively inaccu-
rate results. To allow model based design of control protocols,
recent results [40] suggest that it is sometimes crucial to con-
sider more packet level phenomena.

Current TCPs are window based; each sender controls a
window size, which is an upper bound on the number of
packets that have been sent but not acknowledged. The rate
of transmission is controlled or “clocked” by the received
acknowledgments (ACKs): a new packet is transmitted only
when an ACK is received, thereby keeping the number of
outstanding packets equal to the window size. Thus, sources
control the amount of data they inject into the network rather
than the rate of doing so. Intuitively, this “volume control” is
safer in terms of stability than “rate control”.

Until recently, most network stability analyses have mod-
eled sources as controlling their data rates explicitly; the rate
of change of the queueing delay is then proportional to the
difference between the aggregate incoming traffic and link
capacity. We refer to this as an integrator link model. The rate
each window-based source inputs to the links is assumed to
be the window size divided by the round trip delay, a relation
which holds in equilibrium but not during transients. Typically,
these models predict that the system is stable when round trip
delays do not exceed some upper bound. This is in line with the
intuition that increased feedback delay may have a destabilizing
effect on a closed loop system.

The integrator link model however completely ignores self-
clocking. Self-clocking has a major impact; in extreme cases, it
causes the increase in queueing delay to be proportional to the
change in window, rather than its integral. Self-clocking is cap-
tured by the “static” link model [36], [37] which, for a single
bottleneck, reduces to assuming that the number of packets in
the queue is exactly the sum of the windows minus the band-
width-delay product. Using the static link model, it has been
theoretically shown that fast active queue management scalable
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TCP (FAST TCP) flows [39] are always stable for the case of
homogeneous sources [8], [36], [37]. As the static link model
fails to hold when round trip delays are heterogeneous, we need
a better model to study the general case.

Both the integrator and the static link models are incomplete
in the sense that each only emphasizes one side of the story;
the former lags the true dynamics, while the latter leads the true
dynamics yielding optimistic predictions (See Examples 1, 2,
3 and 5 following). After introducing notation and background
material, we will show in Section II that a natural combination
of these two models leads to a more accurate one. Open loop
experiments validate this joint link model and reveal its under-
lying intuition.

The new joint link model predicts significantly different
queue trajectories from existing models on time scales compa-
rable to a round trip time. Recently, many protocols have been
proposed which use delay to respond on this time scale; for ex-
ample, TCP Vegas [5], Africa [18], Fusion [19], Adaptive Reno
[28], Compound TCP [31] and FAST [39]. Accurate analysis
of all of these protocols requires the use of a model similar to
the joint link model. This is illustrated in Section III, which
investigates the stability of FAST TCP. Using the joint link
model, we prove that FAST running over a single bottleneck
link is stable for any heterogeneous delays, and hence resolve
the discrepancy between previous experimental results and
existing theoretical predictions. Closed loop experiments are
also reported where accurate predictions on the stability region
are obtained and verified with packet level simulations1.

II. MODEL AND NOTATION

To capture the self-clocking effect in window flow control, we
avoid working directly with the sources’ sending rates. Instead,
we use the sources’ window sizes and the bottleneck queue size
to represent the state of the closed loop system.

A. Preliminaries

Consider window-based TCP sources sending over a bot-
tleneck link with capacity . Let denote the congestion
window of source at time , . Let a packet
that is sent by source at time appear at the bottleneck queue
at time . This forward delay models the amount of
time it takes to travel from source to the link, and it accounts
for the constant forward latency but not queueing delays. The
backward delay is the time from when a packet arrives at
the link to when the corresponding acknowledgment is received
at source , including the time-dependent queueing delay at the
bottleneck queue. The round trip delay seen by source , de-
noted , is the elapsed time between when a
packet is sent and when the corresponding acknowledgment is
received. The latency of source , denoted , is defined as the
round trip delay when the bottleneck queue is empty.

1To the best of our knowledge, the current status of research on congestion
control protocols can provide quantitative results on equilibrium, while for dy-
namics, most works focus on qualitative study and have not been able to com-
pare predictions with packet level simulations quantitatively.

The queueing delay of the bottleneck link is denoted by ,
and is the capacity of the link. The queueing delay ob-
served by the th source at time is ; it relates to the queue
delay by , where solves .

The bottleneck link may also carry non-window-based traffic
such as User Datagram Protocol (UDP) traffic. Let

be the rate at which such cross-traffic is sent over the link,
leaving for window based sources.

Whenever a time argument of a variable is omitted it repre-
sents its equilibrium value; for example, is the equilibrium
value of . In discrete time, denotes .

B. Link Models

As described in Section I, previous work differs in how the
dynamic map between the window sizes and the buffer size is
modeled. These models reflect behavior on different timescales.

1) Long Time Scales, The Integrator Model: A queue simply
integrates the excess instantaneous input rate at the link minus
the capacity. Most existing literature on window based conges-
tion control [2], [4], [13], [21]–[23] makes the assumption, valid
on long time scales, that the sending rate is the window size di-
vided by the round trip delay. This gives

[Integrator link model]

(1)

2) Short Time Scales, The Static Model: The model (1)
does not take into account the “self-clocking” of window based
schemes, where the sending rate is regulated by the rate of the
received ACKs. This is dominant on short time scales.

Consider flows sending over a fully utilized bottleneck
link with constant window sizes, and consider the response to a
change in window size by a system initially in equilibrium.

The rate of packets flowing out from the link, and hence the
sum of the rates of the received ACKs of the sources, equals
the capacity of the link. Increasing the window injects additional
packets into the network, increasing the instantaneous rate for
a very short time. Since the link is fully utilized (input traffic
equals the capacity), these extra packets are appended to the
queue. Thus, the queue’s immediate response to a window in-
crease is just a proportional increase in the queueing delay one
forward delay after the window is changed (i.e., when the
new packets reach the bottleneck).

In the idealized case without cross traffic and with all flows
having an equal round trip time (RTT), the sum of the rates of
the ACKs again equals the capacity of the link and there is no
further transient (sources’ sending rates are auto-regulated by
their individual ACK rates). This yields the “static” link model
proposed in [36], [39] and implicitly used in [29]. The relation
between the window size and the buffer size is then described
by the following algebraic relation:2

2The original model was presented in discrete time for multiple bottlenecks,
here we use its continuous time version used in, for example, [8] and we consider
a single bottleneck.
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[Static link model]

(2)

3) Proposed Joint Link Model: The immediate but short-
lived response of the static model (2) contrasts to the smooth
transient of the integrator link model (1), and both neglect im-
portant aspects of actual links. We now describe a more accurate
“joint” link model, which captures effects on both timescales.
This model is derived in [14] from a detailed analysis of the
packet level system, a simplified version of which is in Ap-
pendix A.

Consider again the short term effect of a window change, this
time in the presence of non-window-based cross traffic such as
UDP.

There is again a step increase in queueing delay propor-
tional to the increase in window, but this time sources can af-
fect their ACK rates over time intervals greater than one RTT.
By sending a burst of packets back-to-back, a flow can achieve
short term rate through the bottleneck equal to its capacity. This
results in a burst of ACKs at that same rate, which in turn will
increase the queue input rate one RTT later and so on, causing
cascaded bursts of decreasing magnitude. The queue size inte-
grates all of these short bursts of rate.

A similar effect occurs when there is no cross traffic but the
heterogeneity among sources’ RTTs is significant. Individual
flows operate on their individual RTT time scales, and it takes
one RTT before a queue change affects the queue input rate.
Thus, from the perspective of flows with small round trip times,
flows with larger RTTs can be considered as non-responsive
cross traffic, and the system is hence transient in this case also.

Tracking these bursts, spaced apart by different intervals for
each flow, would yield an infinite-dimensional model. Instead,
the joint link model captures the initial burst, and then models
the subsequent “reflected” bursts as an increase in overall rate,
averaged over the whole RTT, yielding an integrator similar to
(1). From Appendix A, this gives

[Joint link model]

(3)
which can be seen as a superposition of (1) and (2). The deriva-
tive term models the immediate proportional change
in the queue size due to a window change. Note that it is the
window size and its corresponding time derivative only that have
delayed variable arguments, which furthermore are identical to
be the forward delay [14]. A similar model was also implicitly
used for flow control stability analysis in [3].

Linearizing (3) by a standard first order Taylor expansion
around the equilibrium defined by ,
gives the Laplace domain transfer function for flow as

(4)

For the case with homogeneous delay and no cross
traffic, applying the equilibrium identity
shows that the pole and zero of (4) cancel, whence the map is
a pure delay, scaled by . Thus the model correctly reduces
to (2) in this case. Even though (2) was described as the “short
time scale” response, it is also accurate for gradual changes in

in this case, because there is no change in the ACK rates to
cause a follow-on response.

Similarly, note that adding cross traffic for this scenario slows
down the pole, since the sum in the identity then becomes less
than the capacity , while the zero remains fixed [14]. When
cross traffic dominates, the pole dominates the zero, thus making
the joint link model (3) approach the integrator link model (1).
Note that with heterogeneity among the sources, depending on
the configuration, the pole may be faster or slower than the zero.
Finally, note that (4) is open loop stable, as expected due to
self-clocking.

C. Open Loop Validation Experiments

The accuracy of the joint link model (3) as well as its similar-
ities and differences with the integrator link model (1) and the
static link model (2) are illustrated in the following open loop
examples. Further validation examples of the joint link model
can be found in [14] and a closed loop experiment will be re-
ported in Section III-E. These simplistic scenarios have been
chosen to demonstrate the relation between the static, integrator
and joint link models.

The models (1), (2) and (3) are compared with packet level
data generated by NS-2. In each experiment we consider 20
window based flows with static windows, sending over a single
bottleneck link. Non-bottleneck links provide configurable
forward and backward delays. The window sizes are initially
set to the same constant size and are not updated dynamically,
i.e., there is no dynamic feedback except for self-clocking. The
system is started in equilibrium and perturbed at time
by a 10% step change in the first source’s congestion window.
In all experiments a packet size of 1040 bytes is used.

1) Example 1: Homogeneous Sources: All 20 window based
flows share the same latency and the bottleneck
link capacity is . The scenario may represent
parallel downloading of multiple files between two end users.
The window size is . Source 1, which is
subject to the window change, has a forward delay of

. The solid gray line in Fig. 1 shows the queue size when
the system is simulated in NS-2. The black dashed, dotted and
solid lines show the integrator link model (1), the static link
model (2) and the joint link model (3) respectively. The fit of
the static and joint link models is excellent (neglecting packet
level “noise”); they are identical in this scenario. This suggests
that the true dynamics in this case is indeed a pure delay. Also
observe that the integrator link model lags the NS-2 simulation.
Note that it takes 100 ms before the window change affects the
queue, as predicted by the models.

2) Example 2: A Cross Traffic Scenario: The scenario for
Fig. 2 is as in Example 1 but with bottleneck link capacity

which is also shared by 400 Mbit/s of UDP
traffic. In this case the dynamics are clearly distinguishable; it
takes over four seconds (twenty round trip times) before the
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Fig. 1. Homogeneous sources. Both the joint link model and the static link
model agree with the NS-2 simulation, but the integrator link model lags signif-
icantly.

Fig. 2. Cross traffic. Both the joint and integrator link models agree with the
NS-2 simulation, but the static link model leads significantly.

Fig. 3. Heterogeneous sources. The joint link model captures both the initial
jump and the protracted rise; the integrator link model misses the former, while
the static link model misses the latter.

queue settles again. The static link model is too rapid in this
case, as expected, while the other two are both accurate. The
joint link model captures the rapid initial rise in queue size, and
initially tracks the upper envelope of the staircase simulation re-
sults, while the integrator link model tracks the lower envelope.
From 1 s after the transient, the joint link model tracks the mean
while the integrator link model lags slightly. As predicted, the
joint model resembles the integrator in this case.

3) Example 3: Heterogeneous Sources: The scenario for Fig.
3 is as in Example 1 but the first source has round trip delay

, distributed such that , while for
the remaining 19 sources. All sources have .

In this case there is a more pronounced initial increase in the
queue followed by a transient phase which dies out after about
250 ms. This corresponds to the time until the self-clocking of
the high delay sources adjust to the new conditions. The steps
spaced by in the NS-2 results show the response
each time a new burst of ACKs arrives one RTT after the pre-
vious burst; capturing this sub-RTT bustiness requires a more
detailed model.

In summary, these three examples demonstrate from different
perspectives that while the integrator link model may lag and
the static link model can lead the true dynamics significantly,
the joint link model (3) succeeds in modeling the two main
system characteristic of “self-clocking”, namely the short term
proportional change, and the long term integrating effect that
are present in the system.

III. APPLICATION: STABILITY OF FAST TCP

To demonstrate the application and tractability of the joint
link model, we will apply it to the stability analysis of FAST
TCP [39]. FAST is a high speed TCP variant that uses delay
as its main control signal. So far, all experiments with FAST
have operated at a stable equilibrium regardless of how big the
round trip delays are. This is at odds with the prediction of the
integrator model in [37]; detailed reasons for this are discussed
in Appendix B. This section will show that under the joint link
model (3), FAST is indeed locally3 stable for a single bottleneck
link with the default step size.

Unlike most existing work, the analysis culminating in our
main result, Theorem 3, uses a detailed model of FAST, which
includes filters corresponding to the RTT estimation and the
sampling processes. For the parameter settings used by the im-
plementation of FAST, these filters noticeably improve stability.

A. Window and Estimator Model of FAST TCP

The sending rate of FAST TCP is implicitly adjusted via
the congestion window mechanism. Each sender updates its
window size in discrete time according to

(5)

This update is performed once per RTT, with sampling time .
The parameter is the number of packets that a FAST
source tries to keep buffered in the network. It determines the
equilibrium fairness, queueing and sensitivity to timing jitter.
Despite recent progress [34], setting is an open problem. The
gain parameter affects the protocol’s response rate [39].

The buffer occupancies are treated as continuous time dynam-
ical processes, with quantization treated as noise. The aggregate
queueing delay can be approximated by subtracting the la-
tency from the measured RTT. However, this gives a noisy
measurement of the “true” queueing delay, which is therefore
estimated by the source. We do not consider the problem of es-
timating .

3Although only local stability has been established so far, all simulations sat-
isfying the local stability conditions have reached the unique equilibrium, sug-
gesting that the domain of attraction may indeed be the whole space. These
preliminary linear results are useful to guide parameter selection.
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Fig. 4. Split view of the FAST TCP window update mechanism.

The estimate is formed from queueing delay samples
measured at each acknowledgment arrival, times for the

th update of (5). Denote discrete time at this timescale by ,
with inter-packet time . With the obvious abuse of notation,
we refer to values at this sampling time as etc.. The esti-
mator is

(6a)

(6b)

This non-linear filter has the characteristic of a low-pass filter,
with a dynamic time constant of . In the current imple-
mentation the filter parameters are and [39].

A split view of the window dynamics is given in Fig. 4.
The window size, , is used by the transmission control,

which decides the source sending rate based on and the
rate of the received acknowledgments. Note that the transmis-
sion control is included in the (self-clocking) link model [14].
No anti-aliasing filtering is performed prior to the sampling, and
the down-sampling in the FAST TCP implementation [39]. The
zero-order hold (ZOH) block is a function defined by

(7)

A sampler with sampling instants is described by

(8)

where is a Dirac impulse. The two sampling rates present
in the system are related by

(9)

where is the value of just before the start
of the th RTT. Note that due to the in (9), the relation
between the two sampling times is time varying.

For the linear stability analysis, the dynamics (5) and (6) are
modeled as

(10)

valid for small perturbations around the equilibrium. Here,
reflects both and the sampling processes. This is derived in
Appendix C. The first part corresponds to the window update

mechanism; while the second filter models the phase-loss due
to the estimation procedure and the various holds in the system.

Finally, the backward transport delays are modeled around
equilibrium as

(11)

where is the equilibrium backward queueing delay.

B. Loop Gain

Combining the source dynamics (10) and the Laplace trans-
form of the communicated corrupted price (queueing delay)
(11) with the queue dynamics transfer function (4), results in
a negative feedback system with open loop transfer function

(12a)

where

(12b)

(12c)

(12d)

Note that is the number of packets a source tries to queue in
the network, thus the queueing delay in equi-
librium, and hence the last inequality in (12b).

Remark 1: We will sometimes let ; it is then assumed
that with fixed, so that is well defined.

When no cross traffic is present, i.e., , we can interpret
as a weighted harmonic mean value of the round trip delays .

In particular, when all flows have equal , giving ,
is the harmonic mean of .

C. Stability Analysis

The full model (12) of the dynamics of FAST with the joint
link model contains details concerning the equilibrium queueing
delay and the RTT estimator. As a first step toward proving sta-
bility, Lemma 1 abstracts away that detail, to give a condition
on the gain parameter sufficient for stability.

Lemma 1: Denote the half plane under the line that passes
with slope by

(13)

Let , , be stable transfer functions, and

Then a system with open loop gain

(14)
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Fig. 5. Numerical solution of ��� � ����� as a function of the filter param-
eter � � �.

where , satisfies for all ,
and is closed loop stable for any , .

Proof: By definition, is equivalent to

(15)

Substituting (14) and noting that

(16)

condition (15) can be further rewritten as

(17)

which is equivalent to

(18)

Since by hypothesis, and furthermore
by definition, it is established that

for all . Thus, since

the Nyquist curve for cannot encircle . The stability of
implies that is open loop stable, and hence the

system is closed loop stable by the Nyquist criterion.
The construction used for Lemma 1 is depicted in Fig. 6, for

, , , at .
Remark 2: The techniques used here are significantly dif-

ferent from ones in the existing literature on linear stability
of TCP, in two respects. First, the usual approach is to find a
convex hull that contains all individual curves and then
argue that any convex combination of them is still contained by
the convex hull. See for example [35], [24], [6]. However, the
proof of Lemma 1 deals directly with instead of .
Second, for each , a separate region is found to bound
away from the interval . That is, the half plane
defined by (13) depends on . In existing works, convex regions
are typically used to bound the whole curves and hence are inde-
pendent of . One exception is [26], where the frequency range

Fig. 6. An example of a line of slope ������� which bounds ��	��, denoted
by the center cross. Note that the individual terms � �	��, denoted by the in-
dividual crosses, are not all below this line.

is divided into two parts and different convex regions are used in
the two parts. These two features lead to tighter bounds, which
is necessary for the analysis of this problem.

In the FAST model (12c), the case when the queueing delay
is is intuitively the least stable, as increasing reduces
the gain and introduces phase lead, both of which intuitively
improve stability. To formalize this, Lemma 2 will be used to
place bounds on the values of used in Lemma 1.

Lemma 2: Consider a complex half-plane
containing 0. Consider also a function

with where and are continuous
decreasing real functions, is unbounded as , and

is the angle between the edge of the half-
plane and the tail of the spiral . If then

for any ,
.

In particular, if then taking gives

(19)

for any , .
Proof: First, consider the tail of the spiral, where

. The image of the tail (under the rotation and
scaling) is entirely in the sector ,
which is entirely in by the definitions of and .

The next step is to show that the image of any point with
is also within . Since is convex and , it suffices

to show that for any , where .
(Note that since .) But as is decreasing,
whence since is decreasing. The result follows
since .

The special case (19) follows when , .
It is now possible to show that FAST is stable in single-bot-

tleneck networks.
Theorem 3: If for all , satisfies

(20)

then a system with loop gain given by (12) is stable for
arbitrary , , , for all ,
and arbitrary .
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Proof: Let

so that (12) becomes

Further, let

(21)

Noting that , Lemma 4 in Appendix D
implies

By Lemma 2, By (20),

(22)

and the result follows from Lemma 1 with
.

Remark 3: Note that an effective value of is used for
the FAST implementation [39]. For this case, Theorem 3 imme-
diately establishes FAST’s stability for any pattern of round trip
delays. This explains why FAST has been stable for all experi-
mental cases studied.

Theorem 3 does not require , or to be equal for all flows.
Flows may adjust and independently, for
example using smaller if their estimates of are more noisy
or smaller if smooth rate changes are preferable to a rapid
response.

Numerical solution of as a function of ,
plotted in Fig. 5 shows several interesting features. The bound
in (20) has 0.6% slackness. The minimum value is approxi-
mately , while the right hand
side of (20) is approximately . The bound will now be
further relaxed for several interesting cases of .

For , . Thus, the system is
stable for all . The implementation of FAST uses

. Taking the dynamics of the estimator and the hold functions
into account, this can be reasonably approximated by (10) with

. This suggests that FAST TCP is
stable for , as stated in [39].

Ignoring filtering and phase loss due to hold functions in
the system, . Then the bound on can be relaxed
marginally to , where

. This agrees with the earlier analysis of this case
in [33]. More importantly, the simplification allows
further insight into the impact on stability of the distribution of
round trip times in the network.

Theorem 3 is proved by finding a uniform bound for all flows’
. If we have more detailed knowledge about the round trip

Fig. 7. Maximum value for � for stability with RTTs uniform in �����.

delay distribution, we may achieve tighter bounds. If (18) holds
for all , then (14) is closed-loop stable. When and

, the window mechanism is much slower than the rest of
the source dynamics, and is hence dominant. When (see
Remark 1) and , then (18) holds if

(23)

This was studied in detail in [33]. Let us now explore it for some
special cases.

1) : If there is a single flow, in (12) and
the joint link model degenerate to the static link model. In this
case, FAST is stable for all . In this case, (20) and
(23) are loose simply because the frequency, ,
which minimizes , does not coincide with a frequency
at which the Nyquist plot of crosses the real axis.

2) : Consider two FAST flows with (corre-
sponding to the current practice that is identical for all flows).
Write , where measures the heterogeneity. Define

(24)

From (23), a sufficient condition for stability of (12) is .
It was stated in [33] that increases from to
a peak of 1.294 at and then decreases towards
as . Closer analysis [15] shows that, while the values
tabulated in [33] are largely correct, is discontinuous, and
bounded above by 1 for irrational .

3) : In reality, the link is likely to be shared by many
flows. It is then interesting to find the statistical mean value of
the stability bound for those scenarios. We will now consider the
case of many flows with continuously distributed RTTs, letting

with fixed.
Let , and let all be in the range

, with possibly infinite. If there are many flows
with RTTs drawn from a continuous distribution, then applying

to (23) gives

(25)
Noting that
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Fig. 8. Nyquist plot of the system of Section III-D.

and setting , (25) becomes

(26)

(27)

where and denotes derivative. For stability,
this must hold for all .

As an example, assume RTTs follow a uniform distribution.
As units of time are arbitrary, this can be modeled without loss
of generality as

otherwise,
(28)

with . In that case, (26) becomes

(29)

(30)

It is easily verified [33], that the right hand side approaches
as , while for the bound is strictly looser

as shown in Fig. 7, and tends to for large .

D. A Counter-Example

Because Theorem 3 proves stability for so close to 1, it is
tempting to seek to show stability for all . However, the
following example breaks that hope. It illustrates the tightness
of our result with the current model and how heterogeneity can
potentially hurt stability.

1) Example 4: A Counter Example: Consider a network
with a single bottleneck link carrying two flows. The flows
have RTTs and , with
and with . This gives

, , and .4

With , in contrast to the implemented , (12)
is unstable in this extreme case. Instability arises because of
the high heterogeneity between the RTTs of the flows, and the
greater heterogeneity between the weights given to the flows.

The Nyquist curve for this network with is shown with
the solid line in Fig. 8(a). The dashed lines show the individual
curves and , and the triangles show these
curves for the frequency at which first crosses
the real axis. The magnified view of this curve near the point

in Fig. 8(b) shows that the Nyquist curve does indeed
encircle and the resulting system is unstable.

In this example, most of the weight is given to flow 2, and the
instability occurs when , minimizing (23) and giving

(see for example Fig. 5). Although is
very small, is even smaller, making the coefficient in
(23) negligible, and allowing (23) to be violated by the term.
However, the extra factor of provided by the numerator of
the first factor in (12c) allows the imaginary part of to
balance that of where the curve crosses the axis.

This example shows that two flows are sufficient to cause
instability, even though a network with a single flow (or mul-
tiple homogeneous flows) is always stable. It is also possible
to construct a network of three flows with slightly less extreme
parameters ( , , ,

, and ). The final
Nyquist plot looks very similar to that of Fig. 8(a).

E. Closed Loop Validation

This subsection studies cases when . Stability predic-
tions based on the three different link models are compared with
packet level simulations, complementing the open loop valida-
tion in Section II-B. This example has moderately heteroge-

4This example is rather extreme. The fluid approximation breaks down as
packets are not small relative to �; in the real system, � would be dominated by
packetization jitter. However, the example is of theoretical interest as it gives
an upper bound on the � which can yield guaranteed stability of the model,
to complement the lower bound of Theorem 3. Unstable cases with realistic
parameters appear in Section III-E.
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Fig. 9. Queue trajectories with critical step sizes predicted by the integrator
link model and the static link model.

neous RTTs; qualitative differences occur for highly disparate
RTTs, as shown in [32].

1) Example 5: Closed Loop Validation: Two FAST TCP
flows share a single link with capacity of 10000 pkt/s. The prop-
agation delays of the two flows are 400 ms and 700 ms. Both
flows use and . The open loop transfer func-
tions for all three models and the critical step size ( ) for sta-
bility predicted by those models are summarized below. The in-
tegrator link model predicts a critical step size much smaller
than that from the static link model, while the joint link model
yields a prediction in between as expected.

• Integrator link model:

(31)

• Static link model:

(32)

• Joint link model:

(33)

We now report NS-2 packet level simulations [7].5Fig. 9
shows the queue trajectories with , the
critical step size to maintain stability predicted by the integrator
link model and the static link model. It is clear that the queue
is not stable with , which means the static link model
is too optimistic for stability analysis. We further show queue
trajectories with in Fig. 10. The case with

is still stable which suggests that the integrator link
model is too conservative, at least in this case, while the queue
starts to oscillate with , suggesting that the critical
step size is indeed approximately . The fluctuations
are not due to burstiness; fluctuations of the same magnitude
were observed in the window sizes.

5To validate the link model, the code was modified to update the window once
per RTT, and for modeling simplicity the RTT estimate was evaluated over 0.1
RTT. All queue trajectories are plotted after initial transients, to emphasize the
local stability of the congestion avoidance phase.

Fig. 10. Queue trajectories around critical step sizes.

IV. CONCLUSIONS AND FURTHER WORK

We have proposed and analyzed a link model which captures
the queue dynamics when congestion windows of TCP sources
change. The model is shown to be much more accurate than ex-
isting ones. It agrees with the known static link model when
flows’ round trip delays are similar, and approximates the stan-
dard integrator link model when the heterogeneity of round trip
delays is significant. Using this new model, we have shown that
FAST TCP is always linearly stable with a single bottleneck
link. This extends the existing stability results on homogeneous
FAST flows to cases with heterogeneous delays and resolves
the notable discrepancy between empirical observations and ex-
isting theoretical predictions. The analysis highlights the critical
role of self-clocking in TCP stability and the scalability of FAST
TCP with respect to delay. The proof technique used here is new
and less conservative than the existing ones, which is necessary
for the analysis of this problem. Throughout this paper, various
open loop and closed loop simulations are used to validate our
predictions. In particular, we are able to predict the stability re-
gion of the closed loop system accurately compared to packet
level simulations.

There are several possible directions in which to extend this
work. Although the joint link model (3) improves on previous
models by considering the window-based self-clocking, it still
estimates flow rates by an Euler approximation over one RTT.
This approximation does not become exact in the fluid limit
as the inter-packet time vanishes. Even more accurate (but less
tractable) continuous time models could be derived from dis-
crete time models like (34), which is very accurate at the sam-
pling points. Preliminary results for a single flow [15] yield a
differential algebraic equation, which reduces to the static, in-
tegrator and joint link models under different orders of Padé
approximation. The model remains to be extended to general
networks of multiple flows and multiple links, and tractable ap-
proximations remain to be found. Another possible extenstion
is to investigate things beyond stability, e.g., it will be of great
interest to see its prediction of performance, such as queue dis-
tribution.

APPENDIX A
SIMPLIFIED JOINT LINK MODEL DERIVATION

This section outlines the derivation of (3). For simplicity,
it considers a single flow with no forward delay sending over
a single bottleneck link with static non-window-based cross
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traffic. For more details, including the more general multiflow
case with time varying cross traffic, see [14].

Consider the evolution of the queue at time instants where
. The term “window size” here denotes

the actual number of outstanding packets in the network, which
may in practice sometimes be different from the TCP congestion
window. The amount of data from the source that arrives to the
queue in the interval corresponds to the window size
at the end of that interval, . During the interval,
cross traffic will also have arrived, and data will have
departed the queue. Dividing these contributions to the change
in queue size by to convert to delay, the queueing delay is
updated according to

(34)

Note that the sample time (i.e., round trip delays)
of the discrete time dynamical system (34) is non-uniform. This
model is known from [14] to be extremely accurate at its sam-
pling instants.

To arrive at a continuous time approximation of the discrete
model that includes a direct term, (34) can formulated as

(35)

and then, by the means of a first order Euler approximation of
the derivative, approximated in continuous time as

(36)

Note that the accuracy of the derivative approximation depends
on the RTT rather than the number of packets in the system (the
window size). Thus this modeling error remains even in the fluid
limit. Solutions to this limitation are currently under investi-
gation. However, the joint link model is shown to be accurate
by validation examples in [14], and its multiflow version (3) is
shown in Examples 1–3 of Section II to be an improvement on
its predecessors.

APPENDIX B
FAST TCP STABILITY UNDER THE INTEGRATOR MODEL

It was stated in [37] that the integrator link model predicts
that for all , there is a such that a single FAST flow will
be unstable. This was the original motivation for proposing the
joint link model (3). However, the model (1), also an integrator,
actually predicts that FAST should be stable for all . This
follows from Lemma 1, as the second term in (21) disappears.
Comparing this to the counter-example in Section III-D shows
that the more accurate model (3) predicts FAST to be less stable
in the worst case than a pure integrator (1) does.

The instability predicted in [37] was in fact due to the details
of the integrator link model studied. There are two important dif-
ferences between the model of [37] and (1): (a) an extra factor
of in the gain in [37], (b) an additional delay of in the de-
nominator in [37].

We will now show that the extra factor of in the gain in [37]
is an error. When that is fixed, the model (still with the additional

Fig. 11. Phase-margin plot.

delay of ) in fact predicts that for some there is a maximum
for stability, while for others a single flow is always stable.

Modeling the link and ignoring estimator dynamics as in [37],
the loop gain for the single source case is

(37)

Using , the poles of the closed loop system are given
by the characteristic equation

(38)

where

(39)

We can study the poles of the closed loop system (i.e., the zeros
of the characteristic equation) via the Nyquist theorem using
either the loop gain or the transformed loop gain . Due
to the exponential function in the denominator in it is more
convenient to use in the analysis. Note that is similar
to the loop gain studied in [37]; what differs is the extra factor
of used in [37], which arose from the use of a round-trip-time
timescale for the window dynamics and an absolute timescale
for the link dynamics, without explicit conversion. Let .
For the case of , the argument of the numerator of (39)
when evaluated at is

(40)

From (39), stability depends on the ratio between the queue
delay and the round trip delay, i.e., . Taking arbitrarily
large gives , and since , the
system must encircle , and is hence not stable by the
Nyquist theorem. Fig. 11 shows the phase-margin for different
ratios for different ’s. Observe that for the model
system is stable for all and .

This shows how sensitive stability is to the delay in the link
model. To justify the absence of delay in the denominator of
(3), note that this is the case in which the pole and zero cancel,
to give exact agreement with the initial rise experimentally ob-
served in Figs. 1–3.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on May 6, 2009 at 04:33 from IEEE Xplore.  Restrictions apply.



JACOBSSON et al.: IMPROVED LINK MODEL FOR WINDOW FLOW CONTROL 561

Fig. 12. Continuous time equivalent window control.

APPENDIX C
LINEAR CONTINUOUS TIME SOURCE DYNAMICS

Since sources work in time-scales of round trip delays, which
are usually heterogeneously distributed, and there are different,
time-varying sampling times within the source dynamics, we
derive continuous time models that are amenable to analysis and
equivalent to (5) and (6) at sampling instants. These are used to
derive a continuous time approximate mapping ,
valid for small perturbations.

Consider first the window control block of Fig. 4. We are
seeking the nonlinear function in Fig. 12. Note that
(5) has the form

(41)

Using this insight we assign

(42)

Since is constant over the sample interval ,
the state at is given by

where is the observed round trip
delay. Identification with (41) yields

(43)

(44)

where , so that (42) becomes

(45)

Consider now the estimator block in Fig. 4, whose split view
given in Fig. 13 describes . Deriving from (6)
is analogous to deriving from (5), cf. (41)–(45). Repeating
this procedure, and equating to (6) instead of (5) at sampling
instants, gives

(46)

where and is the sampled-and-
held (cf. (6b)).

Assuming that is estimated accurately, the system can be
linearized around an equilibrium point . Note that, by
(46), the feedback loop in Fig. 4 will not be active in the linear
case since in equilibrium. In a high capacity, large
latency network, we typically have and

. Thus and
. Furthermore, the sampling intervals

Fig. 13. Continuous time split view of the estimator dynamics.

are approximately time invariant around the equilibrium, i.e.,
and for each individual source. Under

these assumptions, .
Replacing variables by perturbations from the equilibrium, the
linearized versions of (45) and (46) become

(47)

(48)

Assuming constant sample intervals , the Laplace transform
of (8) is unity, while that of the zero-order hold (7) is

(49)

taking a Padé approximation of order (1, 1) of the exponential.
Thus, under the high capacity large delay assumption, the
approximate time constant of the individual zero-order holds
associated with the estimator dynamics is , i.e., the
zero-order hold on the delay input in Fig. 13. This is substan-
tially faster than the time constants of the estimator dynamic
(48), which is , and of the window dynamics (47), which
is . Therefore the dynamics of this zero-order hold can
be ignored. However, the approximate time constant of the
zero-order hold in Fig. 12 is , which is of the same order
of magnitude as the estimator dynamics time constant (note
that the time scales of the two dynamics are separated when

). In conclusion, by adding the filter

(50)

to the source window control dynamics, with
, the model includes phase-loss due to the queueing delay

estimation and the different holds in the system.

APPENDIX D
BOUNDS ON

The main result of this appendix is Lemma 4, the proof of
which uses two additional lemmas. For details, see [15].

Lemma 4: For all and ,

(51)

where is given by (21). More specifically,

(52)
where
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(53)

and

(54)

Proof: The proof considers separately in the intervals
, and , and applies Lemma 5.

For , (57) does not hold, and since ,
Lemma 5 gives , whence (51).

For the other two cases, note that
for all , , whence by Lemma 5, for all ,

(55)

For , this establishes (51), since the right hand
side is increasing in .

For the remaining case, using the definition (58), Lemma 6
establishes that

(56)

giving (51) in all three cases.
Lemma 6 shows the ’ ’ of (53). To obtain (52), note first that

the value on the right hand side is achievable. For ,
as shown above. For , the min-

imum is by Lemma 6. To see that is not minimized by
some , observe that (55) is tight as for the

which solves . Thus
by (63) of Lemma 6. Since the right hand

side of (55) is increasing, no can be less than for
, giving (52).

Lemma 5: For all and , if

(57)

then

(58)
otherwise,

(59)

while the right hand side of (58) is a lower bound.
Proof: First consider the stationary points of with

respect to . Any stationary point satisfies

This gives the only stationary extrema at

(60)

Fig. 14. Dotted lines: � ����� for logarithmically spaced � � ��� �����.
Solid line: � ���. Dashed line: �

�
� � � ��.

and consequently

(61)

Noting that , the ’ ’ of the
yields a negative value for any while the ’ ’ yields a
positive value. Thus, if the infimum of is at a stationary
point, it is at .

The infimum will be either at a stationary point or for
at the boundary of the feasible region . Clearly

and
. This establishes that

is a lower bound.
If then is feasible, and (58) is es-

tablished. Otherwise, the infimum is on the boundary, and (59)
follows from (21), taking the infimum rather than the minimum
since the feasible region is half open.

The result of Lemma 5 is illustrated in Fig. 14.
Lemma 6: For any , with given by (53),

(62)

Moreover, and

(63)

Proof: First, consider the interval . Now
, and furthermore

(64)

This implies that has at least one extremum in the
considered interval corresponding to a local maximum. Hence

has at least one solution in the same domain. But
since, for all ,
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the solution must be unique, so

(65)

Now, consider the interval . To establish (62), it is
now sufficient to show that

(66)

First, note that because and
. Since and we only need to

check if there exist any positive local maxima. Any extremum
is given by solving

(67)

Now

(68)
over . Thus (67) has at most one feasible
solution. But

(69)

implies that this stationary point is a minimum, after which
is increasing. Thus

(70)

and thus (62).
By (68) and (69), is increasing on , but ,

whence for . This establishes (63). Moreover,
, whence .
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