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Abstract. Content Analysis System (CoAnSys) is a research framework
for mining scientific publications using Apache Hadoop. This article de-
scribes the algorithms currently implemented in CoAnSys including clas-
sification, categorization and citation matching of scientific publications.
The size of the input data classifies these algorithms in the range of big
data problems, which can be efficiently solved on Hadoop clusters.
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1 Introduction

Growing amount of data is one of the biggest challenges both in commercial and
scientific applications [1]. General intuition is that well embraced information
may give additional insight into phenomena occurring in the data. To meet this
expectation, Google proposed the MapReduce paradigm, which open-source im-
plementation is Apache Hadoop. The ecosystem of Apache Hadoop gives a way
to efficiently use hardware resources and conveniently describe data manipula-
tions. In the Centre for Open Science (CeON) we employed that solution and
produced Content Analysis System (CoAnSys) – the framework for finer scien-
tific publication mining. CoAnSys enables data engineers to easily implement
any data mining algorithm and chain data transformations into workflows. Dur-
ing the development of CoAnSys, the set of good implementation practices and
techniques has clarified [2]. In this article we share a practical knowledge in
the ground of big data implementations, based on the three use cases: citation
matching, document similarity and document classification.

The rest of this paper is organized as follows. Section 2 presents an overview
of CoAnSys. Section 3 describes algorithms developed at CeON, which are well
suited for MapReduce paradigm. Section 4 contains conclusions and future plans.
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2 CoAnSys

The main goal of CoAnSys is to provide a framework for processing a large
amount of text data. Currently implemented algorithms allow for knowledge ex-
traction from scientific publications. Similar software systems include Behemoth
1, UIMA [3], Synat [4], OpenAIRE [5] and currently developed OpenAIREplus
[6]. The difference between CoAnSys and aforementioned tools lies in the imple-
mentation of algorithms. CoAnSys is used to conduct a research in text mining
and machine learning, all methods implemented in that framework have been
already published or will be published in a future. An architecture overview of
CoAnSys is illustrated in Fig.1.

Fig. 1. A generic architecture of CoAnSys.

While designing the framework, we paid a close attention to the input/output
interfaces. For this purpose CoAnSys employs Protocol Buffers2 - a widely used
method of serializing data into a compact binary format. Serialized data is then
imported into the HBase using REST protocol. This allows for simultaneous im-
port of data from multiple clients. On the other hand, querying a large number of
records from HBase is slower than performing the same operation on a sequence
file stored in the HDFS. Therefore, in the input phase of CoAnSys workflow, the
data is copied from an HBase table to an HDFS sequence file and such format
is recognized as a valid input for the algorithms.

Six modules currently implemented in CoAnSys are illustrated in the Algo-
rithms box in Fig.1. Each module performs a series of MapReduce jobs that are
implemented in Java, Pig3 or Scala. Apache Oozie4 is used as a workflow sched-
uler system that chains modules together. Each module has well defined I/O

1 https://github.com/DigitalPebble/behemoth
2 http://code.google.com/p/protobuf/
3 http://pig.apache.org/
4 http://oozie.apache.org/
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interfaces in the form of Protocol Buffers schemas. This means, that sequence
files are also used as a communication layer between modules. The output data
from each workflow is first stored as an HDFS partial result (sequence file con-
taining records serialized with Protocol Buffers) and then it is exported to the
output HBase table where it can be accessed via REST.

Even though CoAnSys is still in an active development stage, there are at
least three ongoing projects that will utilize parts of CoAnSys framework. POL-
on5 is an information system about higher education in Poland. SYNAT6 is a
Polish national strategic research program to build an interdisciplinary system
for interactive scientific information. OpenAIREplus7 is the European open ac-
cess data infrastructure for scholarly and scientific communication.

3 Well-suited Algorithms

In this section a few examples of MapReduce friendly algorithms are presented.
MapReduce paradigm put a certain set of constraints, which are not acceptable
for all algorithms. From the very beginning the main afford in CoAnSys have
been put on document analysis algorithms, i.e. author name disambiguation [7, 8,
9], metadata extraction [10], document similarity and classification calculations
[11, 12], citation matching [13, 14], etc. Some of algorithms can be used in Hadoop
environment out-of-box, some need further amendments and some are entirely
not applicable [15].

For the sake of clarity, the description of the algorithms focuses on the imple-
mentation techniques (such as performance improvements), while the enhance-
ments intended to elevate accuracy and precision are omitted.

3.1 Citation Matching - General Description

A task almost always performed when researching scientific publications is the
citation resolution. It aims for matching citation strings against the documents
they reference. As it consists of many similar and independent subtasks, it can
greatly benefit from the use of MapReduce paradigm. We may describe citation
matching in the following, illustrated in Fig.2, steps:

1. Retrieve documents from the store.
2. Map each document into its references (i.e. extract reference strings).
3. Map each reference to the corresponding document (i.e. the actual match-

ing).
(a) Heuristically select best matching documents (map step).
(b) Among them return the one with the biggest similarity (but not smaller

than a given threshold) to the reference (reduce step).
4. Persist the results.

5 http://polon.nauka.gov.pl
6 http://www.synat.pl/
7 http://www.openaire.eu/
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Fig. 2. Citation matching steps. At first, the documents from appropriate Sequence-
File are read and their metadata is extracted. Then, in the first step of citation match-
ing, a heuristic is used to find documents that may match each citation. In the next
step, the best match for each citation is selected. Finally, the results are persisted in a
SequenceFile. Note that steps that transform one entry into many can be implemented
as mapping and those transforming many into one as reduction.

3.2 Citation matching - Implementation Details

Index Heuristic matching is done using an approximate author index allowing
retrieval of elements with edit distance [16] lesser or equal to 1. We have managed
to design it to fit MapReduce paradigm and Hadoop environment in particular.
It is implementing the ideas presented by Manning et al. in Chapter 3 of [17].

To store the index, we needed a data structure that would enable fast retrieval
as well as scanning of sorted entities. Hadoop MapFile turned out to be a good
solution. It extends capabilities of a SequenceFile (which is a basic way of storing
key-value pairs in the HDFS) by adding an index to the data stored in it. The
elements of a MapFile can be retrieved quickly, as the index is usually small
enough to fit in a memory. The data is required to be sorted which makes
changing a MapFile laborious, yet it is not a problem since our indices are
created from scratch for each algorithm execution. Hadoop exposes an API for
MapFile manipulation which provides operations such as sorting, entity retrieval
and data scanning.

Distributed Cache Every worker node needs to access the index (the whole
index, not just a part of MapFile). It seemed, therefore, to be a good idea to store
it in the HDFS. Unfortunately, this approach has a serious performance issues,
because the index is queried very often. The speed of a network connection is
a main bottleneck here. While seeking for a better solution, we have noticed
the Hadoop Distributed Cache. It allows to distribute some data among worker
nodes so that it can be accessed locally. The achieved performance boost was
enormous - citation matching on the sample of 2000 documents worked four
times faster.



Scala and Scoobi As MapReduce originates in a functional programming
paradigm, one might suppose it would fit well Scala language. Indeed, during
citation matching implementation, we have exercised Scoobi8 library which en-
ables easy Hadoop programming in Scala by providing an API similar to Scala’s
native collections. This way a very clean code can be written. In spite of great
reduction of the boilerplate, Scoobi does not restrict access to some low level
Hadoop features. When one desires complete control over job execution, though,
the default Hadoop API may need to be used.

Task Merging Fig.2 shows subsequent map steps (which could be implemented
as MapReduce jobs with zero-reducers). Sometimes it might be beneficial to
merge such tasks, as effectiveness may be improved by avoiding intermediate
data storage and additional initialization cost. That is what Scoobi tends to do
when computing an execution plan. This leads to a parallelism reduction, which,
in turn, can negatively impact the performance.

For instance, suppose we want to process two documents, first containing
one citation and second containing fifty. In addition, let’s assume that we are
using the cluster of two nodes. If citation extraction and heuristic matching
steps are merged, then the first mapper would extract and match one citation
and the second would have to process fifty of them. On the other hand, if the
tasks remain independent after citation extraction and before actual matching,
a load balancing will occur. As a result, a citation matching workload will be
more equally distributed. Unfortunately, Scoobi does not allow for task merging
prevention and eventually this part of the process has been implemented using
the low-level Hadoop API.

3.3 Document Similarity - General Description

A good illustration of the well suited MapReduce problem is the computation
of a document similarity in a large collection of documents, assuming that the
similarity between two documents is expressed as the similarity between weights
of their common terms. Such an approach divides the computation into two
consecutive steps:

1. the calculation of weights of terms for each document

2. the invocation of a given similarity function on weights of terms related to
each pair of documents

In our current implementation, the term frequency inverse-document frequency
(TFIDF) measure and the cosine similarity have been used to produce weights for
terms and calculate their similarity respectively. The process is briefly depicted
in Fig.3.

8 http://nicta.github.com/scoobi/
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Fig. 3. Document similarity steps. At first, each document is split into terms
and the importance of each term to a document is calculated using TFIDF
measure (resulting in the vector of weights of terms for each document).
Then, documents are grouped together into pairs, and for each pair, the
similarity is calculated based on the vectors of weights of common terms
associated with the documents.

Term Weighting Algorithm TFIDF is a well-known information retrieval
algorithm that measures how important a word is to a document in a collection
of documents. Generally speaking, the word becomes more important to a doc-
ument, if it appears frequently in this document, but rarely in other documents.

Formally, TFIDF can be described by Eq.1-3.

tfidfi,j = tfi,j ∗ idfi (1)

tfi,j =
ni,j

∑

k nk,j

(2)

idfi = log
|D|

|d : ti ∈ d|
(3)

where

– ni,j is an occurrence of a term ti in document dj
– D is a corpus of documents
– d : ti ∈ d, a document d containing a term ti

The way to use TFIDF in the document similarity calculation is presented in
Eq.4

cosineDocSim(dx, dy) =

∑

ti∈dx∩dy

tfidfi,x ∗ tfidfi,y

√

∑

ti∈dx

tfidf2

i,x ∗
√

∑

tj∈dy

tfidf2

j,y

, for x < y < |D| (4)



For each document d, this algorithm produces the vector Wd of term weights
wt,d which indicates the importance of each term t to the document. Since it con-
sists of separate aggregation and multiplication steps, it can be nicely expressed
in the MapReduce model with several map and reduce phases [18, 19, 20]. In ad-
dition, several popular techniques that increase an efficiency and a performance
of the algorithm have been deployed:

1. stop words filtering (based on a predefined stop-word list)
2. stemming (the Porter stemming algorithm [21])
3. applying n-grams to extract phrases (considering a statistically frequent n-

gram as a phrase)
4. removal of the terms with the highest frequencies in a corpus (automatically,

but with a parametrized threshold)
5. weights tuning (based on the sections where a given term appears).

Similarity Function Having each document represented by the vector Wd of
term weights wt,d, one can use many well known functions (e.g inner product,
cosine similarity) to measure similarity between the pair of vectors. In our im-
plementation, we follow ideas from [22], but provide more generic mechanism to
deploy any similarity function that implements one-method interface specified by
us i.e. similarity(id(di), id(dj), sort(wti,di

), sort(wtj ,dj
)) (where id(di) denotes

document id, and sort(wti,di
) is a list of weights of common terms ordered by

terms lexicographically). The similarity function receives only terms that have
non-zero weights in both vectors, thus, the final score is calculated faster. This
assumption remains valid only for the pairs of documents that have at least one
common term.

3.4 Document Similarity - Implementation Details

Language Choice Although both algorithms, TFIDF and vector similarity,
can be easily expressed in the MapReduce model, they require multiple map
and reduce passes, what contributes to a verbose code. In order to make the
code easier to maintain and less time-consuming to implement, CeON team uses
Apache Pig (enhanced by UDFs, User Defined Functions written in Java).

Apache Pig provides a high-level language (called PigLatin) for expressing
data analysis programs. PigLatin supports many traditional data operations
(e.g. group by, join, sort, filter, union, distinct). These operations are highly
beneficial in multiple places such as stop words filtering, self-joining TFIDF’s
output relations or grouping relations with a given condition.

Input Dataset Document similarity module takes advantage of rich metadata
information associated with each document. Keywords needed to compute the
similarity are extracted from the title, the abstract and the content of a publica-
tion and then, they are combined with the keyword list stored in the metadata.
The information in which sections a given keyword appears is taken into account
during the computation of the final weights wt,d in the TFIDF algorithm. A user
may configure how important a given section is in the final score.



Additional Knowledge The main output of document similarity module is
the set of triples in form of 〈di, dj , simi,j〉, where di and dj are documents and
simi,j denotes the similarity between them. However, during the execution of
this module, an additional output is generated. It contains potentially useful
information such as:

– top N terms with the highest frequencies that might be considered as addi-
tional stop words

– top N terms with the highest importance to a given document
– top N articles with the lowest and highest number of distinct words.

3.5 Document Classification - General Description

Besides a natural application of document similarity to a basic, unpersonalized
recommendation system, it may also be used in a document classification based
on the k-nearest neighbors algorithm.

In the context of document classification, it is important to distinguish two
topics - a model creation (MC) and a classification code assignment (CCA),
each of which starts in the same way, as depicted in Fig.4. In the first step,
documents are split into two groups - classified and unclassified (in case of MC
both groups contain the same documents). Then, TFIDF is calculated for both
of these groups. Finally, document similarity between groups is calculated (ex-
cluding self-similarity) and for each document from unclassified group, n closest
neighbors are retained. After this initial phase, the subsequent step is different
for MC and CCA.

For MC, the classification codes from neighbors of a document are extracted
and counted. Then, for each classification code, the best threshold is selected
against given criteria, e.g. an accuracy or a precision to fit “unclassified” docu-
ments classification codes. Finally, the pairs 〈classification code, threshold〉 are
persisted.

In case of CCA, after extraction of the classification code, the number of
classification code occurrences are compared with a classification code threshold
from a model and retained if greater or equal.

3.6 Document Classification - Implementation Details

Sequence of Operations The amount of data to be transferred between
Hadoop nodes has a great influence on the performance of the whole work-
flow. Therefore, operations depicted in Fig.4 should be considered in two dimen-
sions. First one is the TFIDF calculation, for which only documents’ metadata
is needed. Subsequently, only information about document ID and its TFIDF
are needed. The second dimension refers to the splitting into subsets “unclas-
sified”/“classified” or into folds for the sake of n-fold cross validation. Because
division operations can be collapsed into one, it is important to put all of them
in the first place, followed by the document similarity calculations, and do not
place TFIDF calculation in between.



Fig. 4. The initial phase for Model Creation (MC) and Classification Code
Assignment (CCA). At first documents are split into “classified” and “unclassified”
group (for MC both groups contains the same metadata) and TFIDF measure is cal-
culated over the whole set. Then, cosine similarity is calculated between documents in
each group and n most similar “classified” documents are retained.

Language Choice For data scientists dedicated to implement and enhance
algorithms in MapReduce, it is crucial to take advantage of programming lan-
guages created specifically for MapReduce. Again, Apache Pig looms as the
natural candidate for document classification. Besides its strengths (predefined
functions, UDFs), it should be noted that Pig (as a MapReduce paradigm) lacks
some general purpose instructions like loops or conditional statements. How-
ever, it is easy to encapsulate Pig scripts into workflow management tools such
as Apache Oozie or simply to use Bash shell which offers such operations. More-
over, due to the presence of macro and import statements, one can abbreviate
a size of description by extracting popular transformations into macros and in-
serting them into separate files. In this approach, a variant of an operation (e.g.
a way of calculating document similarity) can be passed to a general script as a
parameter used in the import statement.

For the sake of optimization of memory utilization and calculation speed
improvement it is important to use specialized types of a general operation. In
case of join operation, there are dedicated types for joining small data with
a large one (“replicated join”), joining data with a mixed, undetermined size
(“skewed join”) and joining sorted data (“merge join”).

Data Storage The most utilized ways of storing data in the Apache Hadoop
ecosystem are Hadoop database - HBase and Hadoop file system - HDFS. When
massive data calculations are considered, then the better choice is the HDFS.
When many calculating units are trying to connect to the HBase, then not all
of them may be served before timeout expires. That results in a chain of failures
(tasks assigned to calculation units are passed from failed to working ones, which



become more and more overwhelmed by the amount of data to process). On the
other hand, such failure cannot happen when the HDFS is used.

Using HDFS in MapReduce jobs requires pre-packing data into Sequence-
Files, which store data in the form of 〈Key,Value〉 pair. To obtain the most
generic form, it is recommended to collect the key and value objects as a BytesWritable
class, where a value object contains data serialized as ProtocolBuffers. This ap-
proach makes it easy to store and extend schema of any kind of data. Our expe-
rience is that reading and writing 〈BytesWritable,BytesWritable〉 pairs, opposed
to Java and Scala usage, results in some complications in Apache Pig v.0.9.2.
In that case, one may consider to encapsulate BytesWritable into NullableTuple
class.

Workflow Management As mentioned previously, one of the best way to build
a chain of data transformations is to employ a workflow manager or a general
purpose language. The experiences with employing Apache Oozie and Bash were
strongly in favour of the former one. Apache Oozie is a mature solution, strongly
established in the Apache Hadoop ecosystem, aimed for defining and executing
(when triggered by a user, time event or data arrival) workflows. In fact, using
Bash or Python would require a burden of implementing Apache Oozie-like tool
e.g. for the persistence of an execution history.

4 Summary and Future Work

In this article we have described the experience gained in the implementation
of CoAnSys framework. Decisions we took in the development process required
about half a year of tries and failures. It is hard to find coherent studies of
different algorithms’ implementations and therefore we hope that this contribu-
tion can save time of people and institutions preparing to embrace MapReduce
paradigm and especially Apache Hadoop ecosystem into data mining systems.

This description is the snapshot of an on-going work, hence many more im-
provements and observations are expected to be done in a future.
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