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Among the tools and tehniques we use and develop are the following. We give a formulationof asymptoti degree sequenes via metris and onvergene of probability distributions. We useouplings to apply well-known results for sums of i.i.d. random variables in situations where a leani.i.d. ondition does not hold; in partiular, we ahieve bounds on large deviations for neighborhoodsizes of a breadth-�rst searh in a random graph. Our atual result on diameter uses our earlierresults [7, 8℄ on �-ore (espeially 2-ore) to develop a method of identifying and bounding theworst-ase distane between two onneted verties. For instane, in a random graph that has aonstant fration of verties of degree 1, suh a path will onsist of essentially a longest path (fromeah of two verties of degree 1) to just past the 2-ore, followed by a typial path aross the 2-ore.We also make extensive use of probability generating funtions (p.g.f.); using the p.g.f., we relatekey properties of the degree distribution of the 2-ore of a random graph to the degree distributionwith the giant omponent removed.Organization of this paper. In setion 2 we present bakground material on random variablesand random graphs. In setion 3 we desribe the CM (or on�guration model) algorithm forgenerating a random graph with a �xed degree sequene as well the CM �-ore algorithm from[7, 8℄ (other results are known for the �-ore problem [14, 6℄, but our results depend mainly onthe treatment in [8℄). In this setion, we also introdue an important tool in our analysis, the CMbreadth-�rst searh algorithm, and analyze its key properties in terms of neighborhood expansion. Insetion 4 we state and prove our diameter result. In setion 5 we briey desribe some appliationsof our main result.2 Preliminaries.2.1 Random Variables and Probability.In this setion we present some basi probabilisti de�nitions and notation. We adopt the on-vention that random variables and other random strutures are typeset in boldfae, and we writeprobabilities and expetations using the sript symbols P and E , respetively.We shall be dealing exlusively with disrete probabilities, and as suh nothing in this paper re-quires more than basi familiarity with elementary probabilisti onepts suh as random variables,probability distributions, et. Spei�ally, for any random element a drawn from a set A, we assumethat there exists a subset A0 � A suh that P[a = a0℄ > 0 for all a0 2 A0, and P[a 2 A0℄ = 1. Hene,we an safely disard all sets of measure zero, and use the terms \always" and \with probability1" interhangeably.2.1.1 Random variables, moments, and generating funtionsMost of the random variables we disuss will be de�ned on a partiular disrete set, namely, theset Z� = f0; 1; 2; : : :g of non-negative integers. In partiular, we have the following assumption.Assumption 2.1 Any probability distribution disussed in this paper is assumed to be a distributionon the set Z� unless otherwise spei�ed.We let � denote the set of all disrete probability distributions on Z�, and we refer to an elementof � as simply a distribution.Given a Z�-valued random variable X, the distribution of X is de�ned byDX(i) = P[X = i℄ (2)2



for all i 2 Z�. Conversely, for a distribution �, we letX� denote a random variable with distributionDX� = �. For Z�-valued random variables X;Y, we writeX d= Y (3)if DX = DY.Next, we introdue two standard tools used to desribe a random variable X� [9℄.De�nition 2.1 The k'th fatorial moment of X� isMk(�) = E [(X�)k℄ = 1Xi=0(i)k � �(i); (4)where (i)k = i(i� 1) � � � (i� k + 1).De�nition 2.2 The probability generating funtion (p.g.f.) of X� is the funtion �(z) = E [zX� ℄ = 1Xi=0 zi�(i) (5)for z 2 [0; 1℄.In general, all generi random variables are assumed to be independent unless ertain depen-denies are made expliit. For any integer n � 0 and any distribution �, we letXnX� (6)denote the sum of n independent random variables distributed aording to �. For any 0 � p � 1,we let 1p denote a Bernoulli random variable with P[1p = 1℄ = p and P[1p = 0℄ = 1� p.2.1.2 Conditional and random distributionsGiven Z�-valued random variables X;Y, for any i with P[Y = i℄ > 0, we de�ne the distribution ofX onditional on Y = i by D[XjY=i℄(j) = P[X = j j Y = i℄ (7)for all j 2 Z+. We note that the onditional distributionD[XjY=i℄ is not well de�ned if P[Y = i℄ = 0.Therefore, any statement whih spei�es a property of the onditional distribution D[XjY=i℄ \forall i" should be understood as meaning \for all i suh that P[Y = (i)℄ > 0."A random probability distribution on Z� (or simply a random distribution) � is a random elementdrawn from the set � of disrete probability distributions on Z�. Random distributions arise whenwe onsider the behavior of a random variable X onditional on Y without spei�ying a partiularevent of the form Y = i. Spei�ally, the random distributionDXjY = 8>><>>:D[XjY=0℄ if Y = 0D[XjY=1℄ if Y = 1... (8)is the the distribution of X onditional on Y. 3



Assumption 2.1 states that all probability distributions expliitly referened will be de�ned onthe set Z� of non-negative integers; the same is true of random distributions. Hene, an o�eran alternate haraterization of a random distributions. Spei�ally, we an onsider a randomdistribution � to be a set of R-valued random variables �(i) for i = 0; 1; 2; : : :, with the restritionthat 0 � �(i) � 1 for all i and Pi�(i) = 1.In addition to the �(i), a random distribution� also indues random variablesMk(�) and  �(z)for eah z 2 [0; 1℄ (de�nitions 2.1 and 2.2). In general, these random variables will be R-valuedrather than Z�-valued, so the de�nitions given in setion 2.1.1 for Z�-valued random variables willnot be appliable.2.1.3 Disrete random proessesFor any set A, an A-valued random proess is a sequene (a0; : : : ;an) of random elements drawnfrom A. The set A is the state spae of the random proess. Intuitively, a random proess an beonsidered as a single random element whose value hanges over time, so at denotes the state ofthe proess at time t. In situations where the time parameter t is lear from the ontext, we simplywrite a as an abbreviation for at.The history of a random proess at time t is the subsequene (a0; : : : ;at). A Markov hain isa random proess satisfyingP[at+1 = a j (a0; : : : at) = (a0; : : : at)℄ = P[at+1 = a j at = at℄ (9)for any sequene (a0 : : : at) and any element a. For any set A0 � A, the hitting time of the eventa 2 A0 is the random time de�ned by� [a2A0℄ = infft : at 2 A0g:2.1.4 Dominated distributions and ouplingsDe�nition 2.3 Let �; � be distributions. We say � dominates � and write �B � if, for all i,P[X� � i℄ � P[X� � i℄: (10)For random variables X;Y, analogous to our usage of X d= Y if DX = DY (as in equation 3), wewrite X dB Y if DX BDY and say X dominates Y in distribution.De�nition 2.4 Let X and Y be random variables. A oupling of X and Y is a pair of randomvariables (X0;Y0) de�ned on a ommon probability spae suh that X0 d= X and Y0 d= Y (as de�nedin equation (3)).Dominated distribution an also be understood in terms of ouplings as follows.Proposition 2.1 Let X;Y be random variables. Then X dBY if and only if there exists a oupling(X0;Y0) of X and Y suh that P[X0 � Y0℄ = 1.
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2.2 Random GraphsIn this setion, we de�ne the random graph model whih will be used throughout the paper. Agraph is a pair G = (V;E), where V is a set of verties and E is a set of edges. We shall treatgraphs as generi ombinatorial strutures, and aordingly, we make the following assumption.Assumption 2.2 All n-vertex graphs disussed in this paper are drawn on the same anonialvertex set Vn = fv1; : : : ; vng.This assumption will also hold for any other strutures introdued in this setion whih involve aset of verties.2.2.1 Con�gurations and Graphs.De�nition 2.5 An endpoint arrangement (or simply an arrangement) is a pair (V; S) where� V is a set of verties.� S is a set of endpoints; eah endpoint belongs to exatly one vertex.As disussed above, we shall work with a anonial n-vertex set Vn. Aordingly, we may simplifyour notation by dropping the referene to the vertex set, and simply refer to the set S itself as anendpoint arrangement. When using this abbreviation, we let n(S) denote the number of vertiesorresponding to the arrangement S.1Given an endpoint arrangement S:� S(v) denotes the set of endpoints whih belong to vertex v 2 Vn.� v(s) denotes the vertex to whih the endpoint s 2 S belongs.De�nition 2.6 A on�guration is a triple (V; S;E) where (V; S) forms an endpoint arrangementand E is a set of edges suh that eah edge e 2 E is a pair of endpoints fs1; s2g, and E forms aperfet mathing of S.Given a on�guration and an endpoint s 2 S, we denote by E(s) the endpoint mathed to s.A graph is naturally assoiated with a on�guration by assoiating an edge (v(s1); v(s2)) witheah pair of mathed endpoints (s1; s2). In this ontext, a graph an be onsidered an equivalenelass of on�gurations modulo permutation of endpoints assigned to the same vertex.In general, we shall analyze on�gurations diretly rather than graphs. For expository purposes,though, we prefer the simple and traditional term graph. Aordingly, if the ontext is lear, wemay abuse our terminology slightly and refer to a on�guration as a \graph."We adopt the onvention that the variable n will denote the number of verties jV j in anarrangement, and m will denote the number of endpoints jSj. Note that this di�ers from thetraditional onvention by whih m denotes the number of edges, whih would be half the numberof endpoints.The degree of a vertex v in an endpoint arrangement S is jS(v)j, the number of endpointsassigned to v. The degree of a vertex is denoted by dS(v), or simply d(v), if the set of endpoints Sis lear from the ontext. For an endpoint s, we also abbreviatedS(s) = dS(v(s))1Note that it is not (neessarily) the ase that n(S) an be determined by ounting the number of verties whihontain endpoints in S; there may be verties whih ontain no endpoints but are still inluded as part of the endpointarrangement. 5



and refer to this value as the degree of the endpoint s. The degree sequene of an arrangement Sis the sequene of degrees DS = (dS(v1); : : : ; dS(vn)).2.2.2 Random on�gurationsIn this subsetion, we desribe the on�guration model [3℄ for generating a random graph with aspei�ed degree sequene. For an endpoint arrangement S = (V; S), we let ES denote a uniformlyrandom mathing of the endpoints in S, and we de�ne an assoiated random on�guration byGS = (V; S;ES):For a sequeneD = (d1; : : : ; dn) of non-negative integers, we let SD denote an endpoint arrangementwith degree sequene D, and, with slight abuse of notation, we de�neGD = GSD = (V; SD;ESD):We say GD is a random on�guration with degree sequene D. We note thatGD is only well-de�nedif the sum of the degrees in D is odd. Aordingly, we de�ne a degree sequene to be a sequene Dwhere Pi di is even.Sine eah simple graph with degree sequene D ours with the same probability under theon�guration model, then onditioning on simpliity produes a uniformly random simple graphwith degree sequene D. The following fat follows from a result of MKay and Wormald [11℄Fat 2.1 If the maximum degree of a degree sequene is o(n1=3) and the average degree is �(1),then a random on�guration produes a simple graph with onstant probability.If a degree sequene D satis�es the onditions in fat 2.1, then for any graph property A,P�GD satis�es A �� GD is simple� = O �P�GD satis�es A�� :In general, we shall ignore the simpliity requirement and just study the random on�guration GD,noting that asymptoti results derived using the on�guration model are also appliable to randomsimple graphs if the maximum and average degree requirements is met.2.3 Asymptotis.In the previous setion, we de�ned the random graph GD for any degree sequene D. We seek tostudy suh random graphs asymptotially. Several authors, inluding Molloy and Reed [12, 13℄,and Aiello, Chung, and Lu [1℄, have aomplished this by reating in�nite sequenes D1;D2; : : : ofdegree sequenes, and examining limits as inlimn!1P[GDn satis�es A℄:(Here Dn is a degree sequene on n verties.) This involves a onsiderable amount of overhead,sine an entire sequene Dn must be spei�ed for eah value of n. We speify asymptoti degreesequenes similar to the smooth sequenes de�ned by Molloy and Reed [12, 13℄, but we make noexpliit referenes to sequenes of degree sequenes. Instead, we embed the set of degree sequenesin a topologial spae, and deal with onvergene in the topologial sense.We review some notation and terminology involving limits and onvergene in topologial spaes.Let X� be a topologial spae and onsider a subset X � X� and an element x� 2 X�. For any6



property P de�ned on the set X, we say P holds asymptotially as x ! x� if there exists aneighborhood Nx� of x� in X� suh that P holds for all x 2 Nx� \X.Consider a mapping x 7! yx from X to a topologial spae Y . For any element y 2 Y , we sayyx ! y as x! x�if, for any neighborhood Ny of y in Y , the property that yx 2 Ny holds asymptotially as x! x�.Consider mappings x 7! zx and x 7! z0x from X to R, and assume zx � 0 and z0x > 0 for x! x�.We reall the standard \big O" notation:� zx = O(z0x) as x! x� if there exists a onstant C > 0 suh that zxz0x < C holds asymptotiallyas x! x�;� zx = o(z0x) as x! x� if zxz0x ! 0 as x! x�;� 
, �, and ! are de�ned aordingly.Finally, as a onvention, we will often write asymptoti statements as follows:Assume x! x�. Then yx ! y.This statement is equivalent to yx ! y as x! x�.2.3.1 Asymptotis and probabilityIn this subsetion we disuss asymptoti statements involving probabilities and random variables.De�nition 2.7 For eah x 2 X, let Hx denote an event in some probability spae.1. We say Hx ours asymptotially almost surely (a.a.s.) as x! x� if P[Hx℄! 1 as x! x�.2. For a mapping x! nx from X to Z+, we say Hx ours with exponentially high probability(w.e.h.p.) in nx as x! x� if P[Hx℄ = 1� e�n
(1)x as x! x�.Next, we deal with probabilisti onvergene.De�nition 2.8 For eah x 2 X, let yx denote a random element in a topologial spae Y .1. We say yx ! y a.a.s. as x! x� if, for every neighborhood Ny of y in Y , the event yx 2 Nyours a.a.s. as x! x�.2. We say yx ! y w.e.h.p. in nx as x! x� if, for every neighborhood Ny of y in Y , the eventyx 2 Ny ours w.e.h.p. in nx as x! x�.Using de�nitions 2.7 and 2.8, we an link together a.a.s. and w.e.h.p. statements, as demon-strated in the following lemma for a.a.s.Lemma 2.2 Let X�; Y � be topologial spaes, let X � X� and Y � Y �, and let x� 2 X� andy� 2 Y �. For eah x 2 X, let yx be a random element in Y , and for eah y 2 Y , let Hy be anevent in some probability spae. Assume that yx ! y� a.a.s. as x! x� and that Hy ours a.a.s.as y ! y�.For eah x 2 X, de�ne an event Hyx suh thatP[Hyx j yx = y℄ = P[Hy℄:Then Hyx ours a.a.s. as x! x�. 7



Proof. For any � > 0, there exists a neighborhood Ny� of y� in Y � suh that if y 2 Ny� \ Y thenP[Hy℄ > 1 � �, and there exists a neighborhood Nx� of x� in X� suh that if x 2 Nx� \ X thenP[yx 2 Ny� ℄ > 1� �. It follows that P[Hyx ℄ > 1� 2�for x 2 Nx� , and sine � is arbitrary, the proof is omplete.We note that this lemma an be generalized in several ways to deal with w.e.h.p. onvergeneand various other onditions.2.3.2 Degree distributionsThe topologies we use to asymptotially speify degree sequenes will be de�ned impliitly viamappings from the set of degree sequenes to various topologial parameter spaes. The mainparameter will be the degree distribution, de�ned as follows.De�nition 2.9 For any degree sequene D = (d1; : : : ; dn), the degree distribution �D is de�ned by�D(i) = jfj : dj = igjn : (11)The degree distribution an be understood intuitively as follows. Given an arrangement S withdegree sequene D, if we hoose a vertex v uniformly at random from Vn, we haveDdS(v) = �D:Note that, from de�nition 2.1, M1(�D) gives the expeted degree of a vertex hosen uniformly atrandom (i.e. the average degree).For any distribution � with 0 < M1(�) <1, we de�ne an assoiated residual distribution by��(i) = (i+ 1)�(i + 1)M1(�) (12)for all i. If M1(�) = 0 we de�ne ��(0) = 1 and ��(i) = 0 for i > 1. For any degree sequene D, weabbreviate �D = ��D and refer to �D as the residual degree distribution of D. Sine M1(�D) <1for any degree sequene D (or any sequene of integers), �D is well de�ned. Intuitively, if we hoosean endpoint s uniformly at random from S, we haveDdS(s)�1 = �D:The term residual reets the fat that dS(s)� 1 ounts the number of endpoints whih belong tov(s) other than s itself.Our asymptoti spei�ations will rely mainly on the degree distribution �D of a degree sequeneD. However, the residual distribution �D is often more useful than �D in analyzing the CMalgorithm. Therefore, we shall be mindful of how our de�nitions a�et the behavior of the residualdistribution as well as the degree distribution.We now de�ne a family of metris on the set � of probability distributions on Z�.De�nition 2.10 The variation distane between distributions �; � 2 � is given byg�(�; �) = 12 1Xi=0 j�(i)� �(i)j : (13)8



It is lear that the variation distane de�nes a metri on �. The variation distane is often de�nedequivalently by g�(�; �) = 1Xi=0 max(�(i)� �(i); 0) = 1Xi=0 max(�(i)� �(i); 0): (14)This alternate de�nition aounts for the topologially irrelevant fator of 12 in equation (13).For any k � 1, we de�ne a metri whih takes into aount the k'th fatorial moment of aprobability distribution. For distributions �; � satisfying Mk(�);Mk(�) <1, we de�neg�;k(�; �) = g�(�; �) + jMk(�)�Mk(�)j : (15)We refer to onvergene of a probability distribution with respet to the metri g�;k as k-onvergene, and we use the notation � k�!�� to indiate k-onvergene of � to ��. Aordingly, thenotation �! �� indiates onvergene with respet to the variation distane metri g�.Note that if Mk(�) < 1, the residual distribution �� given in equation (12) is well-de�ned.The residual distribution is typially a more useful tool than the degree distribution in studyingrandom graphs, and we deal with the residual distribution muh more than the degree distributionitself. We note that the moments of the residual distribution are given byMk(��) = Mk+1(�)M1(�) ;and therefore � k�!�� implies �� k�1��! ��� .For the rest of this paper, we shall only onsider limiting degree distributions with the propertythat 0 < M1(�) < 1. Hene, a degree sequene D satisfying �D 1�! �, will have average degreeM1(�D) = �(1). In partiular, this implies that the number of endpoints m satis�es m = �(n),where n is the number of verties. We note that it may be the ase that the residual distributionsatis�es M1(��) = 1, even if M1(�) < 1. This ours, for example, for a power law or Paretodistribution �(i) = i���(�) for values of 2 < � � 3 (here �(�) denotes the Riemann zeta funtion). Inour study of the diameter of the random graph GD, we shall often need to onsider the two asesM1(��) <1 and M1(��) =1 separately.2.4 Properties of the Metri Spaes (�; g�;k).In this setion, we give some useful results about the metris we have de�ned on the set � ofdistributions on Z�.For any distribution � in Z�, we de�ne the omplementary distribution funtion of � byF�(i) = P[X� � i℄ =Xj�i �(j):Proposition 2.3 Let �� be a distribution. Then the following statements are equivalent:1. �! �� with respet to the variation distane metri g�.2. maxi j�(i)� ��(i)j ! 0.3. maxi jF�(i)� F��(i)j ! 0. 9



The omplementary distribution funtion is related to domination (de�nition 2.3), sine �B �if and only if F�(i) � F�(i) for all i.Lemma 2.4 Consider a mapping � 7! � from � to � suh that � C � for all �. If there existdistributions �� and �� suh that � ! �� as � k�! ��, then � k�! �� as � k�! �� as well.Proof. It suÆes to show that Mk(�)!Mk(��) <1. Note that, for any distribution �,Mk(�) = 1Xi=0(i)k�(i) = 1Xj=1((j)k � (j � 1)k)F�(j):Sine (j)k�(j�1)k � 0 for all j � 1, the lemma follows from the statement of Lesbegue dominatedonvergene in [9℄.This yields a useful orollary regarding endpoint arrangements. For any arrangement S, we write�S and �S to denote the degree distribution �DS and the residual distribution �DS , respetively.Corollary 2.5 Let S be an arrangement suh that �S k�!�. Let T � S and assume �T ! �0. Then�T k�!�0.Finally, we introdue trunated distributions.De�nition 2.11 For any distribution � and any 0 < � � 1, the �-trunated distribution �[�℄ isspei�ed by the omplementary distribution funtionF�[�℄(i) = maxfF�(i)� �; 0gfor i > 0, and F�[�℄(i) = 1 for i � 0.Informally, the distribution �[�℄ is onstruted by removing a total amount � from the weights �(i)for the highest values of i, and inreasing the weight �(0) by �.Proposition 2.6 The trunated distribution �[�℄ satis�es the following properties:1. g�(�[�℄; �) � �.2. For any �, if g�(�; �) � � then �[�℄ C �.3 The Con�guration Model Algorithm.As de�ned in setion 2.2, a random on�guration is generated from an endpoint arrangement (V; S)by hoosing a random mathing of the set S of endpoints. The on�guration model (CM) algorithmis a proedure whih generates this mathing one edge at a time. The CM algorithm is ustomizable,in the sense that we have some exibility regarding the order in whih the edges of the mathingare revealed.The intuition is as follows. For any endpoint s 2 S, a uniformly random mathing E of swill hoose E(s) uniformly at random from the set S � fsg. Also, the remaining endpoints inS�fs;E(s)g will be mathed uniformly at random. Hene, a random mathing an be onstrutedby suessively hoosing an unmathed endpoint and hoosing its math uniformly at random.This setion proeeds as follows. In setion 3.1, we give a formal desription of the CM algorithmas a disrete random proess. Sine as desribed above, the CM algorithm an be ustomized, wethen desribe two partiular variants of the CM algorithm. The �rst is the �-ore CM algorithm,whih we studied in [7, 8℄. The seond is the CM BFS algorithm, whih performs a standardbreadth-�rst-searh while generating a random on�guration, and whih will be used extensivelyin this paper. 10



3.1 The CM ProessIn this setion we introdue the notation whih we shall use to desribe the disrete random proessassoiated with the exeution of the CM algorithm. All endpoint arrangements, on�gurations, et.are de�ned with respet to the anonial vertex set Vn. The CM algorithm generates a randommathing of an initial arrangement U ontaining m = jU j endpoints.De�nition 3.1 A CM proess of an endpoint arrangement U is a random permutation (s1; : : : ; sm)of U suh that for any endpoint s and any even time t,P[st = s j s1; : : : ; st�1℄ = ( 1m�t+1 if s =2 fs1; : : : ; st�1g0 otherwise.We assoiate a random mathing E of the endpoints in U with a CM proess by setting E(st) =st+1 for all odd values t = 1; 3; : : : ;m� 1. It is easy to verify that the CM algorithm does in fatprodue a random mathing of the endpoints.At time t, we say the endpoints s1; : : : ; st are exposed, so the set Ut ontains all unexposedendpoints. The set Ut plays a entral role in the CM algorithm. Aordingly, we de�ne:� The unexposed degree a vertex v is dt(v) = dUt(v).� The unexposed degree distribution is �t = �Ut .� The unexposed residual distribution is �t = �Ut .We refer to the value dt(s) � 1 as the residual unexposed degree of the endpoint s at time t.Note that the endpoint st beomes exposed at time t, henedt(st) = dt�1(st)� 1: (16)In other words, the residual unexposed degree of st at time t � 1 beomes the total unexposeddegree of st at time t. Reall that, if t is even, then the endpoint st is hosen uniformly at randomfrom Ut�1. This yields the following fundamental property of the residual unexposed degree of anendpoint hosen at an even time step.Proposition 3.1 For any even time step t of the CM algorithm,Ddt(st)js1;:::;st�1 = �t�1: (17)De�nition 3.1 spei�es that the endpoint st must be hosen uniformly at random from Ut�1 foreven values of t. However, the behavior for odd values is unspei�ed; hene, di�erent strategies forhoosing endpoints at odd times an be formulated to study various aspets of the resulting graph.Informally, we de�ne a speialization of the CM algorithm to be a method for hoosing st for oddvalues of t.In this paper, we will de�ne several speializations of the CM algorithm, whih we will pieetogether to study the diameter of the random graphGD. A halted CM proess is a CM proess alongwith a random halting time � . Using halted CM proesses, we an de�ne a single speialization ofthe CM algorithm whih uses di�erent strategies for hoosing endpoints at di�erent times.Reall that, as de�ned in setion 2.3.2, the notation �U k�!� indiates k-onvergene of the degreedistribution �D to the distribution �. Typially, we will study CM proesses for whih the initialarrangement U satis�es �U k�!� for either k = 1 or k = 2. The following proposition states that ifwe only look at o(m) steps, then the residual distribution will not hange signi�antly during thistime. 11



Proposition 3.2 Assume �U k�!� for some distribution � and jU j ! 1. Then, for any CM proesswith initial arrangement U , and any time t = o(jU j),�t k�1��! �� (18)holds asymptotially always. In partiular, M1(�t) ! M1(��) holds asymptotially always fork � 2.3.2 The CM �-ore Algorithm.The �-ore of a graph is the maximal indued subgraph of minimum degree k. The CM �-orealgorithm [7, 8℄ is a speialization of the CM algorithm whih hooses an endpoint st of minimumunexposed degree at eah odd time step t. Formally, a CM �-ore proess is a CM proess satisfyingdt�1(st) = minfdt�1(s) : s 2 Ut�1g (19)always for all odd values t < m. We note that sine there may be several endpoints of minimumdegree, the CM �-ore algorithm an be further speialized if neessary. The �-ore algorithm �ndsthe �-ores of a random graph by exposing all endpoints whih are not part of the �-ore andleaving the �-ore unexposed.For our purposes, we are only onerned with the 2-ore phase of the CM �-ore algorithm. Weshall further speialize the 2-ore algorithm, by introduing a set of verties W , alled the protetedset.De�nition 3.2 Given an initial arrangement U and a proteted set W , a proteted 2-ore CMproess is a halted CM proess satisfying dt�1(st) = 1 and v(st) =2 W for all odd time steps t < � ,and halting at the hitting time � of the eventd(v) 6= 1 for v =2W:Hene, the proteted 2-ore algorithm hooses endpoints of unexposed degree 1 outside of W andhalts when no suh endpoints remain.The state of the CM proess at the halting time � of the CM 2-ore algorithm an be determinedw.e.h.p. from the results in [8℄ as desribed briey below. For details, see appendix A. Reall thatthe probability generating funtion (p.g.f.) of a distribution � is de�ned by  �(z) = E [zX� ℄ forz 2 [0; 1℄ (see equation 5). Aordingly, for any distribution �, we let z� denote the lowest �xedpoint in  �, so z� = minfz 2 [0; 1℄ :  �(z) = zg; (20)and we de�ne the distribution �� by speifying the p.g.f. ��(z) =  �((1 � z�)z + z�)� z�1� z� : (21)The following lemma is an impliation of [8℄ (see Theorem A.2 in appendix A).Lemma 3.3 Let U be an initial arrangement satisfying �U k�! �, where � has residual distribution� = ��. Let W be a proteted set and assume jW j = o(n). Then1. The stopping time of the proteted 2-ore algorithm satis�es �m ! 1�(1�z�)2 w.e.h.p., wherez� is de�ned in (20).2. The residual distribution at time � satis�es �� k�1��! �� w.e.h.p., where �� is de�ned in (21)We note that the seond ondition is as strong as possible, sine k-onvergene of the distribution� orresponds to (k � 1)-onvergene of the residual distribution ��.12



3.3 The CM BFS Algorithm.Here we onsider a breadth-�rst-searh (BFS) speialization of the �-ore algorithm. Beginningwith a set of verties W , the CM BFS algorithm performs a standard breadth-�rst searh andexposes endpoints aordingly. Typially, BFS involves a queue of verties; our implementationdi�ers slightly in that the queue will ontain endpoints rather than verties. We �rst de�ne a singleBFS iteration.De�nition 3.3 Let U be an initial arrangement and let W be a vertex set with endpoint set R =U(W ). A CM BFS iteration proess is a halted CM proess where st 2 R for all odd time stepst � � , and halting at the hitting time � of the event R \U = ;.For the CM BFS iteration proess, we expand the state of the BFS algorithm as follows.� R = R \U denotes the remaining unexposed endpoints in R.� Q = R [ fs 2 U : d(s) < dU (s)g. We all Q the endpoint queue; aordingly, the initialendpoint queue is the set Q0 = R. This de�nition spei�es that any endpoint s whoseurrent unexposed degree d(s) di�ers from its initial degree dU (s) belongs to Q, as well asany remaining unexposed endpoints in R.� T = U �Q ontains all unexposed endpoints not in the queue. Endpoints in T are alledunexplored. The set U 0 = U �R is the initial set of unexplored endpoints.We note that, in the ontext of BFS, the set T of unexplored endpoints is typially more relevantthan U, sine the set Q ontains endpoints whih are already onneted to a vertex in the set W .Hene we denote the residual distribution with respet to the set of unexplored endpoints T by�t = �Tt ; (22)and refer to �t as the unexplored distribution at time t.Note that, at eah odd time step, the endpoint st must be hosen from R and hene from Qt�1,so jQtj = jQt�1j � 1 always for odd t. However, at eah even time step, two qualitative outomesare possible regarding the mathed endpoint st. If st =2 Qt�1, then jQtj � jQt�1j, with equalityif dUt(st) = 0. Otherwise, st 2 Qt�1 so jQtj < jQt�1j, and a ross-edge has ourred. We alsodistinguish two di�erent kinds of ross edges.� A horizontal edge ours if st 2 Rt�1.� A diagonal edge ours if st 2 Qt�1 �Rt�1.We de�ne the BFS neighborhood of a CM BFS iteration to be the set of endpoints N = Q� inthe endpoint queue when the BFS iteration ends.De�nition 3.4 An extended CM BFS proess (or just CM BFS proess) is a sequene of CM BFSiterations, where the BFS neighborhood N of eah iteration is used as the initial endpoint queue Rfor next iteration.For an extended CM BFS proess we de�ne:� The i'th BFS neighborhood Ni is the BFS neighborhood of the i'th CM BFS iteration. Foronsisteny, we let N0 = R, the initial endpoint queue.13



� The i'th halting time � i is halting time of the i'th CM BFS iteration.In the following subsetions, we will give probabilisti bounds on the sizes of the BFS neigh-borhoods. Our strategy will be to show that the random variable jNij is distributed \similarly" tothe sum of jNi�1j independent random variables distributed aording to the residual unexploreddistribution �. Spei�ally, we will show that jNij is dominated in distribution from below by thetrunated distribution � [�℄ for arbitrary � > 0.Our proof will involve a oupling of the CM BFS proess with a random proess whih does gen-erate a random variable whih is distributed identially the sum of independent random variables.First, we derive some results for oupled random proesses.3.3.1 Coupled Random Proesses.We begin by realling some notation from setion 2.From setion 2.4, reall that for a distribution �, �[�℄ denotes the �-trunated distribution, whihsatis�es g�(�[�℄; �) � � and �[�℄C� for all � with g�(�; �) < �. From setion 2.1.1, reall thatPnX�denotes the sum of n independent random variables distributed aording to � and 1p denotes aBernoulli random variable with parameter p. For a de�nition of oupled random variables, seesetion 2.1.4.Lemma 3.4 For all � > 0, all � 2 �, and all r > 0,XrX�[�℄ dCXPr1(1��)X�:Proof. Write XPr1(1��)X� = rXi=1 Yi;where the Yi are independent and distributed identially to Y d= 1(1��) �X�; and note thatg�(DY; �) � �:Lemma 3.5 For any values n > 0 and 0 � p � 1,2 �Xn1p dCX2n1pp: (23)Proof. The result follows immediately from the following oupling:X2n1pp d= 2nXi=1 Xi; where the Xi are independent and Xi d= 1pp,Xn1p d= nXj=1Yj ; where Yj = X2j�1 �X2j d= 1p:Clearly, for any k, if PYj = k, then PXi � 2k.Next, we give some simple results regarding ouplings and random proesses. We begin with alemma about ouplings and dependent random variables.Lemma 3.6 Let X1;X2 and Y1;Y2 be (not neessarily independent) random variables, and sup-pose: 14



1. X1 dBY1, and2. for every i � j, D[X2jX1=i℄ BD[Y2jY1=j℄: (24)Then X2 dBY2.Proof. Sine X1 dBY1, we an reate a oupling (X01;Y01) suh that P[X01 � Y01℄ = 1. Similarly,by the seond hypothesis, for any i � j, we an de�ne a oupling (X0(i;j);Y0(i;j)) of the onditionalrandom variables [X2jX1 = i℄ and [Y2jY1 = j℄ suh thatP[X0(i;j) � Y0(i;j)℄ = 1:Finally, we de�ne a pair of random variables (X02;Y02) byX02 = X0(X01;Y01)Y02 = Y0(X01;Y01):We easily verify that for any value k,P[X02 = k℄ =Xi;j P[X0(i;j) = k j X01 = i;Y01 = j℄ � P[X01 = i;Y01 = j℄=Xi P[X2 = k j X1 = i℄ � P[X1 = i℄= P[X2 = k℄and therefore X02 d= X2. Similarly, Y02 d= Y2. Also, sine P[X01 � Y01℄ = 1, and P[X02 � Y02 j X01 �Y01℄ = 1, it follows that P[X02 � Y02℄ = 1.Reall that for any distribution �, PnX� denotes the sum of n independent random vari-ables distributed aording to �. The following proposition follows easily by applying lemma 3.6indutively.Proposition 3.7 Let X1; : : : ;Xn be random variables, and let � be a distribution suh that for alli, P[DXijX1;:::;Xi�1 C �℄ = 1: (25)Then Pni=1Xi dCPnX�.The next proposition deals with ouplings for random proesses. Again, the result follows froma simple indutive appliation of lemma 3.6.Proposition 3.8 Let X0;X1; : : : ;Xr be a Z�-valued random proess and let Y0;Y1; : : : ;Yr be aZ�-valued Markov hain suh that X0 dBY0, and suh that for any i � j and any t,P �DXtjX1;:::;Xt�1 BD[YtjYt�1=j℄ j Xt�1 = i� = 1: (26)Then Xt dBYt for all t. 15



3.3.2 A single iteration of CM BFSIn this subsetion we give a probabilisti lower bound for the size of the neighborhood of a single BFSiteration. We �rst relate the size of a BFS neighborhood to the sum of i.i.d. random variables. Thisallows us to use standard large deviation tehniques (i.e., Cramer's theorem) to derive onentrationresults for the BFS neighborhood size.Theorem 3.9 Consider a CM BFS iteration for whih the following hold.1. The initial arrangement U satis�es �U 1�! �, and � has residual distribution � = ��.2. The initial queue R = U(W ) has size r = jRj = o(m).Then, for any � > 0, the BFS neighborhood N satis�esjNj dBXrX�[�℄ : (27)To prove Theorem 3.9, we begin by pointing out the obvious fat that a BFS iteration an lastat most 2 � r steps, and therefore, for r = o(m), the residual distribution �t ! � always for any0 � t � � � 2r. It is also true, though less obvious, that �t ! �, and therefore jQtj = o(m), forany 0 � t � � � 2r. This is beause, for any v =2W , if dt(v) = dU (v), then dTt(v) = dt(v) = dU (v),and the unexposed degree an only hange for at most r = o(m) verties outside of W during theiteration.Now, we bound the number of endpoints in horizontal edges with the following lemma. Reallthat 1p is a Bernoulli random variable with parameter p.Lemma 3.10 Let A � R denote the set of endpoints s 2 R suh the endpoint E(s) mathed to ssatis�es E(s) 2 R. Then, for any � > 0, jAj dCXr1�:Proof. Note that the distribution of jAj depends only on r and m, sine the atual degrees ofverties do not a�et the number of horizontal edges. Let q1;q2; : : : ;qr denote the endpoints of Rin the order that they are exposed by CM BFS. Any horizontal edge must onsist of two onseutiveendpoints aording to this ordering. So, for 1 � i � r � 1, de�ne random variablesKi = (1 if E(qi) = qi+1;0 otherwise,so jAj = 2 �Pr�1i=1 Ki.Note that sine r = o(m), the probability that an endpoint hosen uniformly at random fromUt lies in R is at most rm�2r = O( rm) = o(1) at any time during the BFS iteration. Also, if Ki = 1then Ki+1 = 0, sine the endpoint qi+1 annot be part of more than one horizontal edge. Hene,for i > 1, P[Ki = 1 j K1; : : : ;Ki�1℄ = (0 if Ki�1 = 1;O( rm) if Ki�1 = 0. (28)This observation allows us to onsider the Ki in pairs. So, for 1 � i � br=2, we de�neLi =K2i�1 +K2i;16



and note that jAj = 2Pbr=2i=1 Li. Also, Li � 1 always for all i, andP[Li = 1 j L1; : : : ;Li�1℄ = P[Li = 1 j Li�1℄ � 2O( rm ) = O( rm)always, and sine the Li are Bernoulli random variables, thenP[DLijL1;:::;Li�1 C 1O( rm )℄ = 1:Hene, we onlude by proposition 3.7 thatjAjC 2 �Xbr=21O( rm ):Finally, by lemma 3.5, it follows that thatjAj dCXr1O(p rm);and therefore jAj dCXr1�for any � > 0.Now, note that the set of endpoints R�A will all math to the set U 0 = U �R. In partiular,onditional on jAj, exatly r � jAj endpoints hosen uniformly at random from U 0 will beomeexposed during the BFS iteration.Lemma 3.11 For any r0 � r, and for any � > 0, the size of the BFS neighborhood jNj satis�esjNj dBXr0X�[�℄onditional on r � jAj = r0.Proof. As noted above, onditional on r � jAj = r0, exatly r0 endpoints hosen uniformly atrandom from U 0 beome exposed during the BFS iteration. Without loss of generality, we mayassume that the endpoints in A beome exposed �rst, so after jAj steps, we have QjAj = RjAj =R �A, and that the next r0 endpoints exposed at even time steps are drawn from U 0. Then, forany 0 � t0 � r0, we de�ne Kt0 = ��QjAj+2t0 ��� ��RjAj+2t0��, soKr0 = jQ� j = jNj :The random proess K0; : : : ;Kr0 thus keeps trak of the number of \new" endpoints in the BFSqueue whih are not part of the original queue R. Now, the value of K drops by exatly 1 if aross-edge ours. Hene,P[Kt0 = Kt0�1 � 1 j K1; : : : ;Kt0�1℄ = O �Kt0�1m � : (29)Otherwise, when a ross-edge does not our, K will inrease by the value of the unexplored degreeof the endpoint sjAj+2t0 hosen at time jAj+ 2t0. So, for any i � 0,P[Kt0 = Kt0�1 + i j K1; : : : ;Kt0�1℄ = � jAj+2t0(i)�O �Kt0�1m � = �(i)� o(1); (30)17



sine Kt0�1m = o(1) and t0 = o(m); here � jAj+2t0 denotes the unexplored residual distribution (equa-tion 22) at time jAj+ 2t0.We wish to show that Kt0 dBXt0X�[�℄ (31)for arbitrary � > 0. However, sine, as desribed above, the value of Kt0 an hange in two di�erentways, it is diÆult to relate Kt0 to the sum if i.i.d. random variables diretly. Instead, we onstrutan auxilliary Z�-valued Markov hain Z1; : : : ;Zr0 and show thatKt0 dB Zt0 dBXt0X�[�℄ :The Markov hain Zt0 must be \easy" to ompare to both the random proess Kt0 and thesum of i.i.d. random variablesPt0X�[�℄ . Intuitively, it is useful to think of the Markov hain Zt0 asounting the number of elements in some set Ht0 , soZt0 = jHt0 j :The ontents of the set Ht0 hange over time in a way that resembles a CM BFS iteration, butexhibits enough independene that the proess Zt0 an be easily ompared to a sequene of i.i.d.random variables.Let us de�ne suh a proess. At time 0, we set H0 = ; and therefore Z0 = jH0j = 0. Then, ateah time step t0, the ontents of the set H hange as follows.1. A random number of new elements is added to Ht0 ; the number of new elements is distributedaording to �[�1℄ where �1 > 0 is arbitrary.2. Eah element inHt0�1 is removed independently with probability �2r0 , where �2 > 0 is arbitrary.Formally, then, Zt0 is a Markov hain de�ned by Z0 = 0, and, if we let Lt0 denote the randomvariable Zt0 onditional on Zt0�1, thenLt0 d= X�[�1℄ +XZt0�11(1� �2r0 ):We also give an alternate desription of the proess Zt0 . For 1 � i � r0 and 0 � j � r0 � i, letY(i;j) denote the number of elements that remain in the set H at time i+ j among those that wereadded at time i. As desribed above, we haveY(i;0) d= X�[�1℄ :and Y(i;j) d=XY(i;j�1)1(1� �2r0 )for j > 0. It follows by de�nition that Zt0 = t0Xi=1 Y(i;t0�i):We now show that Zt0 dCKt0 . Note that Zt0 � Zt0�1 � 1 ours if (but not only if) Y(t0;0) = 0and at least one element in Ht0�1 is removed at time t0. HeneP[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1℄ � �1 � �1� (1� �2r0 )Zt0�1�� �1 ��1� e� �2Zt0�1r0 � :18



We laim that P[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1℄ = !�Zt0�1m � (32)for Zt0�1 = o(m). For Zt0�1 = 
(r0), we have�1 � �1� e� �2Zt0�1r0 � = �(1);so (32) follows immediately, and for �2Zt0�1r0 suÆiently small, (32) follows from the power series�1 ��1� e� �2Zt0�1r0 � = �1�2Zt0�1r0 � �12! ��2Zt0�1r0 �2 + � � � :Now, for any i � 0, we haveP[Zt0 � Zt0�1 + i j Z1; : : : ;Zt0�1℄ � P[X�[�1℄ � i℄: (33)Hene, we onlude from (29), (30), (32), and (33) and from proposition 3.8 that Zt0 dCKt0 for all1 � t0 � r0.Next, we laim that Zr0 dBXr0X�[�℄ ; (34)where � > 0 depends on �1 and �2 and an be made arbitrarily small. Note that, for j > 0,Y(i;j) d=XY(i;j�1)1(1� �2r0 ) d=XY(i;0)1(1� �2r0 )jdBXX�[�1℄1(1�j �2r0 )so Y(i;r0) dBXX�[�1℄1(1��2):Note that, for any h 2 Z�,lim�1;�2!0P �XX�[�1℄1(1��2) = h� = P[X� = h℄ = �(h):It follows by proposition 2.3 that, for arbitrary � > 0, we an hoose �1 > 0 and �2 > 0 suh thatg� �;D�PX�[�1℄1(1��2)�! < �;and therefore Y(i;r0) dBXX�[�1℄1(1��2) dBX�[�℄ :Hene jNj = Kr0 dB Zr0 dBXr0X�[�℄ ; (35)where � > 0 is arbitrarily small.Proof of Theorem 3.9. Choose arbitrary �1; �2 > 0 suh that �1+ �2 < �, and, ombining thetwo previous lemmas with lemma 3.4, we deduejNj dBXr�jAjX�[�1℄ dBXPr11��2X�[�1℄ dBXrX�[�1+�2℄:This theorem allow us to derive a large deviation inequality regarding the growth rate of BFSneighborhoods. The proof is adapted from the upper bound proof of Cramer's Theorem in [9℄.19



Lemma 3.12 Let U be an endpoint arrangement satisfying �U 1�! � and m = jU j ! 1, where� has residual distribution � = ��. Let R � U be the initial endpoint queue for an iteration ofCM BFS and assume r = jRj = o(m). Then, for any � > 0, there exists a value C� suh that thefollowing statements hold asymptotially:1. If M1(�) <1 then the size of the BFS neighborhood N satis�esP h jNjr �M1(�)� �i � e�C�r: (36)2. If M1(�) =1 then the size of the BFS neighborhood N satis�esP h jNjr � 1=�i � e�C�r: (37)Proof. For any distribution �, de�ne ��(z) = lnE [e�zX� ℄: (38)Note that if � ! � then ��(z)! ��(z) for all z � 0, and sineE [e�zPrX� ℄ = E [e�zX� ℄r = er��(z);then by Chebyshev's Inequality,lnP hXrX� � rxi � r(��(s) + xs)! r(��(s) + xs) (39)for all z.Now, by Theorem 3.9, we have jNj dBXrX�[Æ℄ ;for arbitrary Æ > 0. If M1(�) < 1, then for any � > 0, we an hoose z and Æ appropriately suhthat ���[Æ℄(z)=z � (M1(�) � �) and set C� aordingly. If M1(�) = 1, then for any 1=�, thereexists values z; Æ suh that ���[Æ℄(z)=z � 1=�, and again we set C� aordingly.3.4 Halted CM BFSWe de�ne a halted CM BFS proess to be a CM BFS proess whih halts upon termination of theiteration in progress after a given number of CM steps. For halted BFS:� � denotes the number of BFS iterations that were ompleted. Hene the halting time ofhalted CM BFS is ��.� We de�ne the i'th halted BFS neighborhood byN0i = (Ni if i � �,; if i > �.The following lemma will be used to obtain the lower bound for the diameter.20



Lemma 3.13 Consider an endpoint arrangement U suh that �U 2�! �, where � has residualdistribution � = ��, let the initial endpoint queue R = U(W ) have size r = jRj = o(m), andonsider CM BFS halted after l = o(m) steps. Then, for any i and any � > 0,E ���N0i��� � r �M1(�+ �)i: (40)Proof. Note that jN1j is at most equal to the sum of the residual unexplored degrees of theendpoints mathed to eah s 2 R. Hene, by linearity of expetation,E [jN1j℄ � r �M1(�0);and sine jRj = o(m), then �0 1�! � holds asymptotially always.Let us write n0i = jN0ij. Then, for arbitrary i, if � i�1 < l thenE hn0i ��� n0i�1;U0� i�1i � n0i�1 �M1(�� i�1);and if � i�1 � l then n0i = 0:Sine l = o(m), then for any t � l, M1(�t) < M1(�) + �for arbitrary � > 0. Hene, we onlude thatE �n0i� � r �M1(�+ �)ifor all i and for arbitrary � > 0.4 The Diameter of a Random Graph.Given verties u; v in a graph G, let Æ(u; v) denote the distane from u to v, that is, the length ofa shortest path from u to v. We set Æ(u; v) =1 if u and v are not onneted. The diameter �(G)of a graph G is the maximum distane between any onneted pair of verties in G. In this setionwe ompute �(GD) with asymptoti preision.We begin by stating our main theorem regarding the diameter of a random graph. For adistribution �, reall that z� denotes the least �xed point of the p.g.f.  � in the interval [0; 1℄ (seeequation 20). We are only interested in distributions for whih z� < 1, or equivalently, M1(�) > 1.For suh a distribution �, a random graph GD with residual distribution �D ! � a.a.s. ontains agiant onneted omponent and a giant 2-ore (see appendix).Assuming z� < 1, we de�ne M�(�) =  0�(z�); (41)the derivative of the p.g.f. at z�. The signi�ane of the value M�(�) is disussed in the appendix.In partiular, by Theorem A.2 and statement 1 of proposition A.3, the fration of endpoints ofresidual degree 1 in the 2-ore of GD onverges to M�(�) w.e.h.p.Also, let a(�) = 8><>:2 if �(0) > 01 if �(0) = 0 and �(1) > 00 if �(0) = �(1) = 0; (42)21



Theorem 4.1 Let � be a distribution satisfyingM1(�) > 1, onsider a degree sequene D satisfying�D 2�! � or �D 1�! � withM2(�) =1, where � has residual distribution �� = �. In addition, assumethat if �(0) = 0 then GD has no verties of degree 1 (i.e. �D(0) = 0) and if �(1) = 0 then thenGD has no verties of degree 2 (i.e. �D(1) = 0). Then,�(GD)lnn ! �� a.a.s. (43)where �� = a(�)� lnM�(�) + 1lnM1(�) (44)with a(�) as de�ned in equation (42).Informally, the two terms in equation (44) orrespond to two di�erent harateristis of a randomgraph GD that determine its diameter. The seond term measures the \average" distane arossGD, while the �rst term gives the length of the longest isolated paths or yles whih an ausethe distane between a partiular pair of verties to be signi�antly longer than the average.In the simplest (and possibly the most \typial") situation, we have �(0) > 0 and M1(�) <1;for example, sparse Gn;p falls into this ategory. In this situation, the diameter is determined by alongest shortest path between two verties of degree 1 and will onsist of a path from eah of theverties to the 2-ore of the graph and a path onneting aross the 2-ore.The proof of Theorem 4.1 proeeds as follows. First, we prove the upper bound, whih is themore substantial portion of the proof. We show the upper bound �rst in the \typial" ase desribedabove, and then generalize to other situations. Finally, we ompute a mathing lower bound.4.1 Upper Bound Proof of Theorem 4.1Our prinipal proof strategy will be to examine the rate of growth of the neighborhoods around spe-i� verties. For any vertex v in a on�guration (V; S;E), we de�ne the i'th endpoint neighborhoodNi(v) of v by Ni(v) = fs 2 S : Æ(v; v(s)) = i and Æ(v; v(E(s))) � ig;so if we perform CM BFS in a random graph beginning with vertex set W = fvg, then the setNi(v) will orrespond to the i'th BFS neighborhood Ni as de�ned in setion 3.3.For any vertex v, let(v) = (minfi : jNi(v)j � 3m1=2 lnmg if this set is nonempty;12 minfi : jNi(v)j = 0g otherwise.Also, if v is a vertex in a random graph, we write we write Ni(v) and (v) to denote the respetiverandom set and random quantity.Lemma 4.2 For a degree sequene D with �D 1�! �, the graph GD a.a.s. exhibits the property thatÆ(u; v) � (u) + (v) + 1for all onneted pairs of verties u; v 2 V .Proof. Given any pair of verties u; v, we perform CM BFS, �rst starting with u and thenstarting with v, until endpoint neighborhoods Nu = N(u)(u) and Nv = N(v)(v) are exposed.Now, either 22



1. u and v are not onneted,2. A path from u to v has been exposed, or3. 1 and 2 do not hold, and both Nu and Nv ontain at least 3m1=2 lnm unexposed endpoints.In the �rst ase, Æ(u; v) =1. In the seond ase, learly Æ(u; v) � (u) + (v) + 1 Hene, we needonly onsider the third ase.Suppose we now expose all of the endpoints in Nu; if any endpoint in Nu is mathed to anendpoint in Nv, then Æ(u; v) � (u) + (v) + 1:We laim that this ours with probability 1� o(n2). To see this, we observe that a given endpointin Nu mathes to Nv with probability at leastjNvj =m � m�1=2:Now, if a partiular endpoint in Nu does not math to Nv, it may math into Nu, reduing thenumber of unexposed endpoints in Nu by 2. Nevertheless, if we sequentially math all of theendpoints in Nu, there are at least jNuj =2 hanes to �nd a onnetion to Nv.The probability that no onnetion is found is therefore at most(1�m�1=2)3m1=2 lnm =  �1� 1m1=2�m1=2!3 lnm= � 1e� o(1)�3 lnm= O(m�3):By onsidering all �n2� = O(m2) pairs of verties, we onlude that this event a.a.s. ours for nosuh pair, and the lemma is proved.Lemma 4.2 proves that in order to �nd an upper bound on the diameter of GD, it suÆes tobound the maximum value of (v) for v 2 V . However, it is not neessary to onsider all vertiesin V ; the next lemma we prove allows us to narrow down the set of verties whih an ontributeto the diameter of GD.Reall that the 2-ore of a graph is the maximal indued subgraph of minimum degree 2. For agraph G = (V;E), let d2(v) denote the degree of a vertex v in the 2-ore of G, that is, the numberof edges in the 2-ore of G whih are inident on V .Lemma 4.3 For any graph G = (V;E), and any vertex v 2 V , if there exists a vertex v0 suh thatÆ(v; v0) = �(G), then either d2(v) = d(v) or d2(v) = 0 and d(v) = 1.Proof. If 0 < d2(v) < d(v), then for any vertex v0 onneted to v, we an �nd a vertex v00 suhthat any path from v0 to v00 must pass through v and therefore Æ(v0; v00) > Æ(v; v0). Hene eitherd2(v) = 0 or d2(v) = d(v). Now, if d2(v) = 0 it follows that d2 is not in the 2-ore, and thereforethere are no yles in G whih ontain v. Therefore, if d(v) � 2 and d2(v) = 0, then one again,for every v0 onneted to v, we an �nd a vertex v00 suh that any path from v0 to v00 must paththrough v and so Æ(v0; v00) > Æ(v; v0).By lemma 4.3, we only need to onsider verties whih are either entirely in the 2-ore or havedegree 1. Note, however, that a vertex of degree 1 may or may not be onneted to the 2-ore by apath. Hene, our proof of the upper bound of Theorem 4.1 will onsider the following three asesseparately: 23



1. d(v) = 1 and v is onneted to the 2-ore;2. d(v) = 1 and v is in a tree omponent;3. the degree of v in the 2-ore satis�es d2(v) = d(v) � 2. In this situation, we also distinguishbetween the ase when the minimum degree of the entire graph is 3 or greater, and the asewhere the minimum degree is at most 2.In most ases, the diameter of GD will our between two verties of type 1, that is, two vertiesof degree 1 whih are onneted to the 2-ore.4.1.1 Verties of degree 1, onneted to the 2-oreIn this subsetion, we onsider the neighborhoods in GD of a vertex of degree 1 whih is onnetedto the 2-ore of GD. We assume throughout �D 2�! � or �D 1�! � with M2(�) = 1, where �has residual distribution � = ��. Reall that M�(�) gives the derivative of the p.g.f.  � at the�xed point z� (equation 41). M�(�) has an alternate interpretation whih we shall make use ofin this setion. Reall that by Lemma 3.3, if � is the halting time of the CM 2-ore algorithm,then �� ! �� w.e.h.p., where �� is the distribution de�ned in (21). By manipulating generatingfuntions, it an be shown (see appendix A) thatM�(�) = ��(1):Lemma 4.4 Choose any v 2 GD suh that d(v) = 1. Then, for any � > 0,P �(v)lnn � 1� lnM�(�) + 12 lnM1(�) + �� = o(n�1): (45)Proof. In order to bound (v), we shall exeute a speialization of the CM algorithm whih om-bines the CM 2-ore algorithm and CM BFS breadth-�rst-searh. First, we exeute the proteted2-ore algorithm with proteted set W = fvg. Then, if the single endpoint belonging to v remainsunexposed at the halting time � , we exeute CM BFS starting with the vertex v.Based on lemma 3:3, the unexposed residual distribution at the halting time satis�es �� ! ��w.e.h.p. Hene, we disard the exponentially small probability that this onvergene fails, andassume that �� is arbitrarily lose to ��.Also, at time � , there are no endpoints of residual degree 1 other than v. We note that ifv's unique endpoint has been exposed at time � then v is not onneted to the 2-ore of GD andbelongs to a tree omponent; we shall deal with tree omponents separately.We analyze the BFS in three phases. For this proof we let ni = jNij denote the number ofendpoints in the BFS queue after i iterations of the BFS. The phases are:1. ni = 1 to ni � ln lnn;2. ni = ln lnn to ni � ln2 n;3. ni = ln2 n to ni � 3m1=2 lnn.In the original graph, phase 1 orresponds to �rst performing BFS from v until the 2-ore reahed,and then ontinuing the BFS in the 2-ore until a neighborhood of size ln lnn is found. Intuitively,phase 1 will inlude a large number of iterations if the path from v to the 2-ore is very long, iflosest vertex to v in the 2-ore is part of a long isolated yle, or, more generally, if the small BFSneighborhoods around v grow at an abnormally slow rate.24



Phase 2 transitions from a BFS neighborhood of size ln lnn to a BFS neighborhood of size ln2 nin the 2-ore. Typially, phase 2 will inlude only a small number of iterations, and phase 2 servesmainly to transition from the \small" neighborhoods in phase 1 to the \large" neighborhoods ofphase 3. Then, in phase 3, the neighborhoods are large enough so that their growth rate is highlypreditable using the tools developed in setion 3.3.We ompute the total number of BFS iterations by onsidering \good" and \bad" iterationsin eah phase (their properties are de�ned below); we let G1;G2;G3, B1;B2;B3 and denote thenumber of good and bad iterations in eah phase, respetively. Informally, a \good" iterationours if the size of the BFS neighborhood grows suÆiently quikly, and a \bad" iteration oursotherwise.Phase 1. In phase 1, a good iteration ours if ni+1 > ni or ni+1 = 0, and a bad iteration oursotherwise. Now, if no ross-edges our, then ni+1 is equal to the sum of the residual degrees of theendpoints mathed to the endpoints in Ni. Reall that the unexposed residual distribution satis�es�t ! �� w.e.h.p., and therefore the probability that an unexposed endpoint hosen uniformly atrandom has residual degree 1 is �t(1)! ��(1) =M�(�)w.e.h.p. Also, sine all verties outside of the BFS queue have unexposed degree at least 2 (or0), then the only way a bad iteration an our without a ross-edge is if every endpoint in Nmathes to an endpoint of residual unexposed degree 1. This probability is maximized if ni = 1, inwhih ase the single endpoint in Ni mathes to an endpoint of unexposed residual degree 1 withprobability at most ��(1) + o(1) =M�(�) + o(1).Reall that, in the ontext of CM BFS (setion 3.3), Q denotes the set of unexposed endpointsin the BFS queue; in partiular, a ross-edge ours if and only if an endpoint in Q is hosen atrandom during an even time step. Hene, the probability of enountering a ross-edge at any giventime is jQj = jUj.Also, at any time during any BFS iteration in phase 1, if jQj > 3 ln lnn, it is lear that, even ifall of the (at most ln lnn) remaining unexposed endpoints in the initial queue R form ross-edges,the size of the queue at the the end of the iteration will be greater than ln lnn and therefore phase1 will end. Hene, during phase 1, we an assume that the probability of enountering a ross-edgeat any partiular step is O((ln lnn)=m). And, therefore, the probability of enountering more thanone ross edge during any of the �rst O(lnO(1) n) steps of phase 1 is O(n�2 lnO(1) n) = ~O(n�2).Here O(lnO(1) n) serves simply as an upper bound to the number of CM steps whih our in phase1, as we shall see below.For any given BFS iteration in phase 1, barring a ross-edge, we must have ni+1 � ni, andwith at most one ross-edge, we have ni+1 � ni � 2. Hene, if at most one ross-edge ours inphase one, then G1 � ln lnn+2, sine eah good iteration inreases the number of endpoints in N.Reall that the total number of iterations in phase 1 is G1 +B1. It follows that for any onstant, we have P[G1 +B1 �  lnn℄ = P[B1 + ln lnn+ 2 �  lnn℄ + ~O(n�2)= P[B1 � (� o(1)) lnn℄ + ~O(n�2):It follows that, for any onstant , with probability 1 � ~O(n�2), the event B1 �  lnn oursif and only at least  lnn of the �rst ln lnn+ 2 +  lnn iteratations in phase 1 are bad. As shownabove, the probability that any given iteration in phase 1 is a bad iteration is w.e.h.p. bounded
25



above by ��(1) + o(1) =M�(�) + o(1). Thus, we omputeP[B1 �  lnn℄ � �ln lnn+ 2 +  lnn lnn �(M�(�) + o(1)) lnn + ~O(n�2)� �1 +O� ln lnnlnn �� lnn (M�(�) + o(1)) lnn + ~O(n�2)� (M�(�) + o(1)) ln n + ~O(n�2): (46)In partiular, for any �1 > 0, we let  = 1� lnM�(�) + �1and ompute P[B1 �  lnn℄ � o(n�1): Hene, for arbitrary �1 > 0, with probability 1� o(n�1),B1 � � 1� lnM�(�) + �1� lnn; and G1 = O(ln lnn): (47)We point out that it is not neessarily the ase that ni ever reahes ln lnn; it is possible thatni beomes 0 at some point, for example if ri�1 = 2 and the two endpoints in Ni�1 are mathed toeah other. This ours with probability �(m�1) = �(n�1); however, if this event does our, theanalysis above shows that, with probability 1�o(n�1), it ours after at most � 1� lnM�(�) + o(1)� lnniterations.Phase 2. In phase 2 we transition from endpoint sets of size ln lnn to size ln2 n. Unlike phase1, we do not onsider a phase 2 iteration to be good simply beause ni+1 > ni. Instead, we willonsider the atual rate of neighborhood growth.Proposition A.3 in the appendix shows that M1(��) =M1(�). Also, by assumption of Theorem4.1, either �D 1�! � or �D ! � with M1(�) = 1, so it follows from lemma 3.3 that �t 1�! ��w.e.h.p. or �t ! �� w.e.h.p. with M1(��) = M(�) = 1. In partiular, the average residualunexposed degree at the halting time of the proteted 2-ore algorithm onverges toM1(�) w.e.h.p.Hene, in this phase, we de�ne a bad iteration to be an iteration in whih� ni+1 � (M1(�)� Æ)ni if M1(�) <1.� ni+1 � (1=Æ)ni if M1(�) =1.for arbitrarily small Æ > 0. The number of good iterations is thus bounded above by2 ln lnnln(M1(�)� Æ) = O(ln lnn)in the �rst ase and 2 ln lnnln(1=Æ) = O(ln lnn)in the seond.By lemma 3.12, the probability of a bad iteration is at moste�CÆni � (lnn)��(1)for a onstant CÆ. For any �2 > 0, a routine manipulation of binomial distributions yieldsP[B2 � �2 lnn℄ � (lnn)��(ln n) = n��(ln ln n):26



Hene, for arbitrary �2 > 0, with probability 1� o(n�1),B2 � �2 lnn; and G2 = O(ln lnn): (48)Phase 3. In phase 3, a bad iteration de�ned as in phase 2; now, however, we have ni � ln2 n,so the probability of a bad iteration is at moste�CÆ ln2 n = n�
(ln n):It follows that, with probability 1 � o(n�1), B3 = 0, and in phase 3 we need only ount gooditerations. By setting Æ appropriately, for arbitrary �3 > 0, we attainG3 � logM1(�)�Æ(3m1=2 lnn) � � 12 lnM1(�) � �3� lnn; if M1(�) <1; (49)and G3 � log1=Æm1=2 � �3 lnn; if M1(�) =1. (50)Finally, we set � = �1 + �2 + �3 and we add up the good and bad iterations in the three phasesas given by (47), (48), and (49) or (50) to yield equation (45).4.1.2 Verties of higher degreeIn this subsetion, we onsider the neighborhoods verties of degree 2 or greater in GD. For anyvertex v, reall that d2(v) denotes the degree of v in the 2-ore of GD; hene, if � is the haltingtime of the CM 2-ore proess, then d2(v) = d� (v). Also, reall that by lemma 4.3, for d(v) � 2,we are only interested in verties for whih d2(v) = d(v), sine otherwise a longest shortest path inGD annot begin or end at v.Lemma 4.5 Choose any v 2 GD suh that d(v) � 2. Then, for any � > 0P �(v)lnn � 1�2 lnM�(�) + 12 lnM1(�) + � ��� d2(v) = d(v)� = o(n�1): (51)Proof. The proof proeeds as in lemma 4.4. We exeute �rst the CM 2-ore algorithm but nowwe use the proteted set W = ;. One the 2-ore has been found, we exeute CM BFS beginningwith the vertex v. By assumption, all of v's endpoints remain unexposed at the time that the 2-oreis found. Our analysis will employ the same three stages as in lemma 4.4. Clearly, the argumentsregarding phases 2 and 3 are idential to the ase where d(v) = 1. Hene, we must deal with phase1. We note that, omparing equations (45) and (51), in order to attain the required bound, wemust redue the duration of phase 1 from lnn� lnM�(�) to ln n�2 lnM�(�) . In order to do so, we onsiderphase 1 in slightly more detail.Sine our vertex v has degree at least 2, the CM BFS begins with a neighborhood of size n0 � 2.Reall that a ross-edge ours during phase 1 with probability ~O(n�1). Now, the probability ofexperiening a bad iteration without a ross-edge is at most (��(1) + o(1))ni = (M�(�) + o(1))ni .Without any ross-edges, we must have ni+1 � ni, whih implies ni � d(v) � 2 throughout thephase.On the other hand, if a ross-edge does our, then ni an derease. If ni+1 = 0 (for example, ifni = 2 and a horizontal ross-edge mathes both endpoints in ni), then phase 1 ends immediately,as does the entire BFS. However, if ni+1 = 1, then a bad iteration beomes more probable. In27



order to handle this situation, we note that a ross-edge is suÆiently unlikely that, for any � > 0,the probability that a ross-edge ours either preeded of followed by at least � lnn iterations ofphase 1 is at most ~O(n�1)(��(1) + o(1))� ln n = o(n�1):Therefore, with probability 1� o(n�1), this does not our, and we may assume that the neighbor-hood size is at least 2 throughout phase 1.Hene, a bad iteration requires that at least 2 endpoints of residual degree 1 are hosen onse-utively, and this ours with probability at most (M�(�) + o(1))2. Similarly to equation (46), wenow dedue that P[B1 �  lnn℄ � �M�(�) + o(1))2� ln n + o(n�1)� (M�(�) + o(1))2 lnn + o(n�1);and the fator of 2 in the exponent arries through the omputations in 4.4 to yield equation(51).4.1.3 Graphs with minimum degree at least 3Here we onsider the ase where �(0) = �(1) = 0, hene, as assumed in Theorem 4.1, GD has noverties of degree 1 or 2.Lemma 4.6 Assume �(0) = �(1) = 0, and assume GD has minimum degree 3. Then, for anyvertex v and any � > 0, P �(v)lnn � 12 lnM1(�) + �� = o(n�1): (52)Proof. Again we use the same three phases as in the proof of lemma 4.4. However, we hangethe de�nition of good and bad iterations during the �rst phase. Now, we onsider a bad iterationto be any iteration in whih ni+1 � 2ni. We note that sine all verties have degree at least 3(and residual degree at least 2), a bad iteration an only our with a ross-edge. As shown above,with probability 1� o(n�1) at most one ross-edge ours during the �rst phase, and with a singleross-edge, we have ni+1 � ni � 2.Sine a good iteration doubles the size of the BFS endpoint queue, then (barring multipleross-edges), at most O(ln ln lnn) = o(lnn) good iterations an our during phase 1. Hene, withprobability 1�o(n�1), both phases 1 and 2 have o(lnn) iterations and the previous result regardingthe duration of phase 3 yields equation (52).4.1.4 Tree ComponentsThe struture of a random graph with a �xed degree sequene D satisfying �D 2�! � or �D 1�! �with M2(�) = 1 was desribed by Molloy and Reed [12, 13℄. The results of Molloy and Reedwhih are pertinent to this paper an be summarized as follows (see appendix for more details).If the residual distribution � = �� satis�es M1(�) > 1, then the graph GD a.a.s. ontains agiant onneted omponent; and, if the giant omponent is removed, the residual graph has thestruture of the random graph GD0 where the random degree sequene D0 satis�es �D0 2�! �0a.a.s. In partiular, this limiting distribution �0 has residual distribution ��0 = ��, and �� satis�esM1(��) = M�(�) (see proposition A.3). Also, all tree omponents a.a.s. lie outside of the giantomponent (or, equivalently, the giant omponent is a.a.s. not a tree omponent).28



A straightforward argument shows that fork > � 1� lnM1(��) + �� lnn = � 1� lnM�(�) + �� lnn;the k'th BFS neighborhood for a vertex of degree 1 in the graphGD0 (whih orresponds toGD withthe giant omponent removed) has expeted size o(n�1) and therefore is empty with probability1� o(n�1). Hene, the diameter of the largest tree omponent is a.a.s. less than ( 1� lnM�(�) + �) lnnfor arbitrary �; in partiular, the diameter of the giant omponent is greater than the diameter ofany tree omponent.4.1.5 Upper BoundThe proof of the upper bound of Theorem 4.1 follows immediately from the previous lemmas usingthe �rst moment method. Spei�ally, the above lemmas show that, for any � > 0, the expetednumber of verties in GD with(v)lnn � 12 � a(�)� lnM�(�) + 1lnM1(�) + ��is n � o(n�1) = o(1). Hene, with probability 1� o(1), no suh vertex exists, and the upper boundfollows.4.2 Lower Proof of Theorem 4.1In order to prove the lower bound of Theorem 4.1, we shall demonstrate that for any � > 0, therea.a.s. exist a pair of verties u; v in GD with distane Æ(u; v) � (�� � �) lnn; where�� = a(�)� lnM�(�) + 1lnM1(�)is the value omputed in equation (43) in Theorem 4.1. Reall that, intuitively, the seond term1lnM1(�) in the equation above gives the distane separating a typial pair of verties, while the �rstterm a(�)� lnM�(�) desribes the length of the long isolated paths or yles whih ause the diameterto di�er from the \average" distane. Aordingly, we prove the lower bound by �rst showing thatalmost all verties in a random graph with �(0) = 0 are separated by a shortest path of distaneat least ln nlnM1(�) (1 � o(1)), and then �nding a pair of verties separated by an additional distaneof a(�) lnn� lnM�(�) .For the following lemma, we assume �(0) = 0, but we drop the assumption that GD must haveminimum degree 2. That is, for this lemma only, it suÆes that GD have o(n) verties of degree 1.Lemma 4.7 Let �D 2�! � or �D 1�! � with M2(�) =1, where � has residual distribution �� = �,and assume �(0) = 0 and �(1) < 1. Let u; v be verties in GD suh that d(u) = �(1) andd(v) = �(1). Then,1. u and v are onneted with probability 1� o(1).2. For any � > 0, with probability 1� o(1),Æ(u; v) > (1� �) lnnlnM1(�) : (53)29



Proof. We trae the BFS neighborhoods of u and v as in the upper bound proof. First, we exeutethe CM 2-ore algorithm with proteted set fu; vg. Sine �(0) = 0, the probability generatingfuntion of � satis�es  �(0) = 0. Hene, by lemma 3.3 the CM 2-ore algorithm terminates aftero(m) steps w.e.h.p. Sine u and v have onstant degree, then with probability 1�o(1), all endpointsbelonging to u and v remain unexposed at this time.Then, beginning with u, we perform a CM BFS searh, halted after m1��0 steps, for a value�0 > 0 to be spei�ed afterwards. Now, as with the upper bound proof (phases 1-3), the probabilitythat ni+1 < ni for any given iteration is O(m�1), hene with probability 1�o(1), this never ours.Hene, by analysis similar to the upper bound proof, when the halted BFS terminates, with proba-bility 1� o(1), we will have found a large set of at least 3m1=2 lnn unexposed endpoints onnetedto u. We then perform a similar BFS beginning with v, and onlude that with probability 1�o(1),a path onneting u to v will be found.For the seond part of the lemma, we must show that, with probability 1� o(1), any path fromu to v is longer than (1 � �) ln nlnM1(�) . Note that, sine the vertex v has �(1) unexposed endpoints,then with probability 1�o(1), none of these endpoints beome exposed duringm1��0 = o(m) stepsof the CM algorithm. Hene, with probability 1 � o(1), the distane Æ(u; v) is greater than thenumber of BFS iterations ompleted during the halted BFS. We shall prove that, for any � > 0,with probability 1� o(1), at least (1� �) ln nlnM1(�) BFS iterations will have been ompleted when theCM BFS halts after m1��0 steps.Let n0i = jN0ij, so n0i denotes size of the i'th BFS endpoint neighborhood if the BFS has not yethalted and 0 otherwise. Hene, by lemma 3.13, for any i, and for any �1 > 0E [n0i℄ � (M1(�) + �1)i :Let h = (1� �) ln nlnM1(�) and note that by linearity of expetation,E " hXi=1 n0i# � hXi=1 (M1(�) + �1)i � h(M1(�) + �1)h:Choosing �1 suÆiently small, we haveE " hXi=1 n0i# � O(n1�C) (54)for a onstant C > 0.Now, reall that the CM BFS is halted after m1��0 steps, for arbitrary �0 > 0. By de�nition, hiterations of CM BFS are ompleted at the halting time if and only if Phi=1 n0i � m1��0 : We nowset �0 < C, where C is the onstant in equation (54), and onlude by Chevyshev's inequality thatP " hXi=1 n0h > m1��0# = o(1): (55)Hene, with probability 1 � o(1), h iterations omplete during the halted BFS, and no endpointswhih belong to v are enountered within distane h = (1� �) lnnlnM1(�) of u.For graphs with minimum degree 3, the onstant �� in Theorem 4.1 is given by�� = 1lnM1(�) :The lower bound in this ase, as stated in the following orollary, is obtained by hoosing any pairof verties u; v and invoking lemma 4.7. 30



Corollary 4.8 Assume �(0) = �(1) = 0, and assume GD has no verties of degree less than3. Then, for every � > 0, with probability 1 � o(1), there exists a pair of verties u; v suh thatÆ(u; v) � (1� �)�� lnn.Next, we onsider graphs for whih �(0) > 0, so the minimum nonzero degree is 1.Lemma 4.9 Assume �(0) > 0. Then, for every � > 0, with probability 1� o(1), there exists a pairof verties u; v suh that Æ(u; v) � (1� �)�� lnn.Proof. Again we exeute the CM 2-ore algorithm, but now we hoose a proteted set W whihonsists of �(nC�) verties of degree 1; the onstant 0 < C� < 1 will be spei�ed further on. Welet W 0 denote the set of verties w 2 W for whih the (unique) endpoint belonging to w remainsunexposed when the proteted 2-ore algorithm halts. For any vertex w 2 W , the event w 2 W 0learly ours with probability �(1), and it is straightforward to show that W 0 a.a.s. (and w.e.h.p.)ontains a onstant fration of the verties in W .At this point we attempt to �nd two verties u; v 2 W 0 with k onseutive endpoint neighbor-hoods of size 1, where k = � 1� lnM�(�) � �0� lnn (56)for an arbitrary �0 > 0. We shall refer to this as the BFS probe algorithm. First, hoose any vertexw 2W 0, and exeute CM BFS until either� k iterations are ompleted, and the sizes of the �rst k BFS neighborhoods satisfyn0 = n1 = � � � = nk = 1;or� for some j � k, nj 6= 1.We repeat this proedure, hoosing a new vertex from W 0 eah time until all endpoints belongingto verties in W 0 have been exposed.We note that the BFS probe will expose at most O(lnn) endpoints for eah vertex in W , andsine jW j = o(m), then o(m) endpoints overall will beome exposed. Hene, for any �1 < 0, thefration of endpoints of residual degree 1 will never drop belowM�(�)��1 at any time during theseBFS searhes. Therefore, the probability that any partiular w 2W 0 produes a hain of length kis at least (M�(�)� �1)k = (M�(�)� �1)� 1lnM�(�)��0� ln n = 
(n�(1�C�0 )): (57)The probability of failing to �nd suh a hain in j attempts is therefore at most(1� 
(n�(1�C�0 )))j = ej ln(1�
(n�(1�C�0 ))) = e�
(jn�(1�C�0 )); (58)and sine the number of attempts is j = jW 0j = �(nC�), we hoose C� > 1 � C�0 . This guaranteesthat at least 2 suh hains are found with probability 1 � o(1). Also, if a partiular vertex wprodues suh a hain, with probability 1 � o(1), the unexposed endpoint at the end of the hainwill remain unexposed through the rest of the BFS probe with probability 1� o(1). Hene, at theend of the BFS probe, with probability 1� o(1), at least two suh hains will be remain.Now, let u; v be the two verties in W 0 whih are found to have k BFS neighborhoods of size1, and let u0 and v0 respetively denote the verties in the k'th BFS neighborhoods of u and v. Atthis point, we note that any path onneting u to v must pass through u0 and v0. Thus,Æ(u; v) = Æ(u0; v0) + Æ(u; u0) + Æ(v; v0): (59)31



Both Æ(u; u0) and Æ(v; v0) have length at least k as given in equation (56). A lower bound for Æ(u0; v0)follows from lemma 4.7. This ompletes the proof.The generalization to the ase where GD has minimum degree exatly 2 (so �(0) = 0 and�(1) > 0) is straightforward, as shown below.Lemma 4.10 Assume �(0) = 0 and �(1) > 0, and assume GD has minimum degree 2. Then,for every � > 0, with probability 1 � o(1), there exist a pair of verties u; v suh that Æ(u; v) �(1� �)�� lnn.Proof. The proof is very similar to the proof for graphs with minimum degree 1, exept that theBFS probe now searhes for a hain of BFS neighborhoods ontaining 2 endpoints, rather thanonly 1. We set k = � 12 lnM�(�) � �0� lnn (60)so the probability that, beginning with a vertex v of degree 2, we �nd k onseutive neighborhoodsof size 2 is �(M�(�)� �1)2�k = (M�(�)� �1)� 1lnM�(�)��0� lnn = 
(n�(1�C�0 )): (61)Hene, with probability 1� o(1), we �nd at least 2 verties u; v with hains of length k.At this point, the neighborhoods at distane k from u and v will ontain 2 unexposed endpointseah. We now onsider these neighborhoods as \verties" u0; v0 of unexposed degree 2, and invokelemma 4.7 to derive an appropriate lower bound on Æ(u0; v0). This ompletes the proof.The lower bound proof of Theorem 4.1 is now omplete.5 Appliations5.1 The Diameter of Gn;pConsider omputing the diameter of the lassial random graph Gn;p, for p = dm , where d > 1. Itan be shown that degree distribution of Gn;p is w.e.h.p. k-onvergent to the Poisson distribution�d(i) = e�ddii! : Also, the Poisson distribution has the property that the residual distribution is thesame as the original distribution, so ��d = �d. Hene, let �(d) = 2� ln(M�(�d)) + 1ln(M1(�d)) , so that,by Theorem 4.1, we have �(Gn;p)ln n ! �(d) a.a.s. for p = dn .The p.g.f. for the Poisson distribution �d has the simple expression  �d(z) = ed(z�1). The �xedpoint of this funtion is given by z�d = �W (�de�d)d ; where the Lambert W -funtion W (z) is theprinipal inverse of f(z) = zez . This gives a losed-form expression for �(d):�(d) = 2ln�W (de�d) + 1lnd: (62)From equation (62), it an be shown that �(d) ln d ! 3 as d ! 1 and �(d) ln d ! 1 as d ! 1,and it is a simple exerise to derive inreasingly aurate asymptoti haraterizations of �(d), asin �(d) = 1lnd + 2d +O� lndd2 � as d!1and so on. 32



5.2 Finding a Shortest Path QuiklyThe proof of Theorem 4.1 shows that one an quikly �nd a shortest path between a pair of vertiesu; v in a random graph GD using a simple algorithm. Spei�ally, we perform BFS starting fromu until either� a path onneting u and v is found;� the BFS neighborhood is empty (so u and v are not onneted);� the BFS neighborhood reahes size 3m1=2 lnm.Then we perform BFS from v until either a onneting path is found or the searh terminateswithout �nding a onneting path.An alternate algorithm (whih is a better heuristi in pratie for general graphs) is one thatperforms the BFS searh simultaneously from u and v, starting the searh for eah new level fromthe BFS neighborhood of smaller size. Assuming an adjaeny-lists representation for the graph,the following orollary of Theorem 4.1 holds for either algorithm.Corollary 5.1 Let D be a degree sequene satisfying �D 1�! � where M1(��) > 1. Then a.a.s. forany onneted pair of verties u; v in the random graph GD, a shortest path onneting u and v anbe found by a simple algorithm in time O(m1=2 lnm) = O(n1=2 lnn).5.3 The Distane DistributionFor a graph G = (V;E) let Æ(G) = fÆ(u; v) : u; v 2 V gdenote the multiset of distanes between pairs of verties in G, and note that jÆ(G)j = n2, sinethere are n2 pairs of verties. The proof of Theorem 4.1 shows that almost all �nite distanes inÆ(G) are very lose to M1(��) � lnn. We state this more preisely in the following orollary.Corollary 5.2 Let D be a degree sequene satisfying �D 2�! � or �D 1�! � with M2(�) = 1, andassume M1(��) > 1. Then, for any � > 0,���nÆ 2 Æ(GD) : Æ <1 and �� Æln n �M1(��)�� > �o��� = o(n2) a.a.s.APPENDIXA Random Graphs and Probability Generating FuntionsIn this setion we disuss various distributions related to random graphs whih an be desribedusing manipulations of probability generating funtions. Reall that, by de�nition 2.2, for a distri-bution �, the p.g.f.  � is given by  �(z) = E [zX� ℄for z 2 [0; 1℄. Various harateristis of a random graph with a �xed degree sequene D satisfying�D ! � an be understood in terms of the p.g.f. of the limiting residual distribution � = ��. Thep.g.f. also plays a key role in the theory of branhing proesses [2℄.33



We begin by noting that the k'th derivative of the p.g.f. is given by (k)� (z) = E hX� � (X� � 1) � � � (X� � k + 1) � zX��ki = E h(X�)k � zX��ki ;and therefore  (k)� (0)k! = �(k) (63)and  (k)� (1) =Mk(�): (64)Now, for any distribution �, letz� = minfz 2 [0; 1℄ :  �(z) = zg: (65)denote the lowest �xed point of  � in the interval [0; 1℄, and note that z� < 1 if and only ifM1(�) > 1 (see, for example [2℄). For a distribution � with M1(�) > 1, we de�ne distributions ��and ��, by giving the generating funtions ��(z) =  �(z � z�)z� (66)and  ��(z) =  �(z + (1� z)z�)� z�1� z� (67)The result of Molloy and Reed [13℄ regarding the degree sequene of a random graph with thegiant omponent removed an now be expressed as follows.Theorem A.1 ([13℄) Let D be a degree sequene and assume �D 1�! � where � = �� satis�esM1(�) > 1. Consider the random graph GD, and let � denote the residual degree distribution ofthe graph whih results from removing the largest onneted omponent from GD.Then � ! �� a.a.s.Proof. From the formula of Molloy and Reed for the limiting degree distribution of the graph withthe largest omponent removed (i.e. Theorem 2 of [13℄), we derive�(i)! �(i)zi�1� (68)a.a.s. for all i, and by equation (66),  ��(z) =P1i=0 zizi�1� �(i) therefore ��(i) = �(i)zi�1� , so �� isin fat the limiting residual distribution desribed in equation (68).2The residual degree distribution of the 2-ore of the random graph GD, as desribed in [8℄, anbe expressed similarly.Theorem A.2 ([8℄) Let D be a degree sequene and assume �D k�!� where � = �� satis�esM1(�) >1. Consider the random graph GD, and let � denote the residual degree distribution of the 2-oreof GD.Then � k�1��! �� w.e.h.p.2We note that this result an be strengthened to ahieve k-onvergene and/or a w.e.h.p. guarantee, but this isunneessary for our purposes. 34



Proof. In Lemma 1 in the appendix of [8℄, the expeted number of verties of degree i � 2 at timet of the 2-ore algorithm, assuming that the 2-ore has not yet been found, is given as1Xj=i �(j)�ji�p(t)i(1� p(t))j�i � o(1);where p(t) = (m�tm )1=2, and [8℄ gives w.e.h.p. onentration. Also, the halting time � of the 2-orealgorithm is shown to satisfy �m ! 1 � (1 � z�)2 or, equivalently, p(� ) ! 1 � z�, with w.e.h.p.onentration.From these two results, we ompute the limiting residual distribution at the halting time of theCM 2-ore algorithm. First, let �2 denote the limiting degree distribution of the 2-ore, so�2(i) = 1Xj=i �(j)�ji�(1 � z�)izj�i� (69)for i � 2 (and by de�nition �2(1) = 0).Let us denote orresponding residual distribution by �2 = ��2 , and ompute, for i � 1,�2(i) = (i+ 1)�2(i+ 1)M1(�2) = (i+ 1)M1(�2) 1Xj=i+1�(j)� ji+ 1�(1� z�)i+1zj�i�1�= (i+ 1)M1(�2) 1Xh=i �(h+ 1)�h+ 1i+ 1�(1� z�)i+1zh�i�= (i+ 1)M1(�2) 1Xh=i �(h+ 1) (h+ 1)!(h � i)!(i + 1)! (1� z�)i+1zh�i�= M1(�)(1� z�)M1(�2) 1Xh=i �(h)�hi�(1� z�)izh�i� :In partiular, note the similarity between the expression above for �2(i) and equation (69) for �2(i).Note also that �2(0) = 0.
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We now show that  �2 =  �� , where �� is de�ned in equation (67). First, we ompute �2(z) = E [zX�2 ℄ = 1Xi=0 �2(i)zi= 1Xi=1 �2(i)zi= M1(�)(1 � z�)M1(�2) 1Xi=1 1Xh=i �(h)�hi�(1� z�)izh�i� zi= M1(�)(1 � z�)M1(�2) 1Xi=1 1Xh=i �(h)�hi�(z(1 � z�))izh�i�= M1(�)(1 � z�)M1(�2) 1Xh=1�(h) hXi=1 �hi�(z(1 � z�))izh�i�= M1(�)(1 � z�)M1(�2) 1Xh=0�(h)�(z(1� z�) + z�)h � zh��= M1(�)(1 � z�)M1(�2) � � (z(1 � z�) + z�)�  �(z�)�:Sine z� is a �xed point of  �, this yields �2(z) = M1(�)(1 � z�)M1(�2) � � (z(1� z�) + z�)� z��: (70)In order to demonstrate that equations (67) and (70) are equal (and therefore  �� =  �2), itsuÆes to show that M1(�)M1(�2) = (1� z�)�2:While this an be ahieved algebraially by a omputation similar to what is shown above, we givea more intuitive, if less formal, argument. Sine � gives the initial degree distribution and �2 givesthe degree distribution of the 2-ore, then m = M1(�) � n gives the number of endpoints in theoriginal graph, and M1(�2) � n gives the number of endpoints in the 2-ore. It follows that thefration of endpoints in the 2-ore is given byM1(�2)M1(�) :As noted above, the halting time of the 2-ore algorithm onentrates about m(1� (1� z�)2), andsine eah time step exposes a single endpoint, we haveM1(�2)M1(�) = (1� z�)2:Therefore �2 = ��, and we onlude that � k�1��! �� w.e.h.p.Next, we give a visual interpretation of the funtions  �� and  �� , and their relation to thep.g.f.  �. For a typial distribution �, let us examine a plot of the p.g.f.  � as shown below; here36



the x-axis is z and the y-axis is  �(z).
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The value z� orresponds to the lowest �xed point in  �, as shown in the plot. If we \drag"the point (z�; z�) to the upper-right-hand orner (1; 1), and \streth" the lower-left-hand regionof the plot to over the entire [0; 1℄ � [0; 1℄ square, what results is the plot of the p.g.f.  �� . Onthe other hand, if we drag the point (z�; z�) diagonally towards the origin (0; 0), and streth theupper-right-hand region of the plot, the result is the plot of  �� .We an verify algebraially that the \strething" desribed above does not a�et �rst derivatives,and therefore  0��(1) =  0��(0) =  0�(z�)and  0��(1) =  0�(1):Now, let us de�ne M�(�) =  0�(z�); (71)and by equations (63) and (64), we have the following proposition.Proposition A.3 For any distribution � satisfying M1(�) > 1,1. M1(��) = ��(1) =M�(�);2. M1(��) =M1(�):This proposition an be interpreted intuitively as follows. Reall that, if � is the limiting residualdegree distribution of a random graph GD, then �� gives the limiting residual distribution of the2-ore of GD, and �� gives the limiting residual distribution of the subgraph of GD with the giantomponent removed. Hene, statement 1 of proposition A.3 shows that the fration of endpointsof residual degree 1 in the 2-ore of GD is asymptotially equal to the average residual degree ofthe subgraph with the giant omponent removed. Statement 2 of proposition A.3 shows that theaverage residual degree of the 2-ore of GD is asymptotially equal to the average residual degreeof GD itself.Finally, we note that the distributions �� and �� also arise in a ertain deomposition of asuperritial �-branhing proess; this deomposition, as well as a more omprehensive disussionof probability generating funtions, an be found in [2℄.37
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