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tWe derive an expression of the form 
 lnn � o(lnn) for the diameter of a sparse randomgraph with a spe
i�ed degree sequen
e. The result holds a.a.s., assuming 
ertain 
onvergen
eand super
riti
ality 
onditions are met. The proof is 
onstru
tive and yields a method for
omputing the 
onstant 
. For the random graph Gn;p with np = �(1) + 1, we solve for 
 in
losed form.Keywords: random graph, diameter, degree sequen
e, 
on�guration model.1 Introdu
tionThe diameter of a random graph is the maximum distan
e between two 
onne
ted verti
es. Forthe diameter of a sparse random graph with a spe
i�ed degree sequen
e we derive an expression ofthe form 
 lnn� o(lnn): (1)Our result holds a.a.s. for degree sequen
es satisfying 
ertain natural 
onvergen
e 
onditions. Wedetermine the value of the 
onstant 
 for all degree distributions whi
h are super-
riti
al, meaningthat a giant 
onne
ted 
omponent is a.a.s. present, and for whi
h the average degree is 
onstant.This in
ludes Gn;p and Gn;m when the expe
ted degree is a 
onstant and power-law graphs. Forsparse random graphs diameter results of su
h pre
ision were known earlier only for regular graphsof 
onstant degree [4℄. Weaker results (to within a 
onstant fa
tor) were known for diameter ofsparse Gn;p [5℄ and random `expe
ted-degree' power law graphs [10℄.Our results have several appli
ations. We make it possible derive the expli
it value of the
onstant 
 in equation (1) for many natural random graphs. For the random graph Gn;p withd = n � p > 1, we derive a 
losed-form expression for 
 as a fun
tion of d. This fun
tion 
an be
hara
terized asymptoti
ally by 
 = 3�o(1)ln d as d ! 1 and 
 = 1ln d + 2d + O � ln dd2 � as d ! 1; abound of 1ln d � (1 + o(1)) � lnn for the diameter of Gn;p in this range was 
onje
tured in [5℄. We alsoshow that, for d > 1, the diameter of Gn;p is a.a.s. equal to the diameter of the giant 
omponent,as 
onje
tured in [5℄. Our results show that almost all pairs of verti
es in the giant 
omponenthave the same shortest path length to within an arbitrarily small 
onstant fa
tor, and also thatsimple path �nding algorithms will �nd a shortest path between a given pair of verti
es a.a.s. inO(pn logn) time.�This work was supported in part by NSF grant CCR-9988160.1



Among the tools and te
hniques we use and develop are the following. We give a formulationof asymptoti
 degree sequen
es via metri
s and 
onvergen
e of probability distributions. We use
ouplings to apply well-known results for sums of i.i.d. random variables in situations where a 
leani.i.d. 
ondition does not hold; in parti
ular, we a
hieve bounds on large deviations for neighborhoodsizes of a breadth-�rst sear
h in a random graph. Our a
tual result on diameter uses our earlierresults [7, 8℄ on �-
ore (espe
ially 2-
ore) to develop a method of identifying and bounding theworst-
ase distan
e between two 
onne
ted verti
es. For instan
e, in a random graph that has a
onstant fra
tion of verti
es of degree 1, su
h a path will 
onsist of essentially a longest path (fromea
h of two verti
es of degree 1) to just past the 2-
ore, followed by a typi
al path a
ross the 2-
ore.We also make extensive use of probability generating fun
tions (p.g.f.); using the p.g.f., we relatekey properties of the degree distribution of the 2-
ore of a random graph to the degree distributionwith the giant 
omponent removed.Organization of this paper. In se
tion 2 we present ba
kground material on random variablesand random graphs. In se
tion 3 we des
ribe the CM (or 
on�guration model) algorithm forgenerating a random graph with a �xed degree sequen
e as well the CM �-
ore algorithm from[7, 8℄ (other results are known for the �-
ore problem [14, 6℄, but our results depend mainly onthe treatment in [8℄). In this se
tion, we also introdu
e an important tool in our analysis, the CMbreadth-�rst sear
h algorithm, and analyze its key properties in terms of neighborhood expansion. Inse
tion 4 we state and prove our diameter result. In se
tion 5 we brie
y des
ribe some appli
ationsof our main result.2 Preliminaries.2.1 Random Variables and Probability.In this se
tion we present some basi
 probabilisti
 de�nitions and notation. We adopt the 
on-vention that random variables and other random stru
tures are typeset in boldfa
e, and we writeprobabilities and expe
tations using the s
ript symbols P and E , respe
tively.We shall be dealing ex
lusively with dis
rete probabilities, and as su
h nothing in this paper re-quires more than basi
 familiarity with elementary probabilisti
 
on
epts su
h as random variables,probability distributions, et
. Spe
i�
ally, for any random element a drawn from a set A, we assumethat there exists a subset A0 � A su
h that P[a = a0℄ > 0 for all a0 2 A0, and P[a 2 A0℄ = 1. Hen
e,we 
an safely dis
ard all sets of measure zero, and use the terms \always" and \with probability1" inter
hangeably.2.1.1 Random variables, moments, and generating fun
tionsMost of the random variables we dis
uss will be de�ned on a parti
ular dis
rete set, namely, theset Z� = f0; 1; 2; : : :g of non-negative integers. In parti
ular, we have the following assumption.Assumption 2.1 Any probability distribution dis
ussed in this paper is assumed to be a distributionon the set Z� unless otherwise spe
i�ed.We let � denote the set of all dis
rete probability distributions on Z�, and we refer to an elementof � as simply a distribution.Given a Z�-valued random variable X, the distribution of X is de�ned byDX(i) = P[X = i℄ (2)2



for all i 2 Z�. Conversely, for a distribution �, we letX� denote a random variable with distributionDX� = �. For Z�-valued random variables X;Y, we writeX d= Y (3)if DX = DY.Next, we introdu
e two standard tools used to des
ribe a random variable X� [9℄.De�nition 2.1 The k'th fa
torial moment of X� isMk(�) = E [(X�)k℄ = 1Xi=0(i)k � �(i); (4)where (i)k = i(i� 1) � � � (i� k + 1).De�nition 2.2 The probability generating fun
tion (p.g.f.) of X� is the fun
tion �(z) = E [zX� ℄ = 1Xi=0 zi�(i) (5)for z 2 [0; 1℄.In general, all generi
 random variables are assumed to be independent unless 
ertain depen-den
ies are made expli
it. For any integer n � 0 and any distribution �, we letXnX� (6)denote the sum of n independent random variables distributed a

ording to �. For any 0 � p � 1,we let 1p denote a Bernoulli random variable with P[1p = 1℄ = p and P[1p = 0℄ = 1� p.2.1.2 Conditional and random distributionsGiven Z�-valued random variables X;Y, for any i with P[Y = i℄ > 0, we de�ne the distribution ofX 
onditional on Y = i by D[XjY=i℄(j) = P[X = j j Y = i℄ (7)for all j 2 Z+. We note that the 
onditional distributionD[XjY=i℄ is not well de�ned if P[Y = i℄ = 0.Therefore, any statement whi
h spe
i�es a property of the 
onditional distribution D[XjY=i℄ \forall i" should be understood as meaning \for all i su
h that P[Y = (i)℄ > 0."A random probability distribution on Z� (or simply a random distribution) � is a random elementdrawn from the set � of dis
rete probability distributions on Z�. Random distributions arise whenwe 
onsider the behavior of a random variable X 
onditional on Y without spe
i�
ying a parti
ularevent of the form Y = i. Spe
i�
ally, the random distributionDXjY = 8>><>>:D[XjY=0℄ if Y = 0D[XjY=1℄ if Y = 1... (8)is the the distribution of X 
onditional on Y. 3



Assumption 2.1 states that all probability distributions expli
itly referen
ed will be de�ned onthe set Z� of non-negative integers; the same is true of random distributions. Hen
e, 
an o�eran alternate 
hara
terization of a random distributions. Spe
i�
ally, we 
an 
onsider a randomdistribution � to be a set of R-valued random variables �(i) for i = 0; 1; 2; : : :, with the restri
tionthat 0 � �(i) � 1 for all i and Pi�(i) = 1.In addition to the �(i), a random distribution� also indu
es random variablesMk(�) and  �(z)for ea
h z 2 [0; 1℄ (de�nitions 2.1 and 2.2). In general, these random variables will be R-valuedrather than Z�-valued, so the de�nitions given in se
tion 2.1.1 for Z�-valued random variables willnot be appli
able.2.1.3 Dis
rete random pro
essesFor any set A, an A-valued random pro
ess is a sequen
e (a0; : : : ;an) of random elements drawnfrom A. The set A is the state spa
e of the random pro
ess. Intuitively, a random pro
ess 
an be
onsidered as a single random element whose value 
hanges over time, so at denotes the state ofthe pro
ess at time t. In situations where the time parameter t is 
lear from the 
ontext, we simplywrite a as an abbreviation for at.The history of a random pro
ess at time t is the subsequen
e (a0; : : : ;at). A Markov 
hain isa random pro
ess satisfyingP[at+1 = a j (a0; : : : at) = (a0; : : : at)℄ = P[at+1 = a j at = at℄ (9)for any sequen
e (a0 : : : at) and any element a. For any set A0 � A, the hitting time of the eventa 2 A0 is the random time de�ned by� [a2A0℄ = infft : at 2 A0g:2.1.4 Dominated distributions and 
ouplingsDe�nition 2.3 Let �; � be distributions. We say � dominates � and write �B � if, for all i,P[X� � i℄ � P[X� � i℄: (10)For random variables X;Y, analogous to our usage of X d= Y if DX = DY (as in equation 3), wewrite X dB Y if DX BDY and say X dominates Y in distribution.De�nition 2.4 Let X and Y be random variables. A 
oupling of X and Y is a pair of randomvariables (X0;Y0) de�ned on a 
ommon probability spa
e su
h that X0 d= X and Y0 d= Y (as de�nedin equation (3)).Dominated distribution 
an also be understood in terms of 
ouplings as follows.Proposition 2.1 Let X;Y be random variables. Then X dBY if and only if there exists a 
oupling(X0;Y0) of X and Y su
h that P[X0 � Y0℄ = 1.
4



2.2 Random GraphsIn this se
tion, we de�ne the random graph model whi
h will be used throughout the paper. Agraph is a pair G = (V;E), where V is a set of verti
es and E is a set of edges. We shall treatgraphs as generi
 
ombinatorial stru
tures, and a

ordingly, we make the following assumption.Assumption 2.2 All n-vertex graphs dis
ussed in this paper are drawn on the same 
anoni
alvertex set Vn = fv1; : : : ; vng.This assumption will also hold for any other stru
tures introdu
ed in this se
tion whi
h involve aset of verti
es.2.2.1 Con�gurations and Graphs.De�nition 2.5 An endpoint arrangement (or simply an arrangement) is a pair (V; S) where� V is a set of verti
es.� S is a set of endpoints; ea
h endpoint belongs to exa
tly one vertex.As dis
ussed above, we shall work with a 
anoni
al n-vertex set Vn. A

ordingly, we may simplifyour notation by dropping the referen
e to the vertex set, and simply refer to the set S itself as anendpoint arrangement. When using this abbreviation, we let n(S) denote the number of verti
es
orresponding to the arrangement S.1Given an endpoint arrangement S:� S(v) denotes the set of endpoints whi
h belong to vertex v 2 Vn.� v(s) denotes the vertex to whi
h the endpoint s 2 S belongs.De�nition 2.6 A 
on�guration is a triple (V; S;E) where (V; S) forms an endpoint arrangementand E is a set of edges su
h that ea
h edge e 2 E is a pair of endpoints fs1; s2g, and E forms aperfe
t mat
hing of S.Given a 
on�guration and an endpoint s 2 S, we denote by E(s) the endpoint mat
hed to s.A graph is naturally asso
iated with a 
on�guration by asso
iating an edge (v(s1); v(s2)) withea
h pair of mat
hed endpoints (s1; s2). In this 
ontext, a graph 
an be 
onsidered an equivalen
e
lass of 
on�gurations modulo permutation of endpoints assigned to the same vertex.In general, we shall analyze 
on�gurations dire
tly rather than graphs. For expository purposes,though, we prefer the simple and traditional term graph. A

ordingly, if the 
ontext is 
lear, wemay abuse our terminology slightly and refer to a 
on�guration as a \graph."We adopt the 
onvention that the variable n will denote the number of verti
es jV j in anarrangement, and m will denote the number of endpoints jSj. Note that this di�ers from thetraditional 
onvention by whi
h m denotes the number of edges, whi
h would be half the numberof endpoints.The degree of a vertex v in an endpoint arrangement S is jS(v)j, the number of endpointsassigned to v. The degree of a vertex is denoted by dS(v), or simply d(v), if the set of endpoints Sis 
lear from the 
ontext. For an endpoint s, we also abbreviatedS(s) = dS(v(s))1Note that it is not (ne
essarily) the 
ase that n(S) 
an be determined by 
ounting the number of verti
es whi
h
ontain endpoints in S; there may be verti
es whi
h 
ontain no endpoints but are still in
luded as part of the endpointarrangement. 5



and refer to this value as the degree of the endpoint s. The degree sequen
e of an arrangement Sis the sequen
e of degrees DS = (dS(v1); : : : ; dS(vn)).2.2.2 Random 
on�gurationsIn this subse
tion, we des
ribe the 
on�guration model [3℄ for generating a random graph with aspe
i�ed degree sequen
e. For an endpoint arrangement S = (V; S), we let ES denote a uniformlyrandom mat
hing of the endpoints in S, and we de�ne an asso
iated random 
on�guration byGS = (V; S;ES):For a sequen
eD = (d1; : : : ; dn) of non-negative integers, we let SD denote an endpoint arrangementwith degree sequen
e D, and, with slight abuse of notation, we de�neGD = GSD = (V; SD;ESD):We say GD is a random 
on�guration with degree sequen
e D. We note thatGD is only well-de�nedif the sum of the degrees in D is odd. A

ordingly, we de�ne a degree sequen
e to be a sequen
e Dwhere Pi di is even.Sin
e ea
h simple graph with degree sequen
e D o

urs with the same probability under the
on�guration model, then 
onditioning on simpli
ity produ
es a uniformly random simple graphwith degree sequen
e D. The following fa
t follows from a result of M
Kay and Wormald [11℄Fa
t 2.1 If the maximum degree of a degree sequen
e is o(n1=3) and the average degree is �(1),then a random 
on�guration produ
es a simple graph with 
onstant probability.If a degree sequen
e D satis�es the 
onditions in fa
t 2.1, then for any graph property A,P�GD satis�es A �� GD is simple� = O �P�GD satis�es A�� :In general, we shall ignore the simpli
ity requirement and just study the random 
on�guration GD,noting that asymptoti
 results derived using the 
on�guration model are also appli
able to randomsimple graphs if the maximum and average degree requirements is met.2.3 Asymptoti
s.In the previous se
tion, we de�ned the random graph GD for any degree sequen
e D. We seek tostudy su
h random graphs asymptoti
ally. Several authors, in
luding Molloy and Reed [12, 13℄,and Aiello, Chung, and Lu [1℄, have a

omplished this by 
reating in�nite sequen
es D1;D2; : : : ofdegree sequen
es, and examining limits as inlimn!1P[GDn satis�es A℄:(Here Dn is a degree sequen
e on n verti
es.) This involves a 
onsiderable amount of overhead,sin
e an entire sequen
e Dn must be spe
i�ed for ea
h value of n. We spe
ify asymptoti
 degreesequen
es similar to the smooth sequen
es de�ned by Molloy and Reed [12, 13℄, but we make noexpli
it referen
es to sequen
es of degree sequen
es. Instead, we embed the set of degree sequen
esin a topologi
al spa
e, and deal with 
onvergen
e in the topologi
al sense.We review some notation and terminology involving limits and 
onvergen
e in topologi
al spa
es.Let X� be a topologi
al spa
e and 
onsider a subset X � X� and an element x� 2 X�. For any6



property P de�ned on the set X, we say P holds asymptoti
ally as x ! x� if there exists aneighborhood Nx� of x� in X� su
h that P holds for all x 2 Nx� \X.Consider a mapping x 7! yx from X to a topologi
al spa
e Y . For any element y 2 Y , we sayyx ! y as x! x�if, for any neighborhood Ny of y in Y , the property that yx 2 Ny holds asymptoti
ally as x! x�.Consider mappings x 7! zx and x 7! z0x from X to R, and assume zx � 0 and z0x > 0 for x! x�.We re
all the standard \big O" notation:� zx = O(z0x) as x! x� if there exists a 
onstant C > 0 su
h that zxz0x < C holds asymptoti
allyas x! x�;� zx = o(z0x) as x! x� if zxz0x ! 0 as x! x�;� 
, �, and ! are de�ned a

ordingly.Finally, as a 
onvention, we will often write asymptoti
 statements as follows:Assume x! x�. Then yx ! y.This statement is equivalent to yx ! y as x! x�.2.3.1 Asymptoti
s and probabilityIn this subse
tion we dis
uss asymptoti
 statements involving probabilities and random variables.De�nition 2.7 For ea
h x 2 X, let Hx denote an event in some probability spa
e.1. We say Hx o

urs asymptoti
ally almost surely (a.a.s.) as x! x� if P[Hx℄! 1 as x! x�.2. For a mapping x! nx from X to Z+, we say Hx o

urs with exponentially high probability(w.e.h.p.) in nx as x! x� if P[Hx℄ = 1� e�n
(1)x as x! x�.Next, we deal with probabilisti
 
onvergen
e.De�nition 2.8 For ea
h x 2 X, let yx denote a random element in a topologi
al spa
e Y .1. We say yx ! y a.a.s. as x! x� if, for every neighborhood Ny of y in Y , the event yx 2 Nyo

urs a.a.s. as x! x�.2. We say yx ! y w.e.h.p. in nx as x! x� if, for every neighborhood Ny of y in Y , the eventyx 2 Ny o

urs w.e.h.p. in nx as x! x�.Using de�nitions 2.7 and 2.8, we 
an link together a.a.s. and w.e.h.p. statements, as demon-strated in the following lemma for a.a.s.Lemma 2.2 Let X�; Y � be topologi
al spa
es, let X � X� and Y � Y �, and let x� 2 X� andy� 2 Y �. For ea
h x 2 X, let yx be a random element in Y , and for ea
h y 2 Y , let Hy be anevent in some probability spa
e. Assume that yx ! y� a.a.s. as x! x� and that Hy o

urs a.a.s.as y ! y�.For ea
h x 2 X, de�ne an event Hyx su
h thatP[Hyx j yx = y℄ = P[Hy℄:Then Hyx o

urs a.a.s. as x! x�. 7



Proof. For any � > 0, there exists a neighborhood Ny� of y� in Y � su
h that if y 2 Ny� \ Y thenP[Hy℄ > 1 � �, and there exists a neighborhood Nx� of x� in X� su
h that if x 2 Nx� \ X thenP[yx 2 Ny� ℄ > 1� �. It follows that P[Hyx ℄ > 1� 2�for x 2 Nx� , and sin
e � is arbitrary, the proof is 
omplete.We note that this lemma 
an be generalized in several ways to deal with w.e.h.p. 
onvergen
eand various other 
onditions.2.3.2 Degree distributionsThe topologies we use to asymptoti
ally spe
ify degree sequen
es will be de�ned impli
itly viamappings from the set of degree sequen
es to various topologi
al parameter spa
es. The mainparameter will be the degree distribution, de�ned as follows.De�nition 2.9 For any degree sequen
e D = (d1; : : : ; dn), the degree distribution �D is de�ned by�D(i) = jfj : dj = igjn : (11)The degree distribution 
an be understood intuitively as follows. Given an arrangement S withdegree sequen
e D, if we 
hoose a vertex v uniformly at random from Vn, we haveDdS(v) = �D:Note that, from de�nition 2.1, M1(�D) gives the expe
ted degree of a vertex 
hosen uniformly atrandom (i.e. the average degree).For any distribution � with 0 < M1(�) <1, we de�ne an asso
iated residual distribution by��(i) = (i+ 1)�(i + 1)M1(�) (12)for all i. If M1(�) = 0 we de�ne ��(0) = 1 and ��(i) = 0 for i > 1. For any degree sequen
e D, weabbreviate �D = ��D and refer to �D as the residual degree distribution of D. Sin
e M1(�D) <1for any degree sequen
e D (or any sequen
e of integers), �D is well de�ned. Intuitively, if we 
hoosean endpoint s uniformly at random from S, we haveDdS(s)�1 = �D:The term residual re
e
ts the fa
t that dS(s)� 1 
ounts the number of endpoints whi
h belong tov(s) other than s itself.Our asymptoti
 spe
i�
ations will rely mainly on the degree distribution �D of a degree sequen
eD. However, the residual distribution �D is often more useful than �D in analyzing the CMalgorithm. Therefore, we shall be mindful of how our de�nitions a�e
t the behavior of the residualdistribution as well as the degree distribution.We now de�ne a family of metri
s on the set � of probability distributions on Z�.De�nition 2.10 The variation distan
e between distributions �; � 2 � is given byg�(�; �) = 12 1Xi=0 j�(i)� �(i)j : (13)8



It is 
lear that the variation distan
e de�nes a metri
 on �. The variation distan
e is often de�nedequivalently by g�(�; �) = 1Xi=0 max(�(i)� �(i); 0) = 1Xi=0 max(�(i)� �(i); 0): (14)This alternate de�nition a

ounts for the topologi
ally irrelevant fa
tor of 12 in equation (13).For any k � 1, we de�ne a metri
 whi
h takes into a

ount the k'th fa
torial moment of aprobability distribution. For distributions �; � satisfying Mk(�);Mk(�) <1, we de�neg�;k(�; �) = g�(�; �) + jMk(�)�Mk(�)j : (15)We refer to 
onvergen
e of a probability distribution with respe
t to the metri
 g�;k as k-
onvergen
e, and we use the notation � k�!�� to indi
ate k-
onvergen
e of � to ��. A

ordingly, thenotation �! �� indi
ates 
onvergen
e with respe
t to the variation distan
e metri
 g�.Note that if Mk(�) < 1, the residual distribution �� given in equation (12) is well-de�ned.The residual distribution is typi
ally a more useful tool than the degree distribution in studyingrandom graphs, and we deal with the residual distribution mu
h more than the degree distributionitself. We note that the moments of the residual distribution are given byMk(��) = Mk+1(�)M1(�) ;and therefore � k�!�� implies �� k�1��! ��� .For the rest of this paper, we shall only 
onsider limiting degree distributions with the propertythat 0 < M1(�) < 1. Hen
e, a degree sequen
e D satisfying �D 1�! �, will have average degreeM1(�D) = �(1). In parti
ular, this implies that the number of endpoints m satis�es m = �(n),where n is the number of verti
es. We note that it may be the 
ase that the residual distributionsatis�es M1(��) = 1, even if M1(�) < 1. This o

urs, for example, for a power law or Paretodistribution �(i) = i���(�) for values of 2 < � � 3 (here �(�) denotes the Riemann zeta fun
tion). Inour study of the diameter of the random graph GD, we shall often need to 
onsider the two 
asesM1(��) <1 and M1(��) =1 separately.2.4 Properties of the Metri
 Spa
es (�; g�;k).In this se
tion, we give some useful results about the metri
s we have de�ned on the set � ofdistributions on Z�.For any distribution � in Z�, we de�ne the 
omplementary distribution fun
tion of � byF�(i) = P[X� � i℄ =Xj�i �(j):Proposition 2.3 Let �� be a distribution. Then the following statements are equivalent:1. �! �� with respe
t to the variation distan
e metri
 g�.2. maxi j�(i)� ��(i)j ! 0.3. maxi jF�(i)� F��(i)j ! 0. 9



The 
omplementary distribution fun
tion is related to domination (de�nition 2.3), sin
e �B �if and only if F�(i) � F�(i) for all i.Lemma 2.4 Consider a mapping � 7! � from � to � su
h that � C � for all �. If there existdistributions �� and �� su
h that � ! �� as � k�! ��, then � k�! �� as � k�! �� as well.Proof. It suÆ
es to show that Mk(�)!Mk(��) <1. Note that, for any distribution �,Mk(�) = 1Xi=0(i)k�(i) = 1Xj=1((j)k � (j � 1)k)F�(j):Sin
e (j)k�(j�1)k � 0 for all j � 1, the lemma follows from the statement of Lesbegue dominated
onvergen
e in [9℄.This yields a useful 
orollary regarding endpoint arrangements. For any arrangement S, we write�S and �S to denote the degree distribution �DS and the residual distribution �DS , respe
tively.Corollary 2.5 Let S be an arrangement su
h that �S k�!�. Let T � S and assume �T ! �0. Then�T k�!�0.Finally, we introdu
e trun
ated distributions.De�nition 2.11 For any distribution � and any 0 < � � 1, the �-trun
ated distribution �[�℄ isspe
i�ed by the 
omplementary distribution fun
tionF�[�℄(i) = maxfF�(i)� �; 0gfor i > 0, and F�[�℄(i) = 1 for i � 0.Informally, the distribution �[�℄ is 
onstru
ted by removing a total amount � from the weights �(i)for the highest values of i, and in
reasing the weight �(0) by �.Proposition 2.6 The trun
ated distribution �[�℄ satis�es the following properties:1. g�(�[�℄; �) � �.2. For any �, if g�(�; �) � � then �[�℄ C �.3 The Con�guration Model Algorithm.As de�ned in se
tion 2.2, a random 
on�guration is generated from an endpoint arrangement (V; S)by 
hoosing a random mat
hing of the set S of endpoints. The 
on�guration model (CM) algorithmis a pro
edure whi
h generates this mat
hing one edge at a time. The CM algorithm is 
ustomizable,in the sense that we have some 
exibility regarding the order in whi
h the edges of the mat
hingare revealed.The intuition is as follows. For any endpoint s 2 S, a uniformly random mat
hing E of swill 
hoose E(s) uniformly at random from the set S � fsg. Also, the remaining endpoints inS�fs;E(s)g will be mat
hed uniformly at random. Hen
e, a random mat
hing 
an be 
onstru
tedby su

essively 
hoosing an unmat
hed endpoint and 
hoosing its mat
h uniformly at random.This se
tion pro
eeds as follows. In se
tion 3.1, we give a formal des
ription of the CM algorithmas a dis
rete random pro
ess. Sin
e as des
ribed above, the CM algorithm 
an be 
ustomized, wethen des
ribe two parti
ular variants of the CM algorithm. The �rst is the �-
ore CM algorithm,whi
h we studied in [7, 8℄. The se
ond is the CM BFS algorithm, whi
h performs a standardbreadth-�rst-sear
h while generating a random 
on�guration, and whi
h will be used extensivelyin this paper. 10



3.1 The CM Pro
essIn this se
tion we introdu
e the notation whi
h we shall use to des
ribe the dis
rete random pro
essasso
iated with the exe
ution of the CM algorithm. All endpoint arrangements, 
on�gurations, et
.are de�ned with respe
t to the 
anoni
al vertex set Vn. The CM algorithm generates a randommat
hing of an initial arrangement U 
ontaining m = jU j endpoints.De�nition 3.1 A CM pro
ess of an endpoint arrangement U is a random permutation (s1; : : : ; sm)of U su
h that for any endpoint s and any even time t,P[st = s j s1; : : : ; st�1℄ = ( 1m�t+1 if s =2 fs1; : : : ; st�1g0 otherwise.We asso
iate a random mat
hing E of the endpoints in U with a CM pro
ess by setting E(st) =st+1 for all odd values t = 1; 3; : : : ;m� 1. It is easy to verify that the CM algorithm does in fa
tprodu
e a random mat
hing of the endpoints.At time t, we say the endpoints s1; : : : ; st are exposed, so the set Ut 
ontains all unexposedendpoints. The set Ut plays a 
entral role in the CM algorithm. A

ordingly, we de�ne:� The unexposed degree a vertex v is dt(v) = dUt(v).� The unexposed degree distribution is �t = �Ut .� The unexposed residual distribution is �t = �Ut .We refer to the value dt(s) � 1 as the residual unexposed degree of the endpoint s at time t.Note that the endpoint st be
omes exposed at time t, hen
edt(st) = dt�1(st)� 1: (16)In other words, the residual unexposed degree of st at time t � 1 be
omes the total unexposeddegree of st at time t. Re
all that, if t is even, then the endpoint st is 
hosen uniformly at randomfrom Ut�1. This yields the following fundamental property of the residual unexposed degree of anendpoint 
hosen at an even time step.Proposition 3.1 For any even time step t of the CM algorithm,Ddt(st)js1;:::;st�1 = �t�1: (17)De�nition 3.1 spe
i�es that the endpoint st must be 
hosen uniformly at random from Ut�1 foreven values of t. However, the behavior for odd values is unspe
i�ed; hen
e, di�erent strategies for
hoosing endpoints at odd times 
an be formulated to study various aspe
ts of the resulting graph.Informally, we de�ne a spe
ialization of the CM algorithm to be a method for 
hoosing st for oddvalues of t.In this paper, we will de�ne several spe
ializations of the CM algorithm, whi
h we will pie
etogether to study the diameter of the random graphGD. A halted CM pro
ess is a CM pro
ess alongwith a random halting time � . Using halted CM pro
esses, we 
an de�ne a single spe
ialization ofthe CM algorithm whi
h uses di�erent strategies for 
hoosing endpoints at di�erent times.Re
all that, as de�ned in se
tion 2.3.2, the notation �U k�!� indi
ates k-
onvergen
e of the degreedistribution �D to the distribution �. Typi
ally, we will study CM pro
esses for whi
h the initialarrangement U satis�es �U k�!� for either k = 1 or k = 2. The following proposition states that ifwe only look at o(m) steps, then the residual distribution will not 
hange signi�
antly during thistime. 11



Proposition 3.2 Assume �U k�!� for some distribution � and jU j ! 1. Then, for any CM pro
esswith initial arrangement U , and any time t = o(jU j),�t k�1��! �� (18)holds asymptoti
ally always. In parti
ular, M1(�t) ! M1(��) holds asymptoti
ally always fork � 2.3.2 The CM �-
ore Algorithm.The �-
ore of a graph is the maximal indu
ed subgraph of minimum degree k. The CM �-
orealgorithm [7, 8℄ is a spe
ialization of the CM algorithm whi
h 
hooses an endpoint st of minimumunexposed degree at ea
h odd time step t. Formally, a CM �-
ore pro
ess is a CM pro
ess satisfyingdt�1(st) = minfdt�1(s) : s 2 Ut�1g (19)always for all odd values t < m. We note that sin
e there may be several endpoints of minimumdegree, the CM �-
ore algorithm 
an be further spe
ialized if ne
essary. The �-
ore algorithm �ndsthe �-
ores of a random graph by exposing all endpoints whi
h are not part of the �-
ore andleaving the �-
ore unexposed.For our purposes, we are only 
on
erned with the 2-
ore phase of the CM �-
ore algorithm. Weshall further spe
ialize the 2-
ore algorithm, by introdu
ing a set of verti
es W , 
alled the prote
tedset.De�nition 3.2 Given an initial arrangement U and a prote
ted set W , a prote
ted 2-
ore CMpro
ess is a halted CM pro
ess satisfying dt�1(st) = 1 and v(st) =2 W for all odd time steps t < � ,and halting at the hitting time � of the eventd(v) 6= 1 for v =2W:Hen
e, the prote
ted 2-
ore algorithm 
hooses endpoints of unexposed degree 1 outside of W andhalts when no su
h endpoints remain.The state of the CM pro
ess at the halting time � of the CM 2-
ore algorithm 
an be determinedw.e.h.p. from the results in [8℄ as des
ribed brie
y below. For details, see appendix A. Re
all thatthe probability generating fun
tion (p.g.f.) of a distribution � is de�ned by  �(z) = E [zX� ℄ forz 2 [0; 1℄ (see equation 5). A

ordingly, for any distribution �, we let z� denote the lowest �xedpoint in  �, so z� = minfz 2 [0; 1℄ :  �(z) = zg; (20)and we de�ne the distribution �� by spe
ifying the p.g.f. ��(z) =  �((1 � z�)z + z�)� z�1� z� : (21)The following lemma is an impli
ation of [8℄ (see Theorem A.2 in appendix A).Lemma 3.3 Let U be an initial arrangement satisfying �U k�! �, where � has residual distribution� = ��. Let W be a prote
ted set and assume jW j = o(n). Then1. The stopping time of the prote
ted 2-
ore algorithm satis�es �m ! 1�(1�z�)2 w.e.h.p., wherez� is de�ned in (20).2. The residual distribution at time � satis�es �� k�1��! �� w.e.h.p., where �� is de�ned in (21)We note that the se
ond 
ondition is as strong as possible, sin
e k-
onvergen
e of the distribution� 
orresponds to (k � 1)-
onvergen
e of the residual distribution ��.12



3.3 The CM BFS Algorithm.Here we 
onsider a breadth-�rst-sear
h (BFS) spe
ialization of the �-
ore algorithm. Beginningwith a set of verti
es W , the CM BFS algorithm performs a standard breadth-�rst sear
h andexposes endpoints a

ordingly. Typi
ally, BFS involves a queue of verti
es; our implementationdi�ers slightly in that the queue will 
ontain endpoints rather than verti
es. We �rst de�ne a singleBFS iteration.De�nition 3.3 Let U be an initial arrangement and let W be a vertex set with endpoint set R =U(W ). A CM BFS iteration pro
ess is a halted CM pro
ess where st 2 R for all odd time stepst � � , and halting at the hitting time � of the event R \U = ;.For the CM BFS iteration pro
ess, we expand the state of the BFS algorithm as follows.� R = R \U denotes the remaining unexposed endpoints in R.� Q = R [ fs 2 U : d(s) < dU (s)g. We 
all Q the endpoint queue; a

ordingly, the initialendpoint queue is the set Q0 = R. This de�nition spe
i�es that any endpoint s whose
urrent unexposed degree d(s) di�ers from its initial degree dU (s) belongs to Q, as well asany remaining unexposed endpoints in R.� T = U �Q 
ontains all unexposed endpoints not in the queue. Endpoints in T are 
alledunexplored. The set U 0 = U �R is the initial set of unexplored endpoints.We note that, in the 
ontext of BFS, the set T of unexplored endpoints is typi
ally more relevantthan U, sin
e the set Q 
ontains endpoints whi
h are already 
onne
ted to a vertex in the set W .Hen
e we denote the residual distribution with respe
t to the set of unexplored endpoints T by�t = �Tt ; (22)and refer to �t as the unexplored distribution at time t.Note that, at ea
h odd time step, the endpoint st must be 
hosen from R and hen
e from Qt�1,so jQtj = jQt�1j � 1 always for odd t. However, at ea
h even time step, two qualitative out
omesare possible regarding the mat
hed endpoint st. If st =2 Qt�1, then jQtj � jQt�1j, with equalityif dUt(st) = 0. Otherwise, st 2 Qt�1 so jQtj < jQt�1j, and a 
ross-edge has o

urred. We alsodistinguish two di�erent kinds of 
ross edges.� A horizontal edge o

urs if st 2 Rt�1.� A diagonal edge o

urs if st 2 Qt�1 �Rt�1.We de�ne the BFS neighborhood of a CM BFS iteration to be the set of endpoints N = Q� inthe endpoint queue when the BFS iteration ends.De�nition 3.4 An extended CM BFS pro
ess (or just CM BFS pro
ess) is a sequen
e of CM BFSiterations, where the BFS neighborhood N of ea
h iteration is used as the initial endpoint queue Rfor next iteration.For an extended CM BFS pro
ess we de�ne:� The i'th BFS neighborhood Ni is the BFS neighborhood of the i'th CM BFS iteration. For
onsisten
y, we let N0 = R, the initial endpoint queue.13



� The i'th halting time � i is halting time of the i'th CM BFS iteration.In the following subse
tions, we will give probabilisti
 bounds on the sizes of the BFS neigh-borhoods. Our strategy will be to show that the random variable jNij is distributed \similarly" tothe sum of jNi�1j independent random variables distributed a

ording to the residual unexploreddistribution �. Spe
i�
ally, we will show that jNij is dominated in distribution from below by thetrun
ated distribution � [�℄ for arbitrary � > 0.Our proof will involve a 
oupling of the CM BFS pro
ess with a random pro
ess whi
h does gen-erate a random variable whi
h is distributed identi
ally the sum of independent random variables.First, we derive some results for 
oupled random pro
esses.3.3.1 Coupled Random Pro
esses.We begin by re
alling some notation from se
tion 2.From se
tion 2.4, re
all that for a distribution �, �[�℄ denotes the �-trun
ated distribution, whi
hsatis�es g�(�[�℄; �) � � and �[�℄C� for all � with g�(�; �) < �. From se
tion 2.1.1, re
all thatPnX�denotes the sum of n independent random variables distributed a

ording to � and 1p denotes aBernoulli random variable with parameter p. For a de�nition of 
oupled random variables, seese
tion 2.1.4.Lemma 3.4 For all � > 0, all � 2 �, and all r > 0,XrX�[�℄ dCXPr1(1��)X�:Proof. Write XPr1(1��)X� = rXi=1 Yi;where the Yi are independent and distributed identi
ally to Y d= 1(1��) �X�; and note thatg�(DY; �) � �:Lemma 3.5 For any values n > 0 and 0 � p � 1,2 �Xn1p dCX2n1pp: (23)Proof. The result follows immediately from the following 
oupling:X2n1pp d= 2nXi=1 Xi; where the Xi are independent and Xi d= 1pp,Xn1p d= nXj=1Yj ; where Yj = X2j�1 �X2j d= 1p:Clearly, for any k, if PYj = k, then PXi � 2k.Next, we give some simple results regarding 
ouplings and random pro
esses. We begin with alemma about 
ouplings and dependent random variables.Lemma 3.6 Let X1;X2 and Y1;Y2 be (not ne
essarily independent) random variables, and sup-pose: 14



1. X1 dBY1, and2. for every i � j, D[X2jX1=i℄ BD[Y2jY1=j℄: (24)Then X2 dBY2.Proof. Sin
e X1 dBY1, we 
an 
reate a 
oupling (X01;Y01) su
h that P[X01 � Y01℄ = 1. Similarly,by the se
ond hypothesis, for any i � j, we 
an de�ne a 
oupling (X0(i;j);Y0(i;j)) of the 
onditionalrandom variables [X2jX1 = i℄ and [Y2jY1 = j℄ su
h thatP[X0(i;j) � Y0(i;j)℄ = 1:Finally, we de�ne a pair of random variables (X02;Y02) byX02 = X0(X01;Y01)Y02 = Y0(X01;Y01):We easily verify that for any value k,P[X02 = k℄ =Xi;j P[X0(i;j) = k j X01 = i;Y01 = j℄ � P[X01 = i;Y01 = j℄=Xi P[X2 = k j X1 = i℄ � P[X1 = i℄= P[X2 = k℄and therefore X02 d= X2. Similarly, Y02 d= Y2. Also, sin
e P[X01 � Y01℄ = 1, and P[X02 � Y02 j X01 �Y01℄ = 1, it follows that P[X02 � Y02℄ = 1.Re
all that for any distribution �, PnX� denotes the sum of n independent random vari-ables distributed a

ording to �. The following proposition follows easily by applying lemma 3.6indu
tively.Proposition 3.7 Let X1; : : : ;Xn be random variables, and let � be a distribution su
h that for alli, P[DXijX1;:::;Xi�1 C �℄ = 1: (25)Then Pni=1Xi dCPnX�.The next proposition deals with 
ouplings for random pro
esses. Again, the result follows froma simple indu
tive appli
ation of lemma 3.6.Proposition 3.8 Let X0;X1; : : : ;Xr be a Z�-valued random pro
ess and let Y0;Y1; : : : ;Yr be aZ�-valued Markov 
hain su
h that X0 dBY0, and su
h that for any i � j and any t,P �DXtjX1;:::;Xt�1 BD[YtjYt�1=j℄ j Xt�1 = i� = 1: (26)Then Xt dBYt for all t. 15



3.3.2 A single iteration of CM BFSIn this subse
tion we give a probabilisti
 lower bound for the size of the neighborhood of a single BFSiteration. We �rst relate the size of a BFS neighborhood to the sum of i.i.d. random variables. Thisallows us to use standard large deviation te
hniques (i.e., Cramer's theorem) to derive 
on
entrationresults for the BFS neighborhood size.Theorem 3.9 Consider a CM BFS iteration for whi
h the following hold.1. The initial arrangement U satis�es �U 1�! �, and � has residual distribution � = ��.2. The initial queue R = U(W ) has size r = jRj = o(m).Then, for any � > 0, the BFS neighborhood N satis�esjNj dBXrX�[�℄ : (27)To prove Theorem 3.9, we begin by pointing out the obvious fa
t that a BFS iteration 
an lastat most 2 � r steps, and therefore, for r = o(m), the residual distribution �t ! � always for any0 � t � � � 2r. It is also true, though less obvious, that �t ! �, and therefore jQtj = o(m), forany 0 � t � � � 2r. This is be
ause, for any v =2W , if dt(v) = dU (v), then dTt(v) = dt(v) = dU (v),and the unexposed degree 
an only 
hange for at most r = o(m) verti
es outside of W during theiteration.Now, we bound the number of endpoints in horizontal edges with the following lemma. Re
allthat 1p is a Bernoulli random variable with parameter p.Lemma 3.10 Let A � R denote the set of endpoints s 2 R su
h the endpoint E(s) mat
hed to ssatis�es E(s) 2 R. Then, for any � > 0, jAj dCXr1�:Proof. Note that the distribution of jAj depends only on r and m, sin
e the a
tual degrees ofverti
es do not a�e
t the number of horizontal edges. Let q1;q2; : : : ;qr denote the endpoints of Rin the order that they are exposed by CM BFS. Any horizontal edge must 
onsist of two 
onse
utiveendpoints a

ording to this ordering. So, for 1 � i � r � 1, de�ne random variablesKi = (1 if E(qi) = qi+1;0 otherwise,so jAj = 2 �Pr�1i=1 Ki.Note that sin
e r = o(m), the probability that an endpoint 
hosen uniformly at random fromUt lies in R is at most rm�2r = O( rm) = o(1) at any time during the BFS iteration. Also, if Ki = 1then Ki+1 = 0, sin
e the endpoint qi+1 
annot be part of more than one horizontal edge. Hen
e,for i > 1, P[Ki = 1 j K1; : : : ;Ki�1℄ = (0 if Ki�1 = 1;O( rm) if Ki�1 = 0. (28)This observation allows us to 
onsider the Ki in pairs. So, for 1 � i � br=2
, we de�neLi =K2i�1 +K2i;16



and note that jAj = 2Pbr=2
i=1 Li. Also, Li � 1 always for all i, andP[Li = 1 j L1; : : : ;Li�1℄ = P[Li = 1 j Li�1℄ � 2O( rm ) = O( rm)always, and sin
e the Li are Bernoulli random variables, thenP[DLijL1;:::;Li�1 C 1O( rm )℄ = 1:Hen
e, we 
on
lude by proposition 3.7 thatjAjC 2 �Xbr=2
1O( rm ):Finally, by lemma 3.5, it follows that thatjAj dCXr1O(p rm);and therefore jAj dCXr1�for any � > 0.Now, note that the set of endpoints R�A will all mat
h to the set U 0 = U �R. In parti
ular,
onditional on jAj, exa
tly r � jAj endpoints 
hosen uniformly at random from U 0 will be
omeexposed during the BFS iteration.Lemma 3.11 For any r0 � r, and for any � > 0, the size of the BFS neighborhood jNj satis�esjNj dBXr0X�[�℄
onditional on r � jAj = r0.Proof. As noted above, 
onditional on r � jAj = r0, exa
tly r0 endpoints 
hosen uniformly atrandom from U 0 be
ome exposed during the BFS iteration. Without loss of generality, we mayassume that the endpoints in A be
ome exposed �rst, so after jAj steps, we have QjAj = RjAj =R �A, and that the next r0 endpoints exposed at even time steps are drawn from U 0. Then, forany 0 � t0 � r0, we de�ne Kt0 = ��QjAj+2t0 ��� ��RjAj+2t0��, soKr0 = jQ� j = jNj :The random pro
ess K0; : : : ;Kr0 thus keeps tra
k of the number of \new" endpoints in the BFSqueue whi
h are not part of the original queue R. Now, the value of K drops by exa
tly 1 if a
ross-edge o

urs. Hen
e,P[Kt0 = Kt0�1 � 1 j K1; : : : ;Kt0�1℄ = O �Kt0�1m � : (29)Otherwise, when a 
ross-edge does not o

ur, K will in
rease by the value of the unexplored degreeof the endpoint sjAj+2t0 
hosen at time jAj+ 2t0. So, for any i � 0,P[Kt0 = Kt0�1 + i j K1; : : : ;Kt0�1℄ = � jAj+2t0(i)�O �Kt0�1m � = �(i)� o(1); (30)17



sin
e Kt0�1m = o(1) and t0 = o(m); here � jAj+2t0 denotes the unexplored residual distribution (equa-tion 22) at time jAj+ 2t0.We wish to show that Kt0 dBXt0X�[�℄ (31)for arbitrary � > 0. However, sin
e, as des
ribed above, the value of Kt0 
an 
hange in two di�erentways, it is diÆ
ult to relate Kt0 to the sum if i.i.d. random variables dire
tly. Instead, we 
onstru
tan auxilliary Z�-valued Markov 
hain Z1; : : : ;Zr0 and show thatKt0 dB Zt0 dBXt0X�[�℄ :The Markov 
hain Zt0 must be \easy" to 
ompare to both the random pro
ess Kt0 and thesum of i.i.d. random variablesPt0X�[�℄ . Intuitively, it is useful to think of the Markov 
hain Zt0 as
ounting the number of elements in some set Ht0 , soZt0 = jHt0 j :The 
ontents of the set Ht0 
hange over time in a way that resembles a CM BFS iteration, butexhibits enough independen
e that the pro
ess Zt0 
an be easily 
ompared to a sequen
e of i.i.d.random variables.Let us de�ne su
h a pro
ess. At time 0, we set H0 = ; and therefore Z0 = jH0j = 0. Then, atea
h time step t0, the 
ontents of the set H 
hange as follows.1. A random number of new elements is added to Ht0 ; the number of new elements is distributeda

ording to �[�1℄ where �1 > 0 is arbitrary.2. Ea
h element inHt0�1 is removed independently with probability �2r0 , where �2 > 0 is arbitrary.Formally, then, Zt0 is a Markov 
hain de�ned by Z0 = 0, and, if we let Lt0 denote the randomvariable Zt0 
onditional on Zt0�1, thenLt0 d= X�[�1℄ +XZt0�11(1� �2r0 ):We also give an alternate des
ription of the pro
ess Zt0 . For 1 � i � r0 and 0 � j � r0 � i, letY(i;j) denote the number of elements that remain in the set H at time i+ j among those that wereadded at time i. As des
ribed above, we haveY(i;0) d= X�[�1℄ :and Y(i;j) d=XY(i;j�1)1(1� �2r0 )for j > 0. It follows by de�nition that Zt0 = t0Xi=1 Y(i;t0�i):We now show that Zt0 dCKt0 . Note that Zt0 � Zt0�1 � 1 o

urs if (but not only if) Y(t0;0) = 0and at least one element in Ht0�1 is removed at time t0. Hen
eP[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1℄ � �1 � �1� (1� �2r0 )Zt0�1�� �1 ��1� e� �2Zt0�1r0 � :18



We 
laim that P[Zt0 � Zt0�1 � 1 j Z1; : : : ;Zt0�1℄ = !�Zt0�1m � (32)for Zt0�1 = o(m). For Zt0�1 = 
(r0), we have�1 � �1� e� �2Zt0�1r0 � = �(1);so (32) follows immediately, and for �2Zt0�1r0 suÆ
iently small, (32) follows from the power series�1 ��1� e� �2Zt0�1r0 � = �1�2Zt0�1r0 � �12! ��2Zt0�1r0 �2 + � � � :Now, for any i � 0, we haveP[Zt0 � Zt0�1 + i j Z1; : : : ;Zt0�1℄ � P[X�[�1℄ � i℄: (33)Hen
e, we 
on
lude from (29), (30), (32), and (33) and from proposition 3.8 that Zt0 dCKt0 for all1 � t0 � r0.Next, we 
laim that Zr0 dBXr0X�[�℄ ; (34)where � > 0 depends on �1 and �2 and 
an be made arbitrarily small. Note that, for j > 0,Y(i;j) d=XY(i;j�1)1(1� �2r0 ) d=XY(i;0)1(1� �2r0 )jdBXX�[�1℄1(1�j �2r0 )so Y(i;r0) dBXX�[�1℄1(1��2):Note that, for any h 2 Z�,lim�1;�2!0P �XX�[�1℄1(1��2) = h� = P[X� = h℄ = �(h):It follows by proposition 2.3 that, for arbitrary � > 0, we 
an 
hoose �1 > 0 and �2 > 0 su
h thatg� �;D�PX�[�1℄1(1��2)�! < �;and therefore Y(i;r0) dBXX�[�1℄1(1��2) dBX�[�℄ :Hen
e jNj = Kr0 dB Zr0 dBXr0X�[�℄ ; (35)where � > 0 is arbitrarily small.Proof of Theorem 3.9. Choose arbitrary �1; �2 > 0 su
h that �1+ �2 < �, and, 
ombining thetwo previous lemmas with lemma 3.4, we dedu
ejNj dBXr�jAjX�[�1℄ dBXPr11��2X�[�1℄ dBXrX�[�1+�2℄:This theorem allow us to derive a large deviation inequality regarding the growth rate of BFSneighborhoods. The proof is adapted from the upper bound proof of Cramer's Theorem in [9℄.19



Lemma 3.12 Let U be an endpoint arrangement satisfying �U 1�! � and m = jU j ! 1, where� has residual distribution � = ��. Let R � U be the initial endpoint queue for an iteration ofCM BFS and assume r = jRj = o(m). Then, for any � > 0, there exists a value C� su
h that thefollowing statements hold asymptoti
ally:1. If M1(�) <1 then the size of the BFS neighborhood N satis�esP h jNjr �M1(�)� �i � e�C�r: (36)2. If M1(�) =1 then the size of the BFS neighborhood N satis�esP h jNjr � 1=�i � e�C�r: (37)Proof. For any distribution �, de�ne ��(z) = lnE [e�zX� ℄: (38)Note that if � ! � then ��(z)! ��(z) for all z � 0, and sin
eE [e�zPrX� ℄ = E [e�zX� ℄r = er��(z);then by Chebyshev's Inequality,lnP hXrX� � rxi � r(��(s) + xs)! r(��(s) + xs) (39)for all z.Now, by Theorem 3.9, we have jNj dBXrX�[Æ℄ ;for arbitrary Æ > 0. If M1(�) < 1, then for any � > 0, we 
an 
hoose z and Æ appropriately su
hthat ���[Æ℄(z)=z � (M1(�) � �) and set C� a

ordingly. If M1(�) = 1, then for any 1=�, thereexists values z; Æ su
h that ���[Æ℄(z)=z � 1=�, and again we set C� a

ordingly.3.4 Halted CM BFSWe de�ne a halted CM BFS pro
ess to be a CM BFS pro
ess whi
h halts upon termination of theiteration in progress after a given number of CM steps. For halted BFS:� � denotes the number of BFS iterations that were 
ompleted. Hen
e the halting time ofhalted CM BFS is ��.� We de�ne the i'th halted BFS neighborhood byN0i = (Ni if i � �,; if i > �.The following lemma will be used to obtain the lower bound for the diameter.20



Lemma 3.13 Consider an endpoint arrangement U su
h that �U 2�! �, where � has residualdistribution � = ��, let the initial endpoint queue R = U(W ) have size r = jRj = o(m), and
onsider CM BFS halted after l = o(m) steps. Then, for any i and any � > 0,E ���N0i��� � r �M1(�+ �)i: (40)Proof. Note that jN1j is at most equal to the sum of the residual unexplored degrees of theendpoints mat
hed to ea
h s 2 R. Hen
e, by linearity of expe
tation,E [jN1j℄ � r �M1(�0);and sin
e jRj = o(m), then �0 1�! � holds asymptoti
ally always.Let us write n0i = jN0ij. Then, for arbitrary i, if � i�1 < l thenE hn0i ��� n0i�1;U0� i�1i � n0i�1 �M1(�� i�1);and if � i�1 � l then n0i = 0:Sin
e l = o(m), then for any t � l, M1(�t) < M1(�) + �for arbitrary � > 0. Hen
e, we 
on
lude thatE �n0i� � r �M1(�+ �)ifor all i and for arbitrary � > 0.4 The Diameter of a Random Graph.Given verti
es u; v in a graph G, let Æ(u; v) denote the distan
e from u to v, that is, the length ofa shortest path from u to v. We set Æ(u; v) =1 if u and v are not 
onne
ted. The diameter �(G)of a graph G is the maximum distan
e between any 
onne
ted pair of verti
es in G. In this se
tionwe 
ompute �(GD) with asymptoti
 pre
ision.We begin by stating our main theorem regarding the diameter of a random graph. For adistribution �, re
all that z� denotes the least �xed point of the p.g.f.  � in the interval [0; 1℄ (seeequation 20). We are only interested in distributions for whi
h z� < 1, or equivalently, M1(�) > 1.For su
h a distribution �, a random graph GD with residual distribution �D ! � a.a.s. 
ontains agiant 
onne
ted 
omponent and a giant 2-
ore (see appendix).Assuming z� < 1, we de�ne M�(�) =  0�(z�); (41)the derivative of the p.g.f. at z�. The signi�
an
e of the value M�(�) is dis
ussed in the appendix.In parti
ular, by Theorem A.2 and statement 1 of proposition A.3, the fra
tion of endpoints ofresidual degree 1 in the 2-
ore of GD 
onverges to M�(�) w.e.h.p.Also, let a(�) = 8><>:2 if �(0) > 01 if �(0) = 0 and �(1) > 00 if �(0) = �(1) = 0; (42)21



Theorem 4.1 Let � be a distribution satisfyingM1(�) > 1, 
onsider a degree sequen
e D satisfying�D 2�! � or �D 1�! � withM2(�) =1, where � has residual distribution �� = �. In addition, assumethat if �(0) = 0 then GD has no verti
es of degree 1 (i.e. �D(0) = 0) and if �(1) = 0 then thenGD has no verti
es of degree 2 (i.e. �D(1) = 0). Then,�(GD)lnn ! �� a.a.s. (43)where �� = a(�)� lnM�(�) + 1lnM1(�) (44)with a(�) as de�ned in equation (42).Informally, the two terms in equation (44) 
orrespond to two di�erent 
hara
teristi
s of a randomgraph GD that determine its diameter. The se
ond term measures the \average" distan
e a
rossGD, while the �rst term gives the length of the longest isolated paths or 
y
les whi
h 
an 
ausethe distan
e between a parti
ular pair of verti
es to be signi�
antly longer than the average.In the simplest (and possibly the most \typi
al") situation, we have �(0) > 0 and M1(�) <1;for example, sparse Gn;p falls into this 
ategory. In this situation, the diameter is determined by alongest shortest path between two verti
es of degree 1 and will 
onsist of a path from ea
h of theverti
es to the 2-
ore of the graph and a path 
onne
ting a
ross the 2-
ore.The proof of Theorem 4.1 pro
eeds as follows. First, we prove the upper bound, whi
h is themore substantial portion of the proof. We show the upper bound �rst in the \typi
al" 
ase des
ribedabove, and then generalize to other situations. Finally, we 
ompute a mat
hing lower bound.4.1 Upper Bound Proof of Theorem 4.1Our prin
ipal proof strategy will be to examine the rate of growth of the neighborhoods around spe-
i�
 verti
es. For any vertex v in a 
on�guration (V; S;E), we de�ne the i'th endpoint neighborhoodNi(v) of v by Ni(v) = fs 2 S : Æ(v; v(s)) = i and Æ(v; v(E(s))) � ig;so if we perform CM BFS in a random graph beginning with vertex set W = fvg, then the setNi(v) will 
orrespond to the i'th BFS neighborhood Ni as de�ned in se
tion 3.3.For any vertex v, let
(v) = (minfi : jNi(v)j � 3m1=2 lnmg if this set is nonempty;12 minfi : jNi(v)j = 0g otherwise.Also, if v is a vertex in a random graph, we write we write Ni(v) and 
(v) to denote the respe
tiverandom set and random quantity.Lemma 4.2 For a degree sequen
e D with �D 1�! �, the graph GD a.a.s. exhibits the property thatÆ(u; v) � 
(u) + 
(v) + 1for all 
onne
ted pairs of verti
es u; v 2 V .Proof. Given any pair of verti
es u; v, we perform CM BFS, �rst starting with u and thenstarting with v, until endpoint neighborhoods Nu = N
(u)(u) and Nv = N
(v)(v) are exposed.Now, either 22



1. u and v are not 
onne
ted,2. A path from u to v has been exposed, or3. 1 and 2 do not hold, and both Nu and Nv 
ontain at least 3m1=2 lnm unexposed endpoints.In the �rst 
ase, Æ(u; v) =1. In the se
ond 
ase, 
learly Æ(u; v) � 
(u) + 
(v) + 1 Hen
e, we needonly 
onsider the third 
ase.Suppose we now expose all of the endpoints in Nu; if any endpoint in Nu is mat
hed to anendpoint in Nv, then Æ(u; v) � 
(u) + 
(v) + 1:We 
laim that this o

urs with probability 1� o(n2). To see this, we observe that a given endpointin Nu mat
hes to Nv with probability at leastjNvj =m � m�1=2:Now, if a parti
ular endpoint in Nu does not mat
h to Nv, it may mat
h into Nu, redu
ing thenumber of unexposed endpoints in Nu by 2. Nevertheless, if we sequentially mat
h all of theendpoints in Nu, there are at least jNuj =2 
han
es to �nd a 
onne
tion to Nv.The probability that no 
onne
tion is found is therefore at most(1�m�1=2)3m1=2 lnm =  �1� 1m1=2�m1=2!3 lnm= � 1e� o(1)�3 lnm= O(m�3):By 
onsidering all �n2� = O(m2) pairs of verti
es, we 
on
lude that this event a.a.s. o

urs for nosu
h pair, and the lemma is proved.Lemma 4.2 proves that in order to �nd an upper bound on the diameter of GD, it suÆ
es tobound the maximum value of 
(v) for v 2 V . However, it is not ne
essary to 
onsider all verti
esin V ; the next lemma we prove allows us to narrow down the set of verti
es whi
h 
an 
ontributeto the diameter of GD.Re
all that the 2-
ore of a graph is the maximal indu
ed subgraph of minimum degree 2. For agraph G = (V;E), let d2(v) denote the degree of a vertex v in the 2-
ore of G, that is, the numberof edges in the 2-
ore of G whi
h are in
ident on V .Lemma 4.3 For any graph G = (V;E), and any vertex v 2 V , if there exists a vertex v0 su
h thatÆ(v; v0) = �(G), then either d2(v) = d(v) or d2(v) = 0 and d(v) = 1.Proof. If 0 < d2(v) < d(v), then for any vertex v0 
onne
ted to v, we 
an �nd a vertex v00 su
hthat any path from v0 to v00 must pass through v and therefore Æ(v0; v00) > Æ(v; v0). Hen
e eitherd2(v) = 0 or d2(v) = d(v). Now, if d2(v) = 0 it follows that d2 is not in the 2-
ore, and thereforethere are no 
y
les in G whi
h 
ontain v. Therefore, if d(v) � 2 and d2(v) = 0, then on
e again,for every v0 
onne
ted to v, we 
an �nd a vertex v00 su
h that any path from v0 to v00 must paththrough v and so Æ(v0; v00) > Æ(v; v0).By lemma 4.3, we only need to 
onsider verti
es whi
h are either entirely in the 2-
ore or havedegree 1. Note, however, that a vertex of degree 1 may or may not be 
onne
ted to the 2-
ore by apath. Hen
e, our proof of the upper bound of Theorem 4.1 will 
onsider the following three 
asesseparately: 23



1. d(v) = 1 and v is 
onne
ted to the 2-
ore;2. d(v) = 1 and v is in a tree 
omponent;3. the degree of v in the 2-
ore satis�es d2(v) = d(v) � 2. In this situation, we also distinguishbetween the 
ase when the minimum degree of the entire graph is 3 or greater, and the 
asewhere the minimum degree is at most 2.In most 
ases, the diameter of GD will o

ur between two verti
es of type 1, that is, two verti
esof degree 1 whi
h are 
onne
ted to the 2-
ore.4.1.1 Verti
es of degree 1, 
onne
ted to the 2-
oreIn this subse
tion, we 
onsider the neighborhoods in GD of a vertex of degree 1 whi
h is 
onne
tedto the 2-
ore of GD. We assume throughout �D 2�! � or �D 1�! � with M2(�) = 1, where �has residual distribution � = ��. Re
all that M�(�) gives the derivative of the p.g.f.  � at the�xed point z� (equation 41). M�(�) has an alternate interpretation whi
h we shall make use ofin this se
tion. Re
all that by Lemma 3.3, if � is the halting time of the CM 2-
ore algorithm,then �� ! �� w.e.h.p., where �� is the distribution de�ned in (21). By manipulating generatingfun
tions, it 
an be shown (see appendix A) thatM�(�) = ��(1):Lemma 4.4 Choose any v 2 GD su
h that d(v) = 1. Then, for any � > 0,P �
(v)lnn � 1� lnM�(�) + 12 lnM1(�) + �� = o(n�1): (45)Proof. In order to bound 
(v), we shall exe
ute a spe
ialization of the CM algorithm whi
h 
om-bines the CM 2-
ore algorithm and CM BFS breadth-�rst-sear
h. First, we exe
ute the prote
ted2-
ore algorithm with prote
ted set W = fvg. Then, if the single endpoint belonging to v remainsunexposed at the halting time � , we exe
ute CM BFS starting with the vertex v.Based on lemma 3:3, the unexposed residual distribution at the halting time satis�es �� ! ��w.e.h.p. Hen
e, we dis
ard the exponentially small probability that this 
onvergen
e fails, andassume that �� is arbitrarily 
lose to ��.Also, at time � , there are no endpoints of residual degree 1 other than v. We note that ifv's unique endpoint has been exposed at time � then v is not 
onne
ted to the 2-
ore of GD andbelongs to a tree 
omponent; we shall deal with tree 
omponents separately.We analyze the BFS in three phases. For this proof we let ni = jNij denote the number ofendpoints in the BFS queue after i iterations of the BFS. The phases are:1. ni = 1 to ni � ln lnn;2. ni = ln lnn to ni � ln2 n;3. ni = ln2 n to ni � 3m1=2 lnn.In the original graph, phase 1 
orresponds to �rst performing BFS from v until the 2-
ore rea
hed,and then 
ontinuing the BFS in the 2-
ore until a neighborhood of size ln lnn is found. Intuitively,phase 1 will in
lude a large number of iterations if the path from v to the 2-
ore is very long, if
losest vertex to v in the 2-
ore is part of a long isolated 
y
le, or, more generally, if the small BFSneighborhoods around v grow at an abnormally slow rate.24



Phase 2 transitions from a BFS neighborhood of size ln lnn to a BFS neighborhood of size ln2 nin the 2-
ore. Typi
ally, phase 2 will in
lude only a small number of iterations, and phase 2 servesmainly to transition from the \small" neighborhoods in phase 1 to the \large" neighborhoods ofphase 3. Then, in phase 3, the neighborhoods are large enough so that their growth rate is highlypredi
table using the tools developed in se
tion 3.3.We 
ompute the total number of BFS iterations by 
onsidering \good" and \bad" iterationsin ea
h phase (their properties are de�ned below); we let G1;G2;G3, B1;B2;B3 and denote thenumber of good and bad iterations in ea
h phase, respe
tively. Informally, a \good" iterationo

urs if the size of the BFS neighborhood grows suÆ
iently qui
kly, and a \bad" iteration o

ursotherwise.Phase 1. In phase 1, a good iteration o

urs if ni+1 > ni or ni+1 = 0, and a bad iteration o

ursotherwise. Now, if no 
ross-edges o

ur, then ni+1 is equal to the sum of the residual degrees of theendpoints mat
hed to the endpoints in Ni. Re
all that the unexposed residual distribution satis�es�t ! �� w.e.h.p., and therefore the probability that an unexposed endpoint 
hosen uniformly atrandom has residual degree 1 is �t(1)! ��(1) =M�(�)w.e.h.p. Also, sin
e all verti
es outside of the BFS queue have unexposed degree at least 2 (or0), then the only way a bad iteration 
an o

ur without a 
ross-edge is if every endpoint in Nmat
hes to an endpoint of residual unexposed degree 1. This probability is maximized if ni = 1, inwhi
h 
ase the single endpoint in Ni mat
hes to an endpoint of unexposed residual degree 1 withprobability at most ��(1) + o(1) =M�(�) + o(1).Re
all that, in the 
ontext of CM BFS (se
tion 3.3), Q denotes the set of unexposed endpointsin the BFS queue; in parti
ular, a 
ross-edge o

urs if and only if an endpoint in Q is 
hosen atrandom during an even time step. Hen
e, the probability of en
ountering a 
ross-edge at any giventime is jQj = jUj.Also, at any time during any BFS iteration in phase 1, if jQj > 3 ln lnn, it is 
lear that, even ifall of the (at most ln lnn) remaining unexposed endpoints in the initial queue R form 
ross-edges,the size of the queue at the the end of the iteration will be greater than ln lnn and therefore phase1 will end. Hen
e, during phase 1, we 
an assume that the probability of en
ountering a 
ross-edgeat any parti
ular step is O((ln lnn)=m). And, therefore, the probability of en
ountering more thanone 
ross edge during any of the �rst O(lnO(1) n) steps of phase 1 is O(n�2 lnO(1) n) = ~O(n�2).Here O(lnO(1) n) serves simply as an upper bound to the number of CM steps whi
h o

ur in phase1, as we shall see below.For any given BFS iteration in phase 1, barring a 
ross-edge, we must have ni+1 � ni, andwith at most one 
ross-edge, we have ni+1 � ni � 2. Hen
e, if at most one 
ross-edge o

urs inphase one, then G1 � ln lnn+2, sin
e ea
h good iteration in
reases the number of endpoints in N.Re
all that the total number of iterations in phase 1 is G1 +B1. It follows that for any 
onstant
, we have P[G1 +B1 � 
 lnn℄ = P[B1 + ln lnn+ 2 � 
 lnn℄ + ~O(n�2)= P[B1 � (
� o(1)) lnn℄ + ~O(n�2):It follows that, for any 
onstant 
, with probability 1 � ~O(n�2), the event B1 � 
 lnn o

ursif and only at least 
 lnn of the �rst ln lnn+ 2 + 
 lnn iteratations in phase 1 are bad. As shownabove, the probability that any given iteration in phase 1 is a bad iteration is w.e.h.p. bounded
25



above by ��(1) + o(1) =M�(�) + o(1). Thus, we 
omputeP[B1 � 
 lnn℄ � �ln lnn+ 2 + 
 lnn
 lnn �(M�(�) + o(1))
 lnn + ~O(n�2)� �1 +O� ln lnnlnn ��
 lnn (M�(�) + o(1))
 lnn + ~O(n�2)� (M�(�) + o(1))
 ln n + ~O(n�2): (46)In parti
ular, for any �1 > 0, we let 
 = 1� lnM�(�) + �1and 
ompute P[B1 � 
 lnn℄ � o(n�1): Hen
e, for arbitrary �1 > 0, with probability 1� o(n�1),B1 � � 1� lnM�(�) + �1� lnn; and G1 = O(ln lnn): (47)We point out that it is not ne
essarily the 
ase that ni ever rea
hes ln lnn; it is possible thatni be
omes 0 at some point, for example if ri�1 = 2 and the two endpoints in Ni�1 are mat
hed toea
h other. This o

urs with probability �(m�1) = �(n�1); however, if this event does o

ur, theanalysis above shows that, with probability 1�o(n�1), it o

urs after at most � 1� lnM�(�) + o(1)� lnniterations.Phase 2. In phase 2 we transition from endpoint sets of size ln lnn to size ln2 n. Unlike phase1, we do not 
onsider a phase 2 iteration to be good simply be
ause ni+1 > ni. Instead, we will
onsider the a
tual rate of neighborhood growth.Proposition A.3 in the appendix shows that M1(��) =M1(�). Also, by assumption of Theorem4.1, either �D 1�! � or �D ! � with M1(�) = 1, so it follows from lemma 3.3 that �t 1�! ��w.e.h.p. or �t ! �� w.e.h.p. with M1(��) = M(�) = 1. In parti
ular, the average residualunexposed degree at the halting time of the prote
ted 2-
ore algorithm 
onverges toM1(�) w.e.h.p.Hen
e, in this phase, we de�ne a bad iteration to be an iteration in whi
h� ni+1 � (M1(�)� Æ)ni if M1(�) <1.� ni+1 � (1=Æ)ni if M1(�) =1.for arbitrarily small Æ > 0. The number of good iterations is thus bounded above by2 ln lnnln(M1(�)� Æ) = O(ln lnn)in the �rst 
ase and 2 ln lnnln(1=Æ) = O(ln lnn)in the se
ond.By lemma 3.12, the probability of a bad iteration is at moste�CÆni � (lnn)��(1)for a 
onstant CÆ. For any �2 > 0, a routine manipulation of binomial distributions yieldsP[B2 � �2 lnn℄ � (lnn)��(ln n) = n��(ln ln n):26



Hen
e, for arbitrary �2 > 0, with probability 1� o(n�1),B2 � �2 lnn; and G2 = O(ln lnn): (48)Phase 3. In phase 3, a bad iteration de�ned as in phase 2; now, however, we have ni � ln2 n,so the probability of a bad iteration is at moste�CÆ ln2 n = n�
(ln n):It follows that, with probability 1 � o(n�1), B3 = 0, and in phase 3 we need only 
ount gooditerations. By setting Æ appropriately, for arbitrary �3 > 0, we attainG3 � logM1(�)�Æ(3m1=2 lnn) � � 12 lnM1(�) � �3� lnn; if M1(�) <1; (49)and G3 � log1=Æm1=2 � �3 lnn; if M1(�) =1. (50)Finally, we set � = �1 + �2 + �3 and we add up the good and bad iterations in the three phasesas given by (47), (48), and (49) or (50) to yield equation (45).4.1.2 Verti
es of higher degreeIn this subse
tion, we 
onsider the neighborhoods verti
es of degree 2 or greater in GD. For anyvertex v, re
all that d2(v) denotes the degree of v in the 2-
ore of GD; hen
e, if � is the haltingtime of the CM 2-
ore pro
ess, then d2(v) = d� (v). Also, re
all that by lemma 4.3, for d(v) � 2,we are only interested in verti
es for whi
h d2(v) = d(v), sin
e otherwise a longest shortest path inGD 
annot begin or end at v.Lemma 4.5 Choose any v 2 GD su
h that d(v) � 2. Then, for any � > 0P �
(v)lnn � 1�2 lnM�(�) + 12 lnM1(�) + � ��� d2(v) = d(v)� = o(n�1): (51)Proof. The proof pro
eeds as in lemma 4.4. We exe
ute �rst the CM 2-
ore algorithm but nowwe use the prote
ted set W = ;. On
e the 2-
ore has been found, we exe
ute CM BFS beginningwith the vertex v. By assumption, all of v's endpoints remain unexposed at the time that the 2-
oreis found. Our analysis will employ the same three stages as in lemma 4.4. Clearly, the argumentsregarding phases 2 and 3 are identi
al to the 
ase where d(v) = 1. Hen
e, we must deal with phase1. We note that, 
omparing equations (45) and (51), in order to attain the required bound, wemust redu
e the duration of phase 1 from lnn� lnM�(�) to ln n�2 lnM�(�) . In order to do so, we 
onsiderphase 1 in slightly more detail.Sin
e our vertex v has degree at least 2, the CM BFS begins with a neighborhood of size n0 � 2.Re
all that a 
ross-edge o

urs during phase 1 with probability ~O(n�1). Now, the probability ofexperien
ing a bad iteration without a 
ross-edge is at most (��(1) + o(1))ni = (M�(�) + o(1))ni .Without any 
ross-edges, we must have ni+1 � ni, whi
h implies ni � d(v) � 2 throughout thephase.On the other hand, if a 
ross-edge does o

ur, then ni 
an de
rease. If ni+1 = 0 (for example, ifni = 2 and a horizontal 
ross-edge mat
hes both endpoints in ni), then phase 1 ends immediately,as does the entire BFS. However, if ni+1 = 1, then a bad iteration be
omes more probable. In27



order to handle this situation, we note that a 
ross-edge is suÆ
iently unlikely that, for any � > 0,the probability that a 
ross-edge o

urs either pre
eded of followed by at least � lnn iterations ofphase 1 is at most ~O(n�1)(��(1) + o(1))� ln n = o(n�1):Therefore, with probability 1� o(n�1), this does not o

ur, and we may assume that the neighbor-hood size is at least 2 throughout phase 1.Hen
e, a bad iteration requires that at least 2 endpoints of residual degree 1 are 
hosen 
onse
-utively, and this o

urs with probability at most (M�(�) + o(1))2. Similarly to equation (46), wenow dedu
e that P[B1 � 
 lnn℄ � �M�(�) + o(1))2�
 ln n + o(n�1)� (M�(�) + o(1))2
 lnn + o(n�1);and the fa
tor of 2 in the exponent 
arries through the 
omputations in 4.4 to yield equation(51).4.1.3 Graphs with minimum degree at least 3Here we 
onsider the 
ase where �(0) = �(1) = 0, hen
e, as assumed in Theorem 4.1, GD has noverti
es of degree 1 or 2.Lemma 4.6 Assume �(0) = �(1) = 0, and assume GD has minimum degree 3. Then, for anyvertex v and any � > 0, P �
(v)lnn � 12 lnM1(�) + �� = o(n�1): (52)Proof. Again we use the same three phases as in the proof of lemma 4.4. However, we 
hangethe de�nition of good and bad iterations during the �rst phase. Now, we 
onsider a bad iterationto be any iteration in whi
h ni+1 � 2ni. We note that sin
e all verti
es have degree at least 3(and residual degree at least 2), a bad iteration 
an only o

ur with a 
ross-edge. As shown above,with probability 1� o(n�1) at most one 
ross-edge o

urs during the �rst phase, and with a single
ross-edge, we have ni+1 � ni � 2.Sin
e a good iteration doubles the size of the BFS endpoint queue, then (barring multiple
ross-edges), at most O(ln ln lnn) = o(lnn) good iterations 
an o

ur during phase 1. Hen
e, withprobability 1�o(n�1), both phases 1 and 2 have o(lnn) iterations and the previous result regardingthe duration of phase 3 yields equation (52).4.1.4 Tree ComponentsThe stru
ture of a random graph with a �xed degree sequen
e D satisfying �D 2�! � or �D 1�! �with M2(�) = 1 was des
ribed by Molloy and Reed [12, 13℄. The results of Molloy and Reedwhi
h are pertinent to this paper 
an be summarized as follows (see appendix for more details).If the residual distribution � = �� satis�es M1(�) > 1, then the graph GD a.a.s. 
ontains agiant 
onne
ted 
omponent; and, if the giant 
omponent is removed, the residual graph has thestru
ture of the random graph GD0 where the random degree sequen
e D0 satis�es �D0 2�! �0a.a.s. In parti
ular, this limiting distribution �0 has residual distribution ��0 = ��, and �� satis�esM1(��) = M�(�) (see proposition A.3). Also, all tree 
omponents a.a.s. lie outside of the giant
omponent (or, equivalently, the giant 
omponent is a.a.s. not a tree 
omponent).28



A straightforward argument shows that fork > � 1� lnM1(��) + �� lnn = � 1� lnM�(�) + �� lnn;the k'th BFS neighborhood for a vertex of degree 1 in the graphGD0 (whi
h 
orresponds toGD withthe giant 
omponent removed) has expe
ted size o(n�1) and therefore is empty with probability1� o(n�1). Hen
e, the diameter of the largest tree 
omponent is a.a.s. less than ( 1� lnM�(�) + �) lnnfor arbitrary �; in parti
ular, the diameter of the giant 
omponent is greater than the diameter ofany tree 
omponent.4.1.5 Upper BoundThe proof of the upper bound of Theorem 4.1 follows immediately from the previous lemmas usingthe �rst moment method. Spe
i�
ally, the above lemmas show that, for any � > 0, the expe
tednumber of verti
es in GD with
(v)lnn � 12 � a(�)� lnM�(�) + 1lnM1(�) + ��is n � o(n�1) = o(1). Hen
e, with probability 1� o(1), no su
h vertex exists, and the upper boundfollows.4.2 Lower Proof of Theorem 4.1In order to prove the lower bound of Theorem 4.1, we shall demonstrate that for any � > 0, therea.a.s. exist a pair of verti
es u; v in GD with distan
e Æ(u; v) � (�� � �) lnn; where�� = a(�)� lnM�(�) + 1lnM1(�)is the value 
omputed in equation (43) in Theorem 4.1. Re
all that, intuitively, the se
ond term1lnM1(�) in the equation above gives the distan
e separating a typi
al pair of verti
es, while the �rstterm a(�)� lnM�(�) des
ribes the length of the long isolated paths or 
y
les whi
h 
ause the diameterto di�er from the \average" distan
e. A

ordingly, we prove the lower bound by �rst showing thatalmost all verti
es in a random graph with �(0) = 0 are separated by a shortest path of distan
eat least ln nlnM1(�) (1 � o(1)), and then �nding a pair of verti
es separated by an additional distan
eof a(�) lnn� lnM�(�) .For the following lemma, we assume �(0) = 0, but we drop the assumption that GD must haveminimum degree 2. That is, for this lemma only, it suÆ
es that GD have o(n) verti
es of degree 1.Lemma 4.7 Let �D 2�! � or �D 1�! � with M2(�) =1, where � has residual distribution �� = �,and assume �(0) = 0 and �(1) < 1. Let u; v be verti
es in GD su
h that d(u) = �(1) andd(v) = �(1). Then,1. u and v are 
onne
ted with probability 1� o(1).2. For any � > 0, with probability 1� o(1),Æ(u; v) > (1� �) lnnlnM1(�) : (53)29



Proof. We tra
e the BFS neighborhoods of u and v as in the upper bound proof. First, we exe
utethe CM 2-
ore algorithm with prote
ted set fu; vg. Sin
e �(0) = 0, the probability generatingfun
tion of � satis�es  �(0) = 0. Hen
e, by lemma 3.3 the CM 2-
ore algorithm terminates aftero(m) steps w.e.h.p. Sin
e u and v have 
onstant degree, then with probability 1�o(1), all endpointsbelonging to u and v remain unexposed at this time.Then, beginning with u, we perform a CM BFS sear
h, halted after m1��0 steps, for a value�0 > 0 to be spe
i�ed afterwards. Now, as with the upper bound proof (phases 1-3), the probabilitythat ni+1 < ni for any given iteration is O(m�1), hen
e with probability 1�o(1), this never o

urs.Hen
e, by analysis similar to the upper bound proof, when the halted BFS terminates, with proba-bility 1� o(1), we will have found a large set of at least 3m1=2 lnn unexposed endpoints 
onne
tedto u. We then perform a similar BFS beginning with v, and 
on
lude that with probability 1�o(1),a path 
onne
ting u to v will be found.For the se
ond part of the lemma, we must show that, with probability 1� o(1), any path fromu to v is longer than (1 � �) ln nlnM1(�) . Note that, sin
e the vertex v has �(1) unexposed endpoints,then with probability 1�o(1), none of these endpoints be
ome exposed duringm1��0 = o(m) stepsof the CM algorithm. Hen
e, with probability 1 � o(1), the distan
e Æ(u; v) is greater than thenumber of BFS iterations 
ompleted during the halted BFS. We shall prove that, for any � > 0,with probability 1� o(1), at least (1� �) ln nlnM1(�) BFS iterations will have been 
ompleted when theCM BFS halts after m1��0 steps.Let n0i = jN0ij, so n0i denotes size of the i'th BFS endpoint neighborhood if the BFS has not yethalted and 0 otherwise. Hen
e, by lemma 3.13, for any i, and for any �1 > 0E [n0i℄ � (M1(�) + �1)i :Let h = (1� �) ln nlnM1(�) and note that by linearity of expe
tation,E " hXi=1 n0i# � hXi=1 (M1(�) + �1)i � h(M1(�) + �1)h:Choosing �1 suÆ
iently small, we haveE " hXi=1 n0i# � O(n1�C) (54)for a 
onstant C > 0.Now, re
all that the CM BFS is halted after m1��0 steps, for arbitrary �0 > 0. By de�nition, hiterations of CM BFS are 
ompleted at the halting time if and only if Phi=1 n0i � m1��0 : We nowset �0 < C, where C is the 
onstant in equation (54), and 
on
lude by Chevyshev's inequality thatP " hXi=1 n0h > m1��0# = o(1): (55)Hen
e, with probability 1 � o(1), h iterations 
omplete during the halted BFS, and no endpointswhi
h belong to v are en
ountered within distan
e h = (1� �) lnnlnM1(�) of u.For graphs with minimum degree 3, the 
onstant �� in Theorem 4.1 is given by�� = 1lnM1(�) :The lower bound in this 
ase, as stated in the following 
orollary, is obtained by 
hoosing any pairof verti
es u; v and invoking lemma 4.7. 30



Corollary 4.8 Assume �(0) = �(1) = 0, and assume GD has no verti
es of degree less than3. Then, for every � > 0, with probability 1 � o(1), there exists a pair of verti
es u; v su
h thatÆ(u; v) � (1� �)�� lnn.Next, we 
onsider graphs for whi
h �(0) > 0, so the minimum nonzero degree is 1.Lemma 4.9 Assume �(0) > 0. Then, for every � > 0, with probability 1� o(1), there exists a pairof verti
es u; v su
h that Æ(u; v) � (1� �)�� lnn.Proof. Again we exe
ute the CM 2-
ore algorithm, but now we 
hoose a prote
ted set W whi
h
onsists of �(nC�) verti
es of degree 1; the 
onstant 0 < C� < 1 will be spe
i�ed further on. Welet W 0 denote the set of verti
es w 2 W for whi
h the (unique) endpoint belonging to w remainsunexposed when the prote
ted 2-
ore algorithm halts. For any vertex w 2 W , the event w 2 W 0
learly o

urs with probability �(1), and it is straightforward to show that W 0 a.a.s. (and w.e.h.p.)
ontains a 
onstant fra
tion of the verti
es in W .At this point we attempt to �nd two verti
es u; v 2 W 0 with k 
onse
utive endpoint neighbor-hoods of size 1, where k = � 1� lnM�(�) � �0� lnn (56)for an arbitrary �0 > 0. We shall refer to this as the BFS probe algorithm. First, 
hoose any vertexw 2W 0, and exe
ute CM BFS until either� k iterations are 
ompleted, and the sizes of the �rst k BFS neighborhoods satisfyn0 = n1 = � � � = nk = 1;or� for some j � k, nj 6= 1.We repeat this pro
edure, 
hoosing a new vertex from W 0 ea
h time until all endpoints belongingto verti
es in W 0 have been exposed.We note that the BFS probe will expose at most O(lnn) endpoints for ea
h vertex in W , andsin
e jW j = o(m), then o(m) endpoints overall will be
ome exposed. Hen
e, for any �1 < 0, thefra
tion of endpoints of residual degree 1 will never drop belowM�(�)��1 at any time during theseBFS sear
hes. Therefore, the probability that any parti
ular w 2W 0 produ
es a 
hain of length kis at least (M�(�)� �1)k = (M�(�)� �1)� 1lnM�(�)��0� ln n = 
(n�(1�C�0 )): (57)The probability of failing to �nd su
h a 
hain in j attempts is therefore at most(1� 
(n�(1�C�0 )))j = ej ln(1�
(n�(1�C�0 ))) = e�
(jn�(1�C�0 )); (58)and sin
e the number of attempts is j = jW 0j = �(nC�), we 
hoose C� > 1 � C�0 . This guaranteesthat at least 2 su
h 
hains are found with probability 1 � o(1). Also, if a parti
ular vertex wprodu
es su
h a 
hain, with probability 1 � o(1), the unexposed endpoint at the end of the 
hainwill remain unexposed through the rest of the BFS probe with probability 1� o(1). Hen
e, at theend of the BFS probe, with probability 1� o(1), at least two su
h 
hains will be remain.Now, let u; v be the two verti
es in W 0 whi
h are found to have k BFS neighborhoods of size1, and let u0 and v0 respe
tively denote the verti
es in the k'th BFS neighborhoods of u and v. Atthis point, we note that any path 
onne
ting u to v must pass through u0 and v0. Thus,Æ(u; v) = Æ(u0; v0) + Æ(u; u0) + Æ(v; v0): (59)31



Both Æ(u; u0) and Æ(v; v0) have length at least k as given in equation (56). A lower bound for Æ(u0; v0)follows from lemma 4.7. This 
ompletes the proof.The generalization to the 
ase where GD has minimum degree exa
tly 2 (so �(0) = 0 and�(1) > 0) is straightforward, as shown below.Lemma 4.10 Assume �(0) = 0 and �(1) > 0, and assume GD has minimum degree 2. Then,for every � > 0, with probability 1 � o(1), there exist a pair of verti
es u; v su
h that Æ(u; v) �(1� �)�� lnn.Proof. The proof is very similar to the proof for graphs with minimum degree 1, ex
ept that theBFS probe now sear
hes for a 
hain of BFS neighborhoods 
ontaining 2 endpoints, rather thanonly 1. We set k = � 12 lnM�(�) � �0� lnn (60)so the probability that, beginning with a vertex v of degree 2, we �nd k 
onse
utive neighborhoodsof size 2 is �(M�(�)� �1)2�k = (M�(�)� �1)� 1lnM�(�)��0� lnn = 
(n�(1�C�0 )): (61)Hen
e, with probability 1� o(1), we �nd at least 2 verti
es u; v with 
hains of length k.At this point, the neighborhoods at distan
e k from u and v will 
ontain 2 unexposed endpointsea
h. We now 
onsider these neighborhoods as \verti
es" u0; v0 of unexposed degree 2, and invokelemma 4.7 to derive an appropriate lower bound on Æ(u0; v0). This 
ompletes the proof.The lower bound proof of Theorem 4.1 is now 
omplete.5 Appli
ations5.1 The Diameter of Gn;pConsider 
omputing the diameter of the 
lassi
al random graph Gn;p, for p = dm , where d > 1. It
an be shown that degree distribution of Gn;p is w.e.h.p. k-
onvergent to the Poisson distribution�d(i) = e�ddii! : Also, the Poisson distribution has the property that the residual distribution is thesame as the original distribution, so ��d = �d. Hen
e, let �(d) = 2� ln(M�(�d)) + 1ln(M1(�d)) , so that,by Theorem 4.1, we have �(Gn;p)ln n ! �(d) a.a.s. for p = dn .The p.g.f. for the Poisson distribution �d has the simple expression  �d(z) = ed(z�1). The �xedpoint of this fun
tion is given by z�d = �W (�de�d)d ; where the Lambert W -fun
tion W (z) is theprin
ipal inverse of f(z) = zez . This gives a 
losed-form expression for �(d):�(d) = 2ln�W (de�d) + 1lnd: (62)From equation (62), it 
an be shown that �(d) ln d ! 3 as d ! 1 and �(d) ln d ! 1 as d ! 1,and it is a simple exer
ise to derive in
reasingly a

urate asymptoti
 
hara
terizations of �(d), asin �(d) = 1lnd + 2d +O� lndd2 � as d!1and so on. 32



5.2 Finding a Shortest Path Qui
klyThe proof of Theorem 4.1 shows that one 
an qui
kly �nd a shortest path between a pair of verti
esu; v in a random graph GD using a simple algorithm. Spe
i�
ally, we perform BFS starting fromu until either� a path 
onne
ting u and v is found;� the BFS neighborhood is empty (so u and v are not 
onne
ted);� the BFS neighborhood rea
hes size 3m1=2 lnm.Then we perform BFS from v until either a 
onne
ting path is found or the sear
h terminateswithout �nding a 
onne
ting path.An alternate algorithm (whi
h is a better heuristi
 in pra
ti
e for general graphs) is one thatperforms the BFS sear
h simultaneously from u and v, starting the sear
h for ea
h new level fromthe BFS neighborhood of smaller size. Assuming an adja
en
y-lists representation for the graph,the following 
orollary of Theorem 4.1 holds for either algorithm.Corollary 5.1 Let D be a degree sequen
e satisfying �D 1�! � where M1(��) > 1. Then a.a.s. forany 
onne
ted pair of verti
es u; v in the random graph GD, a shortest path 
onne
ting u and v 
anbe found by a simple algorithm in time O(m1=2 lnm) = O(n1=2 lnn).5.3 The Distan
e DistributionFor a graph G = (V;E) let Æ(G) = fÆ(u; v) : u; v 2 V gdenote the multiset of distan
es between pairs of verti
es in G, and note that jÆ(G)j = n2, sin
ethere are n2 pairs of verti
es. The proof of Theorem 4.1 shows that almost all �nite distan
es inÆ(G) are very 
lose to M1(��) � lnn. We state this more pre
isely in the following 
orollary.Corollary 5.2 Let D be a degree sequen
e satisfying �D 2�! � or �D 1�! � with M2(�) = 1, andassume M1(��) > 1. Then, for any � > 0,���nÆ 2 Æ(GD) : Æ <1 and �� Æln n �M1(��)�� > �o��� = o(n2) a.a.s.APPENDIXA Random Graphs and Probability Generating Fun
tionsIn this se
tion we dis
uss various distributions related to random graphs whi
h 
an be des
ribedusing manipulations of probability generating fun
tions. Re
all that, by de�nition 2.2, for a distri-bution �, the p.g.f.  � is given by  �(z) = E [zX� ℄for z 2 [0; 1℄. Various 
hara
teristi
s of a random graph with a �xed degree sequen
e D satisfying�D ! � 
an be understood in terms of the p.g.f. of the limiting residual distribution � = ��. Thep.g.f. also plays a key role in the theory of bran
hing pro
esses [2℄.33



We begin by noting that the k'th derivative of the p.g.f. is given by (k)� (z) = E hX� � (X� � 1) � � � (X� � k + 1) � zX��ki = E h(X�)k � zX��ki ;and therefore  (k)� (0)k! = �(k) (63)and  (k)� (1) =Mk(�): (64)Now, for any distribution �, letz� = minfz 2 [0; 1℄ :  �(z) = zg: (65)denote the lowest �xed point of  � in the interval [0; 1℄, and note that z� < 1 if and only ifM1(�) > 1 (see, for example [2℄). For a distribution � with M1(�) > 1, we de�ne distributions ��and ��, by giving the generating fun
tions ��(z) =  �(z � z�)z� (66)and  ��(z) =  �(z + (1� z)z�)� z�1� z� (67)The result of Molloy and Reed [13℄ regarding the degree sequen
e of a random graph with thegiant 
omponent removed 
an now be expressed as follows.Theorem A.1 ([13℄) Let D be a degree sequen
e and assume �D 1�! � where � = �� satis�esM1(�) > 1. Consider the random graph GD, and let � denote the residual degree distribution ofthe graph whi
h results from removing the largest 
onne
ted 
omponent from GD.Then � ! �� a.a.s.Proof. From the formula of Molloy and Reed for the limiting degree distribution of the graph withthe largest 
omponent removed (i.e. Theorem 2 of [13℄), we derive�(i)! �(i)zi�1� (68)a.a.s. for all i, and by equation (66),  ��(z) =P1i=0 zizi�1� �(i) therefore ��(i) = �(i)zi�1� , so �� isin fa
t the limiting residual distribution des
ribed in equation (68).2The residual degree distribution of the 2-
ore of the random graph GD, as des
ribed in [8℄, 
anbe expressed similarly.Theorem A.2 ([8℄) Let D be a degree sequen
e and assume �D k�!� where � = �� satis�esM1(�) >1. Consider the random graph GD, and let � denote the residual degree distribution of the 2-
oreof GD.Then � k�1��! �� w.e.h.p.2We note that this result 
an be strengthened to a
hieve k-
onvergen
e and/or a w.e.h.p. guarantee, but this isunne
essary for our purposes. 34



Proof. In Lemma 1 in the appendix of [8℄, the expe
ted number of verti
es of degree i � 2 at timet of the 2-
ore algorithm, assuming that the 2-
ore has not yet been found, is given as1Xj=i �(j)�ji�p(t)i(1� p(t))j�i � o(1);where p(t) = (m�tm )1=2, and [8℄ gives w.e.h.p. 
on
entration. Also, the halting time � of the 2-
orealgorithm is shown to satisfy �m ! 1 � (1 � z�)2 or, equivalently, p(� ) ! 1 � z�, with w.e.h.p.
on
entration.From these two results, we 
ompute the limiting residual distribution at the halting time of theCM 2-
ore algorithm. First, let �2 denote the limiting degree distribution of the 2-
ore, so�2(i) = 1Xj=i �(j)�ji�(1 � z�)izj�i� (69)for i � 2 (and by de�nition �2(1) = 0).Let us denote 
orresponding residual distribution by �2 = ��2 , and 
ompute, for i � 1,�2(i) = (i+ 1)�2(i+ 1)M1(�2) = (i+ 1)M1(�2) 1Xj=i+1�(j)� ji+ 1�(1� z�)i+1zj�i�1�= (i+ 1)M1(�2) 1Xh=i �(h+ 1)�h+ 1i+ 1�(1� z�)i+1zh�i�= (i+ 1)M1(�2) 1Xh=i �(h+ 1) (h+ 1)!(h � i)!(i + 1)! (1� z�)i+1zh�i�= M1(�)(1� z�)M1(�2) 1Xh=i �(h)�hi�(1� z�)izh�i� :In parti
ular, note the similarity between the expression above for �2(i) and equation (69) for �2(i).Note also that �2(0) = 0.
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We now show that  �2 =  �� , where �� is de�ned in equation (67). First, we 
ompute �2(z) = E [zX�2 ℄ = 1Xi=0 �2(i)zi= 1Xi=1 �2(i)zi= M1(�)(1 � z�)M1(�2) 1Xi=1 1Xh=i �(h)�hi�(1� z�)izh�i� zi= M1(�)(1 � z�)M1(�2) 1Xi=1 1Xh=i �(h)�hi�(z(1 � z�))izh�i�= M1(�)(1 � z�)M1(�2) 1Xh=1�(h) hXi=1 �hi�(z(1 � z�))izh�i�= M1(�)(1 � z�)M1(�2) 1Xh=0�(h)�(z(1� z�) + z�)h � zh��= M1(�)(1 � z�)M1(�2) � � (z(1 � z�) + z�)�  �(z�)�:Sin
e z� is a �xed point of  �, this yields �2(z) = M1(�)(1 � z�)M1(�2) � � (z(1� z�) + z�)� z��: (70)In order to demonstrate that equations (67) and (70) are equal (and therefore  �� =  �2), itsuÆ
es to show that M1(�)M1(�2) = (1� z�)�2:While this 
an be a
hieved algebrai
ally by a 
omputation similar to what is shown above, we givea more intuitive, if less formal, argument. Sin
e � gives the initial degree distribution and �2 givesthe degree distribution of the 2-
ore, then m = M1(�) � n gives the number of endpoints in theoriginal graph, and M1(�2) � n gives the number of endpoints in the 2-
ore. It follows that thefra
tion of endpoints in the 2-
ore is given byM1(�2)M1(�) :As noted above, the halting time of the 2-
ore algorithm 
on
entrates about m(1� (1� z�)2), andsin
e ea
h time step exposes a single endpoint, we haveM1(�2)M1(�) = (1� z�)2:Therefore �2 = ��, and we 
on
lude that � k�1��! �� w.e.h.p.Next, we give a visual interpretation of the fun
tions  �� and  �� , and their relation to thep.g.f.  �. For a typi
al distribution �, let us examine a plot of the p.g.f.  � as shown below; here36



the x-axis is z and the y-axis is  �(z).
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The value z� 
orresponds to the lowest �xed point in  �, as shown in the plot. If we \drag"the point (z�; z�) to the upper-right-hand 
orner (1; 1), and \stret
h" the lower-left-hand regionof the plot to 
over the entire [0; 1℄ � [0; 1℄ square, what results is the plot of the p.g.f.  �� . Onthe other hand, if we drag the point (z�; z�) diagonally towards the origin (0; 0), and stret
h theupper-right-hand region of the plot, the result is the plot of  �� .We 
an verify algebrai
ally that the \stret
hing" des
ribed above does not a�e
t �rst derivatives,and therefore  0��(1) =  0��(0) =  0�(z�)and  0��(1) =  0�(1):Now, let us de�ne M�(�) =  0�(z�); (71)and by equations (63) and (64), we have the following proposition.Proposition A.3 For any distribution � satisfying M1(�) > 1,1. M1(��) = ��(1) =M�(�);2. M1(��) =M1(�):This proposition 
an be interpreted intuitively as follows. Re
all that, if � is the limiting residualdegree distribution of a random graph GD, then �� gives the limiting residual distribution of the2-
ore of GD, and �� gives the limiting residual distribution of the subgraph of GD with the giant
omponent removed. Hen
e, statement 1 of proposition A.3 shows that the fra
tion of endpointsof residual degree 1 in the 2-
ore of GD is asymptoti
ally equal to the average residual degree ofthe subgraph with the giant 
omponent removed. Statement 2 of proposition A.3 shows that theaverage residual degree of the 2-
ore of GD is asymptoti
ally equal to the average residual degreeof GD itself.Finally, we note that the distributions �� and �� also arise in a 
ertain de
omposition of asuper
riti
al �-bran
hing pro
ess; this de
omposition, as well as a more 
omprehensive dis
ussionof probability generating fun
tions, 
an be found in [2℄.37
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