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Abstract— The Where-What Networks (WWNs) consist of
a series of embodiments of a general-purpose brain-inspired
network called Developmental Network (DN). WWNs model
the dorsal and ventral two-way streams that converge to, and
also receive information from, specific motor areas in the
frontal cortex. Both visual detection and visual recognition tasks
were trained concurrently by such a single, highly integrated
network, through autonomous development. By “autonomous
development”, we mean that not only that the internal (inside
the “skull”) self-organization is fully autonomous, but the de-
velopmental program that regulates the growth and adaptation
of computational network is also task non-specific. This paper
focused on the “skull-closed” WWN-7 in dealing with different
object scales. By “skull-closed”, we mean that the brain inside
the skull, except the brain’s sensory ends and motor ends, is
off limit throughout development to all teachers in the external
physical environment. The concurrent presence of multiple
learned concepts from many object patches is an interesting
issue for such developmental networks in dealing with objects of
multiple scales. Moreover, we will show how the motor initiated
expectations through top-down connections as temporal context
assist the perception in a continuously changing physical world,
with which the network interacts. The inputs to the network
are drawn from continuous video taken from natural settings
where, in general, everything is moving while the network is
autonomously learning.

I. INTRODUCTION

In the recent years, much effort has been spent on the field
of artificial intelligence (AI) [1]. As the field of AI is inspired
by human intelligence, more and more artificial intelligent
models proposed are inspired by the brain to different degrees
[2]. General objects recognition and attention is one of the
important issues among the field of AI. And since human
vision systems can accomplish such tasks quickly, mimicking
the human vision systems is thought as one possible approach
to address this open yet important vision problem.

In the primate vision system, two major streams have been
identified [3]. The ventral stream involving V1, V2, V4 and
the inferior temporal cortex is responsible for the cognition
of shape and color of objects. The dorsal stream involving
V1, V2, MT and the posterior parietal cortex takes charge
of spatial and motion cognition. Put simply, the ventral
stream (what) is sensitive to visual appearance and is largely
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responsible of object recognition. The dorsal (where and
how) is sensitive to spatial locations and processes motion
information.

With the advances of the studies on visual cortex in phys-
iology and neuroscience, several cortex-like network models
have been proposed. One Model is HMAX, introduced by
Riesenhuber and Poggio [4], [5]. This model is a hierarchical
system that closely follows the organization of visual cortex
and builds an increasingly complex and invariant feature
representation by alternating between a template matching
and a maximum pooling operation. In the simplest form
of the model, it contains four layers, which are S1, C1,
S2, C2 from bottom to top. S1 units corresponding to the
classical simple cells in primary visual cortex (V1) [6] take
the form of Gabor functions to detect the features with
different orientations and scales, which have been shown to
provide a good model of cortical simple cell receptive fields.
C1 units corresponding to cortical complex cells which show
some tolerance to shift and size takes the maximum over a
local spatial neighbourhood of the afferent S1 units from the
previous layer with the same orientation and scale band (each
scale band contains two adjacent Gabor filter sizes). S2 units
measure the match between a stored prototype Pi and the
input image at every position and scale using radial basis
function (RBF). C2 units takes a global maximum over each
S2 type (each prototype Pi), i.e., only keep the value of the
best match and discard the rest. Thus C2 responses are shift-
and scale-invariant, which are then passed to a simple linear
classifier (e.g., SVM). In summary, HMAX is a feed-forward
network using unsupervised learning, which only models the
ventral pathway in primate vision system while the location
information is lost, to implement the feature extraction and
combination. And a classifier (e.g., SVM) is a must for the
task of object recognition, which means the feature extraction
and classification are not integrated in a single network.

Different from HMAX, WWNs introduced by Juyang
Weng and his co-workers is a biologically plausible devel-
opmental model [7], [8], [9] designed to integrate the object
recognition and attention namely, what and where informa-
tion in the ventral stream and dorsal stream respectively.
It uses both feedforward (bottom-up) and feedback (top-
down) connections. Moreover, multiple concepts (e.g., type,
location, scale) can be learned concurrently in such a single
network through autonomous development. That is to say, the
feature representation and classification are highly integrated
in a single network.

WWN has six versions. WWN-1 [10] can realize object
recognition in complex backgrounds performing in two dif-
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Fig. 1: The structure of WWN-7. The squares in the input image represent the receptive fields perceived by the neurons in the different Y
areas. The red solid square corresponds to Y1, the green dashed square with the smallest interval corresponds to Y2, the blue and orange
one with larger interval corresponds to Y3 and Y4, respectively. Three linked neurons are firing, activated by the stimuli.

ferent selective attention modes: the top-down position-based
mode finds a particular object given the location information;
the top-down object-based mode finds the location of the
object given the type. But only 5 locations were tested.
WWN-2 [11] can additionally perform in the mode of free-
viewing, realizing the visual attention and object recognition
without the type or location information and all the pixel
locations were tested. WWN-3 [12] can deal with multiple
objects in natural backgrounds using arbitrary foreground
object contours, not the square contours in WWN-1. WWN-
4 used and analyzed multiple internal areas [13]. WWN-
5 is capable of detecting and recognizing the objects with
different scale in the complex environments [14]. WWN-6
[15] has implemented truly autonomous skull-closed [16],
which means that the “brain” inside the skull is not allowed
to supervised directly by the external teacher during training
and the internal connections are capable of self-organizing
autonomously and dynamically (including on and off), mean-
ing more closer to the mechanisms in the brain.

In this paper, a new version of WWN, named WWN-7,
is proposed. Compared with the prior versions, especially
recent WWN-5 and WWN-6 [17], WWN-7 have at least three
innovations described below:

• WWN-7 is skull-closed like WWN-6, but it can deal
with multiple object scales.

• WWN-7 is capable of dealing with multiple object
scales like WWN-5, but it is truly skull-closed.

• WWN-7 has the capability of temporal processing, and
uses the temporal context to guide visual tasks.

In the remainder of the paper, Section II overviews the
architecture and operation of WWN-7. Section III presents
some important concepts and algorithms in the network.
Experimental results are reported in Section IV. Section V

gives the concluding remarks.

II. NETWORK OVERVIEW

In this section, the network structure and the overall
scheme of the network learning are described.

A. Network Structure

The network (WWN-6) is shown as Fig. 1 which consists
of three areas, X area (sensory ends/sensors), Y area (inter-
nal brain inside the skull) and Z area (motor ends/effectors).
The neurons in each area are arranged in a grid on a 2D
plane, with equal distance between any two adjacent (non-
diagonal) neurons.
X acts as the retina, which perceives the inputs and sends

signals to internal brain Y . The motor area Z serves as both
input and output. When the environment supervises Z, Z
is the input to the network. Otherwise, Z gives an output
vector to drive effectors which act on the real world. Z is
used as the hub for emergent concepts (e.g., goal, location,
scale and type), abstraction (many forms mapped to one
equivalent state), and reasoning (as goal-dependant emergent
action). In our paradigm, three categories of concepts emerge
in Z supervised by the external teacher, the location of the
foreground object in the background, the type and the scale
of this foreground object, corresponding to Location Motor
(LM), Type Motor (TM) and Scale Motor (SM).

Internal brain Y is like a limited-resource “bridge” con-
necting with other areas X and Z as its two “banks” through
2-way connections (ascending and descending). Y is inside
the closed skull, which is off limit to the teachers in the
external environments. In WWN-7, there are multiple Y
areas with different receptive fields, shown as Y1, Y2, Y3,Y4...
in Fig. 1. Thus the neurons in different Y areas can represent
the object features of multiple scales. Using a pre-screening
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Fig. 2: Architecture diagram of a three-layer network. I(t) is
an image from a discrete video sequence at time t. x(t), y(t)
and z(t) is the response of the area X , Y and Z at time t,
respectively. The update of each area is asynchronous, which
means that at time t, x(t) is the response corresponding to
I(t) (suppose no time delay, and in our experiment, x(t) =
I(t)), y(t) is the response with the input x(t−1) and z(t−1),
and similarly, z(t) is the response with the input y(t − 1).
Based on this analysis, z(t) is corresponding to the input
image frame I(t− 2), i.e., two-frame delay.

area for each source in each Y area, before integration,
results in three laminar levels: the ascending level (AL)
that pre-screenings the bottom-up input, the descending level
(DL) that pre-screenings the top-down input and paired level
(PL) that combines the outputs of AL and DL. In this
model, there exist two pathways and two connections. Dorsal
pathway refers to the stream X 
 Y 
 LM, while ventral
pathway refers to X 
 Y 
 TM and SM, where 
 indicates
that each of the two directions has separate connections. That
is to say, X provides bottom-up input to AL, Z gives top-
down input to DL, and then PL combines these two inputs.

The dimension and representation of X and Z areas are
hand designed based on the sensors and effectors of the
robotic agent or biologically regulated by the genome. Y is
skull-closed inside the brain, not directly accessible by the
external world after the birth.

B. General Processing Flow of the Network

For explaining the general processing flow of the Network,
Fig. 1 is simplified into a three-layer network shown as
Fig. 2, representing X , Y and Z respectively.

Suppose that the network operates at discrete times t =
1, 2.... This series of discrete time can represent any network
update frequency. Denote the sensory input at time t to be
It, t = 1, 2, ..., which can be considered as an image from a
discrete video sequence. At time t = 1, 2, ..., for each A in
{X,Y, Z} repeat:

1) Every area A computes its area function f , described
below,

(r′, N ′) = f(b, t, N)

where r′ is the new response vector of A, b and t is
the bottom-up and top-down input respectively.

2) For every area A in {X,Y, Z}, A replaces: N ← N ′

and r ← r′. If this replacement operation is not
applied, the network will not do learning anymore.

The update of each area described above is asynchronous
[18] shown as the table, which means for each area A
in {X,Y, Z} at time t, the input is the response of the
corresponding area at time t−1. For example, the bottom-up

Time t 0 1 2 3 4 5 6 7 8 9 10
z(t): su B B α * α β * β α * *
z(t): em - - ? α ? ? β ? ? α α
y(t): z - B B α α α β β β α α
y(t): x - α α α β β β α α α β
x(t) α α α β β β α α α β β

TABLE I: Time sequence for an example: the teacher wants
to teach a network to recognize two foreground objects α and
β. “B” represents the concept of no interested foreground
objects in the image(i.e., neither α nor β). “em”: emergent
if not supervised; “su”: supervised by the teacher. “*” means
free. “-” means not applicable.
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Fig. 3: The illustration of the receptive fields of neurons

and top-down input to Y area at time t is the response of
X and Z area at time t − 1 respectively. Based on such an
analysis, the response of Z at time t is the result of the both
x(t−2) and z(t−2). This mechanism of asynchronous update
is different from the synchronous update in WWN-6, where
the time of computation of each area was not considered.

In the remaining discussion, x ∈ X is always supervised.
The z ∈ Z is supervised only when the teacher chooses.
Otherwise, z gives (predicts) effector output.

According to the above processing procedure (described in
details in section III), an artificial Developmental Program
(DP) is handcrafted by a human to short cut extremely
expensive evolution. The DP is task-nonspecific as suggested
for the brain in [19], [20] (e.g., not concept-specific or
problem-specific).

III. CONCEPTS AND ALGORITHMS

A. Inputs and Outputs of Internal Brain Y

As mentioned in section II-A, the inputs to Y consist of
two parts, one from X (bottom-up) and the other from Z
(top-down).

The neurons in AL have the local receptive fields from X
area (input image) shown as Fig. 3. Suppose the receptive
field is a × a, the neuron (i, j) in AL perceives the region
R(x, y) in the input image (i ≤ x ≤ (i + a − 1), j ≤ y ≤
(j+a−1)), where the coordinate (i, j) represents the location



of the neuron on the two-dimensional plane shown as Fig. 1
and similarly the coordinate (x, y) denotes the location of
the pixel in the input image.

Likewise, the neurons in DL have the global receptive
fields from Z area including TM and LM. It is important
to note that in Fig. 1, each Y neuron has a limited input
field in X but a global input field in Z.

Finally, PL combines the outputs of the above two levels,
AL and DL, and output the signals to motor area Z.

B. Release of neurons

After the initialization of the network, all the Y neurons
are in the initial state. With the network learning, more
and more neurons which are allowed to be turned into the
learning state will be released gradually via this biologically
plausible mechanism. Whether a neuron is released depends
on the status of its neighbor neurons. As long as the release
proportion of the region with the neuron at the center is
over p0, this neuron will be released. In our experiments,
the region is 3× 3× d (d denotes the depth of Y area) and
p0 = 5%.

C. Pre-response of the Neurons

It is desirable that each brain area uses the same area
function f , which can develop area specific representation
and generate area specific responses. Each area A has a
weight vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ (1)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree of
match between these two directions of v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between
two unit vectors v̇ and ṗ. This enables a match between
two vectors of different magnitudes. The pre-response value
ranges in [−1, 1].

In other words, if regarding the synaptic weight vector
as the object feature stored in the neuron, the pre-response
measures the similarity between the input signal and the
object feature.

The firing of a neuron is determined by the response in-
tensity measured by the pre-response (shown as Equation 1).
That is to say, If a neuron becomes a winner through the top-k
competition of response intensity, this neuron will fire while
all the other neurons are set to zero. In the network training,
both motors’ firing is imposed by the external teacher. In
testing, the network operates in the free-viewing mode if
neither is imposed, and in the location-goal mode if LM’s
firing is imposed, and in the type-goal mode if TM’s is
imposed. The firing of Y (internal brain) neurons is always
autonomous, which is determined only by the competition
among them.

D. Tow types of neurons

Considering that the learning rate in Hebbian learning
(introduced below) is 100% while the retention rate is 0%
when the neuron age is 1, we need to enable each neuron to
autonomously search in the input space {ṗ} but keep its age
(still at 1) until its pre-response value is sufficiently large
to indicate that current learned feature vector is meaning-
ful (instead of garbage-like). A garbage-like vector cannot
converge to a desirable target based on Hebbian learning.

Therefore, there exist two types of neurons in the Y area
(brain) according to their states, initial state neurons (ISN)
and learning state neurons (LSN). After the initialization of
the network, all the neurons are in the initial state. During the
training of the network, neurons may be transformed from
initial state into learning state, which is determined by the
pre-response of the neurons. In our network, a parameter ε1
is defined. If the pre-response is over 1 − ε1, the neuron is
transformed into learning state, otherwise, the neuron keeps
the current state.

E. Top-k Competition

Top-k competition takes place among the neurons in the
same area, imitating the lateral inhibition which effectively
suppresses the weakly matched neurons (measured by the
pre-responses). Top-k competition guarantees that different
neurons detect different features. The response r′q after top-k
competition is

r′q =

{
(rq − rk+1)/(r1 − rk+1) if 1 ≤ q ≤ k
0 otherwise (2)

where r1, rq and rk+1 denote the first, qth and (k + 1)th
neuron’s pre-response respectively after being sorted in de-
scending order. This means that only the top-k responding
neurons can fire while all the other neurons are set to zero.

In Y area, due to the two different states of neurons, top-k
competition needs to be modified. There exist two kinds of
cases:
• If the neuron is ISN and the pre-response is over 1−ε1,

it will fire and be transformed into the learning state,
otherwise keep the current state (i.e., initial state).

• If the neuron is LSN and the pre-response is over 1−ε2,
it will fire.

So the modified top-k competition is described as:

r′′q =

{
r′q if rq > ε
0 otherwise

ε =

{
1− ε1 if neuron is ISN
1− ε2 if neuron is LSN

where r′q is the response defined in Equation 2.

F. Hebbian-like Learning

The concept of neuronal age will be described before
introducing Hebbian-like learning. Neuronal age represents
the firing times of a neuron, i.e., the age of a neuron increases
by one every time it fires. Once a neuron fires, it will
implement hebbian-like learning and then update its synaptic



weights and age. There exist a close relation between the
neuronal age and the learning rate. Put simply, a neuron with
lower age has higher learning rate and lower retention rate.
Just like human, people usually lose some memory capacity
as they get older. At the “birth” time, the age of all the
neurons is initialized to 1, indicating 100% learning rate and
0% retention rate.

Hebbian-like learning is described as:

vj(n) = w1(n)vj(n− 1) + w2(n)r
′
j(t)ṗj(t)

where r′j(t) is the response of the neuron j after top-k
competition, n is the age of the neuron (related to the firing
times of the neuron), vj(n) is the synaptic weights vector of
the neuron, ṗj(t) is the input patch perceived by the neuron,
w1 and w2 are two parameters representing retention rate
and learning rate with w1 + w2 ≡ 1. These two parameters
are defined as following:

w1(n) = 1− w2(n), w2(n) =
1 + u(n)

n

where u(n) is the amnesic function:

u(n) =

 0 if n ≤ t1
c(n− t1)/(t2 − t1) if t1 < n ≤ t2
c+ (n− t2)/r if t2 < n

where t1 = 20, t2 = 200, c = 2, r = 10000 [21].
Only the firing neurons (firing neurons are in learning state

definitely) and all the neurons in initial state will implement
Hebbian-like learning, updating the synaptic weights accord-
ing to the above formulas. The age of the neurons in learning
state and initial state is updates as

n(t+ 1) =

{
n(t) if the neuron is ISN
n(t) + 1 if the neuron is top-k LSN.

Generally, a neuron with lower age has higher learning
rate. That is to say, ISN is more capable to learn new concepts
than LSN. If the neurons are regarded as resources, ISNs are
the idle resources while LSNs are the developed resources.
So, the resources utilization (RU) in Y area can be calculates
as

RU =
NLSN

NLSN +NISN
× 100%

where RU represents the resources utilization, NLSN and
NISN are the number of LSN and ISN.

G. How each Y neuron matches its two input fields

All Y neurons compete for firing via the above top-k
mechanisms. The initial weight vector of each Y neuron is
randomly self-assigned, as discussed below. We would like
to have all Y neurons to find good vectors in the input space
{ṗ}. A neuron will fire and update only when its match
between v̇ and ṗ is among the top, which means that the
match for the bottom-up part v̇b · ḃ and the match for the
top-down part ḃt · ṫ must be both top. Such top matches must
be sufficiently often in order for the neuron to mature.

This gives an interesting but extremely important property
for attention — relatively very few Y neurons will learn

Fig. 5: Frames extracted from a continuous video clip and used in
the training and testing of the network

background, since a background patch does not highly cor-
related with an action in Z.

Whether a sensory feature belongs to a foreground
or background is defined by whether there is an
action that often co-occurs with it.

IV. EXPERIMENTS AND RESULTS

A. Sample Frames Preparation from Natural Videos

In our experiment, 10 objects shown in Fig.4 have been
learned. The raw video clips of each object to be learned were
completely taken in the real natural environments. During
video capture, the object held by the teacher’s hand was
required to move slowly so that the agent could pay attention
to it. Fig. 5 shows the example frames extracted from a
continuous video clip as an illustration which needs to be
preprocessed before fed into the network. The pre-processing
described below is automatically or semi-automatically via
hand-crafted programs.

1) Resize the image extracted from the video clip to fit
the required scales demanded in the network training
and testing.

2) Provid the correct information including the type, scale
and location of the sample in each extracted image
with natural backgrounds as the standard of test and
the supervision in Z area, just like what the teacher
does.

B. Experiment Design

In our experiment, the size of each input image is set
to 32 × 32 for X area. For sub-areas Y1, Y2, Y3 and Y4
with individual receptive fields 7× 7, 11× 11, 15× 15 and
19×19 are adopted in Y area. And totally 10 different types
of objects (i.e., TM has 10 neurons) with 11 different scales
(from 16× 16 to 26× 26, i.e., SM has 11 neurons) are used
in Z area. For each scale of objects, the possible locations
is (32− S + 1)× (32− S + 1) (S = 16, 17, ...26), i.e., LM
has 17 × 17 neurons considering that objects with different



Fig. 4: The pictures on the top visualize 10 objects to be learned in the experiment. The lower-left and the lower-right pictures show the
smallest and the largest scale of the objects, respectively (the size of the pictures carries no particular meaning).
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Fig. 6: Recognition rate variation within 6 epochs (from epoch 5th
to 10th) under α = 0 and α = 0.3.

scales can have the same location. In additional, if the depth
of each Y area is 3, the total number of Y neurons is 26×
26× 3+ 22× 22× 3+ 18× 218× 3+ 14× 14× 3 = 5040,
which can be regarded as the resources of network.

The training set consisted of even frames of 10 different
video clips, with one type of foreground object per video.
For each training epoch, every object with every possible
scale is learned at every possible location (pixel-specific).
So, there are 10 classes ×(17 × 17 + 16 × 16 + 15 × 15 +
14×14+13×13+12×12+11×11+10×10+9×9+8×
8+7× 7) locations = 16940 different training cases and the
network is about 1−5040/16940 = 70.2% short of resources
to memorize all these cases. The test set consisted of odd
frames of 10 video clips to guarantee the difference of both
foreground and background in the network training phase
and testing phase. Multiple epochs are applied to observe
the performance modification of the network by testing every
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Fig. 7: Scale error variation within 6 epochs (from epoch 5th to
10th) under α = 0 and α = 0.3.

foreground object at every possible location after each epoch.
During the network training, each type of foreground

object with every scale sweeps smoothly across different
locations against a fixed or moving random complex back-
ground. A different background is used with a different
sweeping trajectory. For example, an object of the same
scale and of the same appearance sweeps through a natural
background. This simulates a baby who holds a toy and
moves it across his field of view.

C. Network Performances

The pre-response of Y neurons is calculated as

r(vb,b,vt, t) = (1− α)rb(vb,b) + αrt(vt, t) (3)

where rb is the bottom-up response and rt is the top-down
response. Parameter α is applied to adjust the coupling ratio
of top-down part to bottom-up part in order to control the



Y1: 7×7 Y2: 11×11

Y3: 15×15 Y4: 19×19
Fig. 9: Visualization of the bottom-up weights of the neurons in the first depth of each Y area. Each small square patch visualized a
neuron’s bottom-up weights vector, whose size represents the receptive field. The black image patch indicates the corresponding neuron
is in the initial state.
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Fig. 8: Location error variation within 6 epochs (from epoch 5th
to 10th) under α = 0 and α = 0.3.

influence on Y neurons from these two parts. This bottom-up,
top-down coupling is not new. The novelty is twofold: first,
the top-down activation originates from the previous time
step (t− 1) and second, non-zero top-down parameter (α >
0) is used in the testing phase. These simple modifications
create a temporally sensitive network. In formula 3, top-down
response rt consists of three parts from TM, SM and LM
respectively. In our experiments, the percentage of energy
for each section is the same, i.e., 1/3.

The high responding Z neurons (including TM,SM and
LM) will boost the pre-response of the Y neurons correlated
with those neurons more than the other Y neurons mainly
correlated with other classes, scales and locations. This can
be regarded as top-down biases. These Y neurons’ firing
leads to a stronger chance of firing of certain Z neurons
without taking into account the actual next image (if α =
1). This top-down signal is thus generated regarded as an
expectation of the next frame’s output. The actual next image
also stimulates the corresponding neurons (feature neurons)
to fire from the bottom-up. The combined effect of these
two parts is controlled by the parameter α. When α = 1,
the network state ignores subsequent image frames entirely.
When α = 0, the network operates in a frame-independent
way (i.e., free-viewing, not influenced by top-down signal).

The performance of the network, including type recogni-
tion rate, scale error and location error, is shown as Fig 6,
7 and 8. In each figure, two performance curves, which
corresponds to two conditions, α = 0 and α = 0.3, are
drawn. As discussed above, parameter α controls the ratio
of top-down versus the bottom-up part. The higher α is,
the stronger the expectations triggered by the top-down
signal is. These three figures indicate that the motor initiated
expectations through top-down connections have improved
the network performance to a certain extent.

In order to investigate the internal representations of
WWN-7 after learning the specific objects in the natural
video frames, the bottom-up synaptic weights of the neurons
in four Y areas with different receptive fields are visualized
in Fig 9. Multiple scales of object features are detected by
the neurons in different Y areas shown as the figure.

V. CONCLUSION

In this paper, based on the prior work, a new biologically-
inspired developmental network WWN-7 has been proposed
to deal with general recognition of multiple objects with
multiple scales. From the results of experiments, WWN-7
showed its capability of learning multiple concepts (i.e., type,
scale and location) concurrently from continuous video taken
from natural environments. Besides, in WWN-7, temporal
context is used as motor initiated expectation through top-
down connections, which has improved the network perfor-
mances shown in our experiments.

In the future work, more objects with different scales and
views will be used in experiment to further verify the per-
formance of WWN-7. And an ongoing work is to study the
influence of the parameter α on the network performance and
try to implement the autonomous and dynamical adjustment
of the percentage of energy for each section (i.e., bottom-up,
TM, SM and LM).
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