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Abstract We prove a multiplication theorem of a quantum Caldero-Chapoton
map associated to valued quivers which extends the results in [8][6]. As an
application, when Q is a valued quiver of finite type or rank 2, we obtain
that the algebra A H |k|(Q) generated by all cluster characters (see Definition
1) is exactly the quantum cluster algebra E H |k|(Q) and various bases of the
quantum cluster algebras of rank 2 can naturally be deduced.
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1 Introduction

Ever since the emergency of cluster algebras, the close relation between it and
quiver representations has always been emphasized. One interesting viewpoint
is to consider cluster algebras as some kind of Hall algebras of quiver represen-
tations, that was particularly enhanced by [4] in which the so-called Caldero-
Chapoton formula (or map, or character) was invented. Then the multiplication
formulas ([5],[7],[16]) of Caldero-Chapoton characters become important, espe-
cially in the construction of integral bases of cluster algebras (e.g. see [8, 9]).

In [19], D. Rupel obtained a quantum analogue of the Caldero-Chapoton
formula, which is crucial for the study of quantum cluster algebras. Unlike in

the cluster algebras, it does not generally hold that XNXM = |k|±
1

2
dN⊕MXN⊕M

for any dN⊕M ∈ Z. A natural question to ask is whether the quantized Caldero-
Chapoton formula could be extended to the cluster category. In [6], this aim was
achieved for equally-valued quivers and a multiplication formula was verified,
which implies that for finite type the algebra A H |k|(Q) generated by all cluster
characters (see Definition 1) is exactly the quantum cluster algebra E H |k|(Q).

In this paper, we will extend the results in [6] to valued quivers and prove
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two multiplication formulas therein. As an application, when Q is a valued
quiver of finite type or rank 2, we prove that the algebra A H |k|(Q) is exactly
the quantum cluster algebra E H |k|(Q). In particular, we obtain various bases
of the quantum cluster algebras of rank 2 by using the standard monomials in
[3].

2 Preliminaries and statement of the main result

2.1 Definition of quantum cluster algebras Let L be a lattice of rank m and
Λ : L× L → Z a skew-symmetric bilinear form. Note that Λ can be identified
with an m×m skew-symmetric matrix which still denoted by Λ if there is no
confusion. Set a formal variable q and the ring of integer Laurent polynomials
Z[q±1/2]. Define the based quantum torus associated to the pair (L,Λ) to be
the Z[q±1/2]-algebra T with a distinguished Z[q±1/2]-basis {Xe : e ∈ L} and
the multiplication

XeXf = qΛ(e,f)/2Xe+f .

It is known that T is contained in its skew-field of fractions F . A toric frame
in F is a map M : Zm → F \ {0} given by

M(c) = ϕ(Xη(c))

where ϕ is an automorphism of F and η : Z
m → L is an isomorphism of

lattices. By the definition, the elements M(c) form a Z[q±1/2]-basis of the
based quantum torus TM := ϕ(T ) and satisfy the following relations:

M(c)M(d) = qΛM (c,d)/2M(c+ d), M(c)M(d) = qΛM (c,d)M(d)M(c),

M(0) = 1, M(c)−1 = M(−c),

where ΛM is the skew-symmetric bilinear form on Z
m obtained from the lattice

isomorphism η. Let ΛM be the skew-symmetric m × m matrix defined by
λij = ΛM (ei, ej) where {e1, . . . , em} is the standard basis of Zm. Given a toric
frame M , let Xi = M(ei). Then we have

TM = Z[q±1/2]〈X±1
1 , . . . ,X±1

m : XiXj = qλijXjXi〉.

An easy computation shows that:

M(c) = q
1

2

∑
i<j cicjλjiXc1

1 Xc2
2 · · ·Xcm

m =: X(c) (c ∈ Z
m).

Let Λ be an m × m skew-symmetric matrix and B̃ an m × n matrix with
n ≤ m. We call the pair (Λ, B̃) compatible if up to permuting rows and columns
B̃TΛ = (D|0) with D = diag(d1, · · · , dn) where di ∈ N for 1 ≤ i ≤ n. The pair
(M, B̃) is called a quantum seed if the pair (ΛM , B̃) is compatible. Define the
m×m matrix E = (eij) as follows

eij =





δij if j 6= k;

−1 if i = j = k;

max(0,−bik) if i 6= j = k.
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For n, k ∈ Z, k ≥ 0, denote
[n
k

]
q
= (qn−q−n)···(qn−k+1−q−n+k−1)

(qk−q−k)···(q−q−1)
. Let k ∈ [1, n]

where [1, n] = {1, · · · , n} and c = (c1, . . . , cm) ∈ Z
m with ck ≥ 0. Define the

toric frame M ′ : Zm → F \ {0} as follows

M ′(c) =

ck∑

p=0

[
ck
p

]

qdk/2

M(Ec+ pbk), M ′(−c) = M ′(c)−1. (1)

where the vector bk ∈ Z
m is the kth column of B̃. Following [10], we say a real

m × n matrix B̃′ is obtained from B̃ by matrix mutation in direction k if the
entries of B̃′ are given by

b′ij =

{
−bij if i = k or j = k;

bij +
|bik|bkj+bik|bkj |

2 otherwise.

Then the quantum seed (M ′, B̃′) is defined to be the mutation of (M, B̃) in di-
rection k. Two quantum seeds are called mutation-equivalent if they can be ob-
tained from each other by a sequence of mutations. Let C = {M ′(ei) : i ∈ [1, n]}
where (M ′, B̃′) is mutation-equivalent to (M, B̃). The elements of C are called
the cluster variables. Let P = {M(ei) : i ∈ [n + 1,m]} and the elements of P
are called coefficients. Denote by ZP the ring of Laurent polynomials generated

by q
1

2 ,P and their inverses. Then the quantum cluster algebra Aq(ΛM , B̃) is
defined to be the ZP-subalgebra of F generated by C .

2.2 The quantum Caldero-Chapoton map and main result Let k be a finite
field with cardinality |k| = q and m ≥ n be two positive integers. Let ∆
be a valued graph without vertex loops and with vertex set {1, . . . ,m}. The

edges of ∆ are of the form i
(aij ,aji)

j , in which the positive integers aij form a
symmetrizable matrix.

Let Q̃ be an orientation of ∆ containing no oriented cycles: that is, we
replace each valued edge by a valued arrow. Thus Q̃ is called a valued quiver.
Note that any finite dimensional basic hereditary k-algebra can be obtained by
taking the tensor algebra of the k-species associated to Q̃. In what follows we
will denote by S̃ the k-species of type Q̃ in the sense of [16], which identified a
k-species with its corresponding tensor algebra.

The full subquiver Q on the vertices 1, . . . , n is called the principal part of
Q̃, with the corresponding k-species denoted by S. For 1 ≤ i ≤ m, let Si be
the i-th simple module for S̃.

Let B̃ be them×nmatrix associated to the quiver Q̃ whose entry in position
(i, j) given by

bij = dimEnd
S̃
(Si)opExt

1
S̃
(Si, Sj)− dimEnd

S̃
(Si)Ext

1
S̃
(Sj, Si)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Denote by Ĩ the left m×n submatrix of the identity
matrix of size m×m.
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By [19], we can assume that there exists some antisymmetric m×m integer
matrix Λ such that

Λ(−B̃) =

[
Dn

0

]
,

where Dn = diag(d1, · · · , dn) where di ∈ N for 1 ≤ i ≤ n. Let R̃ = R̃Q̃ be the

m× n matrix with its entry in position (i, j) is

r̃ij := dimEnd
S̃
(Si)Ext

1
S̃
(Sj , Si)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n respectively. And define R̃
′

:= R̃Q̃op. Denote the

principal parts of the matrices B̃ and R̃ by B and R respectively. Note that
B̃ = R̃

′

− R̃ and B = R
′

−R.
Let CQ be the cluster category (see [2]) of the valued quiver Q, i.e., the

orbit category of the derived category Db(S) by the functor F = τ ◦ [−1]. We
note that the indecomposable S-modules and Pi[1] for 1 ≤ i ≤ n exhaust the
indecomposable objects of the cluster category CQ:

ind CQ = ind modS ⊔ {Pi[1] : 1 ≤ i ≤ n}

where Pi is the indecomposable projective S-module at i for i = 1, · · · , n. Each
object M in CQ can be uniquely decomposed in the following way:

M = M0 ⊕ PM [1]

whereM0 is aS-module and PM is a projective module. Let PM =
⊕

1≤i≤nmiPi.
We extend the definition of the dimension vector dim on modules in modS to
objects in CQ by setting

dimM = dimM0 − (mi)1≤i≤n.

The Euler form on S-modules M and N is given by

〈M,N〉 = dimkHomS(M,N)− dimkExt
1
S(M,N).

Note that the Euler form only depends on the dimension vectors of M and N
and the matrix representing this form is (In −Rtr)Dn = Dn(In −R

′

).
The quantum Caldero-Chapoton map of an acyclic quiver Q has been de-

fined in [19][18][6]. The quantum Caldero-Chapoton map was defined in [19] for
S-modules, in [18] for coefficient-free rigid object in C

Q̃
. Later it was extended

in [6] to the cluster category for equally-valued quivers. For valued quivers, we
also have

X? : Obj CQ̃ −→ T

defined by the following rules:
(1) If M is a S-module, then

XM =
∑

e

|GreM |q−
1

2
〈e,m−e〉X−B̃e−(Ĩ−R̃

′
)m;
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(2) If M is a S-module and I is an injective S̃-module, then

XM⊕I[−1] =
∑

e

|GreM |q−
1

2
〈e,m−e−i〉X−B̃e−(Ĩ−R̃

′
)m+dimSocI ,

where dimI = i,dimM = m and GreM denotes the set of all submodules V of
M with dimV = e. We note that

XP [1] = XτP = XdimP/radP = XdimSocI = XI[−1] = Xτ−1I .

for any projective S̃-module P and injective S̃-module I with SocI = P/radP.
In the following, we denote by the corresponding underlined lower case letter x
the dimension vector of a S-module X and view x as a column vector in Z

n.

Now we need to recall some notations. For any S̃-modules M,N and E,
denote by εEMN the cardinality of the set Ext1

S̃
(M,N)E which is the subset

of Ext1
S̃
(M,N) consisting of those equivalence classes of short exact sequences

with middle term isomorphic to E ([16, Section 4]). Let FM
AB be the number of

submodules U of M such that U is isomorphic to B and M/U is isomorphic to
A. Then by definition, we have

|Gre(M)| =
∑

A,B;dimB=e

FM
AB .

Denote by [M,N ]1 = dimkExt
1
S̃
(M,N) and [M,N ] = dimkHomS̃

(M,N).

Let M,N be any S−modules and I any injective S̃−module. Define

Hom
S̃
(M, I)BI′ := {f : M −→ I|Kerf ∼= B,Cokerf ∼= I ′}.

Note that I ′ is an injective S̃−module.
The main result of this article is the following theorem:

Theorem 1.

(1) q[M,N ]1XMXN = q
1

2
Λ((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)

∑

E

εEMNXE ,

(2) q[M,I]XMXI[−1] = q
1

2
Λ((Ĩ−R̃

′
)m,−dimSocI)

∑

B,I′

|Hom
S̃
(M, I)BI′ |XB⊕I′[−1].

Definition 1. XL is called the corresponding cluster character, if L is a S-
module or L = M ⊕ I[−1] ∈ C

Q̃
satisfying that M is a S-module and I is an

injective S̃-module.

For a valued quiver Q, denote by A H |k|(Q) the ZP-subalgebra of F gener-
ated by all the cluster characters and by E H |k|(Q) the corresponding quantum
cluster algebra, i.e, the ZP-subalgebra of F generated by all the cluster vari-
ables. Then we have the following corollary:
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Corollary 1. For any valued quiver Q of finite type or rank 2, we have E H |k|(Q) =
A H |k|(Q).

3 Proof of the main theorem

In this section, we fix a valued quiver Q with n vertices.

Lemma 1. For any dimension vector m, e, f ∈ Z
n
≥0, we have

(1) Λ((Ĩ − R̃
′

)m, B̃e) = −〈e,m〉;

(2) Λ(B̃e, B̃f) = 〈f , e〉 − 〈e, f〉.

Proof. By definition, we have

Λ((Ĩ − R̃
′

)m, B̃e)

= mtr(Ĩ − R̃
′

)trΛB̃e = −mtr(Ĩ − R̃
′

)tr
[
Dn

0

]
e

= −mtr(In − (R
′

)tr)Dne = −etrDn(In −R
′

)m

= −〈e,m〉.

As for (2), the left side of the desired equation is equal to

etrB̃trΛB̃f = −etrB̃tr

[
Dn

0

]
f = −etrBtrDnf.

The right side is

〈f , e〉 − 〈e, f〉

= f trDn(In −R
′

)e− etr(In −Rtr)Dnf

= etr(In −R
′

)trDnf − etr(In −Rtr)Dnf

= etr(Rtr − (R
′

)tr)Dnf = −etrBtrDnf.

Thus we prove the lemma.

Corollary 2. For any dimension vector m, l, e, f ∈ Z
n
≥0, we have

Λ(−B̃e− (Ĩ − R̃
′

)m,−B̃f − (Ĩ − R̃
′

)l)

= Λ((Ĩ − R̃
′

)m, (Ĩ − R̃
′

)l) + 〈f, e〉 − 〈e, f〉+ 〈e, l〉 − 〈f ,m〉.

Proof. It follows from Lemma 1.
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Proof of Theorem 1(1): By Green’s formula [15], we have
∑

E

εEMNFE
XY =

∑

A,B,C,D

q[M,N ]−[A,C]−[B,D]−〈A,D〉FM
ABF

N
CDε

X
ACε

Y
BD.

Then
∑

E

εEMNXE

=
∑

E,X,Y

εEMNq−
1

2
〈Y,X〉FE

XY X
−B̃y−(Ĩ−R̃

′
)e

=
∑

A,B,C,D,X,Y

q[M,N ]−[A,C]−[B,D]−〈A,D〉− 1

2
〈B+D,A+C〉FM

ABF
N
CDε

X
ACε

Y
BDX

−B̃y−(Ĩ−R̃
′
)e.

By Corollary 2, we have

X−B̃y−(Ĩ−R̃
′
)e

= X−B̃(b+d)−(Ĩ−R̃
′
)(m+n)

= q
1

2
Λ(−B̃d−(Ĩ−R̃

′
)n,−B̃b−(Ĩ−R̃

′
)m)X−B̃b−(Ĩ−R̃

′
)mX−B̃d−(Ĩ−R̃

′
)n

= q
1

2
Λ((Ĩ−R̃

′
)n,(Ĩ−R̃

′
)m)+ 1

2
[−〈D,B〉+〈B,D〉+〈D,M〉−〈B,N〉]X−B̃b−(Ĩ−R̃

′
)mX−B̃d−(Ĩ−R̃

′
)n

= q
1

2
Λ((Ĩ−R̃

′
)n,(Ĩ−R̃

′
)m)q

1

2
〈D,A〉− 1

2
〈B,C〉X−B̃b−(Ĩ−R̃

′
)mX−B̃d−(Ĩ−R̃

′
)n.

Thus
∑

E

εEMNXE

= q−
1

2
Λ((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)

∑

A,B,C,D

q[M,N ]−[A,C]−[B,D]−〈A,D〉− 1

2
〈B+D,A+C〉+[A,C]1+[B,D]1 ·

q
1

2
〈D,A〉− 1

2
〈B,C〉FM

ABF
N
CDX

−B̃b−(Ĩ−R̃
′
)mX−B̃d−(Ĩ−R̃

′
)n.

Here we use the following fact
∑

X

εXAC = q[A,C]1,
∑

Y

εYBD = q[B,D]1

An easy calculation shows that

[M,N ]− [A,C]− [B,D]− 〈A,D〉+ [A,C]1 + [B,D]1 = [M,N ]1 + 〈B,C〉.

Hence
∑

E

εEMNXE

= q−
1

2
Λ((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)q[M,N ]1

∑

A,B,C,D

FM
ABq

− 1

2
〈B,A〉X−B̃b−(Ĩ−R̃

′
)mFN

CDq
− 1

2
〈D,C〉X−B̃d−(Ĩ−R̃

′
)n

= q−
1

2
Λ((Ĩ−R̃

′
)m,(Ĩ−R̃

′
)n)q[M,N ]1XMXN .
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This finishes the proof.

Proof of Theorem 1(2): We calculate

XMXI[−1]

=
∑

G,H

q−
1

2
〈H,G〉FM

GHX−B̃h−(Ĩ−R̃
′
)mXdimsocI

=
∑

G,H

q−
1

2
〈H,G〉FM

GHq
1

2
Λ(−B̃h−(Ĩ−R̃

′
)m,dimsocI)X−B̃h−(Ĩ−R̃

′
)m+dimsocI

= q
1

2
Λ(−(Ĩ−R̃

′
)m,dimsocI)

∑

G,H

q−
1

2
〈H,G〉q

1

2
Λ(−B̃h,dimsocI)FM

GHX−B̃h−(Ĩ−R̃
′
)m+dimsocI

= q
1

2
Λ((Ĩ−R̃

′
)m,−dimsocI)

∑

G,H

q−
1

2
〈H,G〉q−

1

2
[H,I]FM

GHX−B̃h−(Ĩ−R̃
′
)m+dimsocI .

Here we use the fact that

Λ(−B̃h,dimsocI) = −htrB̃trΛ(dimsocI) = −[H, I].

Note that we have the following commutative diagram

0

��

0

��

Y

��

Y

��

0 // B //

��

M //

��

A // 0

0 // X //

��

G //

��

A // 0

0 0

and short exact sequence

0 −→ A −→ I −→ I ′ −→ 0,

Thus by [16] we have
∑

B

FB
XY F

M
AB =

∑

G

FG
AXFM

GY , |Hom
S̃
(M, I)BI′ | =

∑

A

|Aut(A)|FM
ABF

I
I′A

and
∑

A,I′,X

|Aut(A)|F I
I′AF

G
AX =

∑

I′,X

|Hom
S̃
(G, I)XI′ | = q[G,I] = q〈G,I〉.
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By [16, Lemma 1], we have (Ĩ − R̃
′

)i = dimsocI. Now we can calculate the
term

∑

B,I′

|Hom
S̃
(M, I)BI′ |XB⊕I′[−1]

=
∑

A,B,I′,X,Y

|Aut(A)|FM
ABF

I
I′Aq

− 1

2
〈Y,X−I′〉FB

XY X
−B̃y−(Ĩ−R̃

′
)b+dimsocI′

=
∑

A,G,I′,X,Y

q−
1

2
〈Y,X−I′〉|Aut(A)|F I

I′AF
G
AXFM

GY X
−B̃y−(Ĩ−R̃

′
)b+dimsocI′ .

Note that we have the following facts

i′ + a = i, x+ a = g =⇒ x− i′ = g − i,

and

−B̃y − (Ĩ − R̃
′

)b+ dimsocI ′

= −B̃h− (Ĩ − R̃
′

)(m− i+ i′) + dimsocI ′

= −B̃h− (Ĩ − R̃
′

)m+ (Ĩ − R̃
′

)(i− i′) + dimsocI ′

= −B̃h− (Ĩ − R̃
′

)m+ (Ĩ − R̃
′

)i

= −B̃h− (Ĩ − R̃
′

)m+ dimsocI.

Hence
∑

B,I′

|Hom
S̃
(M, I)BI′ |XB⊕I′[−1]

=
∑

G,H

q〈G,I〉q−
1

2
〈H,G−I〉FM

GHX−B̃h−(Ĩ−R̃
′
)m+dimsocI

=
∑

G,H

q〈M,I〉q−
1

2
〈H,I〉q−

1

2
〈H,G〉FM

GHX−B̃h−(Ĩ−R̃
′
)m+dimsocI

= q[M,I]
∑

G,H

q−
1

2
[H,I]q−

1

2
〈H,G〉FM

GHX−B̃h−(Ĩ−R̃
′
)m+dimsocI .

This finishes the proof.

To prove Corollary 1, we recall the following lemma which can be found in
[5][6].

Lemma 2. Let
M −→ E −→ N

ǫ
−→ M [1]

be a non-split triangle in C
Q̃
. Then

dimkExt
1
C
Q̃
(E,E) < dimkExt

1
C
Q̃
(M ⊕N,M ⊕N).
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Proof of Corollary 1: Firstly, we prove that for any indecomposable object
M ∈ CQ̃, XM is in the quantum cluster algebra E H |k|(Q).

When Q is a valued quiver of finite type, it follows that XM is a cluster
variable for any indecomposable object M ∈ CQ̃ by [19].

When Q is a valued quiver of rank 2. Denoted by

Φi : A|k|(Q) → A|k|(Q
′)

the canonical isomorphism of quantum cluster algebras associated to sink or
source 1 ≤ i ≤ 2. Let Σi : modQ −→ modQ′ be the standard BGP-reflection

functor. It follows from [19, Theorem 2.4] that Φi(X
Q
M ) = XQ′

ΣiM
for any regular

module M of Q. Note also the fact Q is an acyclic valued quiver of rank 2, we
have that XM is in the upper quantum cluster algebra associated to Q which
coincides with the quantum cluster algebra E H |k|(Q) by the acyclicity of Q
[3]. When M is an indecomposable preprojective or preinjective module, it
follows from [19] XM is a cluster variable, hence in the quantum cluster algebra
E H |k|(Q).

Now we need to prove that for any cluster character XL ∈ A H |k|(Q),

then XL ∈ E H |k|(Q). Let L ∼=
⊕l

i=1 L
⊕ni
i , ni ∈ N where Li (1 ≤ i ≤ l) are

indecomposable objects in CQ̃. By Theorem 1 and Lemma 2, we have that

Xn1

L1
Xn2

L2
· · ·Xnl

Ll
= q

1

2
nLXL +

∑

dimkExt
1
C

Q̃
(E,E)<dimkExt

1
C

Q̃
(L,L)

fnE
(q±

1

2 )XE

where nL ∈ Z and fnE
(q±

1

2 ) ∈ Z[q±
1

2 ]. Note that the left side of the equation
above is in E H |k|(Q), thus by induction, it follows that XL ∈ E H |k|(Q) which
finishes the proof.

3 Bases in the quantum cluster algebras of rank 2

In this section, we consider a valued quiver (see [19] for details) associated to a

given compatible pair (Λ, B) where Λ =

(
0 1
−1 0

)
and B =

(
0 b
−c 0

)
for

any b, c ∈ Z>0. Let T = Z[q±1/2]〈X±1
1 ,X±1

2 : X1X2 = qX2X1〉 and F be the
skew field of fractions of T and thus the quantum cluster algebra of the valued
quiver of rank 2 (denoted by Aq(b, c) in the sequel) is the Z[q±1/2]-subalgebra
of F generated by the cluster variables Xk, k ∈ Z, defined recursively by

Xm−1Xm+1 =

{
q

b
2Xb

m + 1 if m is odd;

q
c
2Xc

m + 1 if m is even.

Definition 2. For any (r1, r2) and (s1, s2) ∈ Z
2, we write (r1, r2) � (s1, s2) if

ri ≤ si for 1 ≤ i ≤ 2. Moreover, if there exists some i such that ri < si, then
we write (r1, r2) ≺ (s1, s2).
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For any m ∈ Z
2, define m+ = (m+

1 ,m
+
2 ) such that m+

i = mi if mi > 0 and
m+

i = 0 if mi ≤ 0 for any 1 ≤ i ≤ 2. Dually, we set m− = m+ −m. Denote by
dimI[−1] = −dimsocI for any injective module I. For any d ∈ Z

2, we make
the following assignment by

Xd := XM for any M ∈ CQ with dimM = d.

Note that this assignment is not unique.

Theorem 2. The set B = {Xd|d ∈ Z
2} is a Z[q±

1

2 ]−basis of the quantum
cluster algebra Aq(b, c).

Proof. Note that for any d ∈ Z
2, Xd ∈ Aq(b, c) by Corollary 1. According to

the definition of the quantum Caldero-Chapoton map and the partial order in
Definition 2, we obtain a minimal term adX

d in the laurent expansion in Xd,

for some nonzero ad ∈ Z[q±
1

2 ]. Then by the standard monomials in [3], we have

Xd = bdX
d−
1

1 X
d−
2

2 X
d+
1

S1
X

d+
2

S2
+

∑

d≻l

blX
l−
1

1 X
l−
2

2 X
l+
1

S1
X

l+
2

S2

where bd, bl ∈ Z[q±
1

2 ]. It is easy to see that bd must be some nonzero monomial

in q±
1

2 . Thus we obtain that B is a Z[q±
1

2 ]-basis of Aq(b, c).
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