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GROMOV-WITTEN THEORY

OF BANDED GERBES OVER SCHEMES

ELENA ANDREINI, YUNFENG JIANG, AND HSIAN-HUA TSENG

Abstract. Let X be a smooth complex projective algebraic variety. Let G be a G-
banded gerbe with G a finite abelian group. We prove an exact formula expressing
genus g orbifold Gromov-Witten invariants of G in terms of those of X.
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1. Introduction

This paper is a sequel to our paper [8]. Our goal is to study the Gromov-Witten
theory of étale abelian banded gerbes over varieties. Let X be a smooth projective
variety over C and let G be a finite abelian group (viewed as a constant group scheme
over X). Let ǫ : G → X be a G-banded gerbe over X. As explained in [8] our study
of Gromov-Witten theory of G is motivated by the so-called decomposition conjecture
in physics [23]. In the case of a banded gerbe G → X the decomposition conjecture
states that the Gromov-Witten theory of G is equivalent to the Gromov-Witten theory
of the disjoint union of |Ĝ| copies of X, where |Ĝ| denotes the number of irreducible
representations of G. See [37] for more discussions on the mathematical aspects of the
decomposition conjecture.

In [8] we proved this conjecture for genus 0 Gromov-Witten theory of G. Our ap-
proach consists of two steps. First, we studied the natural morphism1 p : K0,n(G, β) →
M0,n(X,β) between the moduli spaces of stable maps to G and to X. We showed that

this morphism can be factored as K0,n(G, β) → Pn → M0,n(X,β), where K0,n(G, β) →
Pn is a G-gerbe and Pn → M0,n(X,β) is obtained as a base-change of a functorial
construction à la Matsuki-Olsson [28] applied to the stack M0,n of genus 0 prestable
pointed curves2. Such a construction produces a stack over M0,n which can be identified
with an open substack of the stack of twisted curves Mtw

0,n. This result allows us to

compare the push-forward p∗[K0,n(G, β)]
vir of the virtual fundamental class with the

virtual fundamental class [M 0,n(X,β)]
vir . This in turn gives a comparison of genus 0

Gromov-Witten invariants of G and X. In the second step we use some standard finite
group theory to interpret our comparison result as a statement in agreement with the
decomposition conjecture.

In this paper we study the higher genus Gromov-Witten invariants of G following a
similar strategy. Again we begin with studying the natural morphism

p : Kg,n(G, β)→Mg,n(X,β)

between moduli spaces of stable maps. We first show that p can be similarly factored as

Kg,n(G, β)→ Pg,n →Mg,n(X,β),

where Pg,n is an open substack of Mtw
g,n ×Mg,n Mg,n(X,β). Even though, unlike in the

genus 0 case, Kg,n(G, β)→ Pg,n is not as simple as the structure morphism of a gerbe, we
show that it is étale (see Proposition 5.1). It turns out that this property together with
the properties of Pg,n →Mg,n(X,β) are sufficient to prove a comparison result between

classes p∗[Kg,n(G, β)]
vir and [Mg,n(X,β)]

vir , see Theorem 6.8. Using this we then draw
conclusions on higher genus Gromov-Witten invariants by the method identical to the
genus 0 case, see Theorem 7.3.

Conventions. Unless otherwise mentioned, we work over C throughout this paper. By
an algebraic stack we mean an algebraic stack over C in the sense of [9]. By a Deligne-
Mumford stack we mean an algebraic stack over C in the sense of [16]. We assume

1This natural morphism is obtained by composing stable maps to G with the map ω : G → X and
taking the relative coarse moduli space morphism.

2Given an algebraic stack X endowed with a locally free log structure the construction associates
to it an algebraic stack X defined as the category fibered in groupoids whose objects are morphisms to
f : T → X and simple morphisms of locally free log structures f∗

M → M
′.
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moreover that all stacks (and schemes) are locally noetherian and locally of finite type.
Following [21], logarithmic structures are considered on the étale site of schemes. For
the extension of logarithmic structures to stacks, see [31]. Given a scheme (or a stack)
X, a geometric point x of X, and an étale sheaf of sets F on X, according to the
standard notation we denote by Fx the stalk of F at x in the étale topology. A gerbe is
an algebraic stack as in [27, Definition 3.15].

The main results in this paper are valid for banded G-gerbes over X with G a finite
abelian group. For the sake of simplicity, in the main text we assume G = µr ⊂ C∗ is
the cyclic group of r-th roots of unity. The case of general G requires only notational
changes. In genus 0 this is spelled out in [8, Appendix A]. The higher genus case is
similar and is left to the readers.

Acknowledgments. We thank D. Abramovich, A. Bayer, K. Behrend, B. Fantechi,
P. Johnson, A. Kresch, F. Nironi, E. Sharpe, Y. Ruan and A. Vistoli for valuable
discussions. H.-H. T. is grateful to T. Coates, A. Corti, H. Iritani, and X. Tang for
related collaborations. H.-H. T. is supported in part by NSF grant DMS-1047777.

2. Orbifold Gromov-Witten theory

In this section we recall some basic set-up and well known facts about orbifold
Gromov-Witten theory that we will constantly use in what follows.

2.1. Twisted stable maps. We recall the definition of twisted curve here, see [2], [3],
[6] for more details.

Definition 2.1 ([6], Definition 4.1.2). A twisted nodal n-pointed curve over a scheme
S is a morphism C→ S together with n closed substacks σi ⊂ C such that

• C is a tame Deligne-Mumford stack, proper over S, and étale locally is a nodal
curve over S;
• σi ⊂ C are disjoint closed substacks in the smooth locus of C→ S;
• σi → S are étale gerbes;
• the map C → C to the coarse moduli space C is an isomorphism away from
marked points and nodes.

By definition the genus of a twisted curve C → S is the genus of its coarse moduli
space C → S.

Throughout this paper we will always assume that twisted curves are balanced, i.e. at
any twisted node, the local group acts on the two branches by opposite characters.

For more details on twisted curves that we will need in this paper we refer to [8],
where the reader will find an introduction to the equivalence between twisted curves
and log twisted curves introduced in [33].

Let S be a noetherian scheme and let X/S be a proper Deligne-Mumford stack over S
with projective coarse moduli space X → S. We fix an ample invertible sheaf OX(1) over
X. Let Kg,n(X, β) be the fibered category over S which to any S-scheme T associates
the groupoid of the following data:

• A twisted n-pointed curve (C/T, {σi}) over T ;
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• A representable morphism f : C→ X such that the induced morphism f̄ : C → X
between coarse moduli spaces is an n-pointed stable map of degree β ∈ H+

2 (X,Z)
(i.e. f̄∗[C] = β).

According to [6, Theorem 1.4.1], the fibered category Kg,n(X, β) is a Deligne-Mumford
stack proper over S. As discussed in [3], there exists evaluation maps:

evi : Kg,n(X, β)→ Ī(X), 1 ≤ i ≤ n
taking values in the rigidified inertia stack Ī(X) of X. This map is obtained as follows.
The rigidified inertia stack Ī(X) may be defined as the stack of cyclotomic gerbes in X,
i.e. representable morphisms from cyclotomic gerbes to X. The evaluation map evi is
defined by associating to a twisted stable map f : (C/T, {σi})→ X its restriction to the
i-th marked gerbe,

f |σi : σi → X,

which is an object of Ī(X). The rigidified inertia stack Ī(X) has an alternative descrip-
tion. Define the inertia stack of X to be the fiber product over the diagonal:

IX := X×X×SX X.

By definition, objects of IX are pairs (x, g) where x is an object of X and g is an element
of the automorphism group of x. The rigidified inertia stack Ī(X) is obtained from IX
by applying the rigidification procedure ([1], [4]). More details can be found in e.g. [3].

2.2. Virtual Fundamental Class. Let X be a smooth proper DM stack with pro-
jective coarse moduli space. Let X be a smooth projective variety. In general both
Kg,n(X, β) and Mg,n(X,β) are neither smooth nor of pure dimension. Therefore they
do not generally admit a fundamental cycle. In [11] the virtual fundamental class is
introduced, which replaces the usual fundamental cycle. In order to construct it, an
obstruction theory is needed.
Condition (†): We say that an object L• of D(OXét

) satisfies Condition (†) if
(1) hi(L

•) = 0 for all i > 0,
(2) hi(L

•) is coherent, for i = 0, 1.

Definition 2.2. An obstruction theory is a morphism in D(X) φ : E• → L•
X

where
E• ∈ (OXét

) satisfies Condition (†) and LX is Illusie’s cotangent complex (for extension
to DM stacks see [27] and to Artin stacks [32]). The morphism φ has to satisfy the
following conditions:

(1) φ0 : h0(E•)→ h0(L•
X
) is an isomorphism;

(2) φ1 : h1(E•)→ h1(L•
X) is surjective;

where hi denotes the i-th complex cohomology and φi is the morphism induced by φ on
cohomology sheaves.

Definition 2.3. An obstruction theory as in Defiinition 2.2 is called perfect if E• is
locally quasi-isomorphic to a complex of vector bundles. It is called of perfect amplitude
contained in [−1, 0] if it is locally quasi-isomorphic to a complex of vector bundles F−1 →
F 0.

There is also a notion of relative obstruction theory for a morphism X → Y form a
DM stack to a smooth Artin stack of pure dimension. The definition is analogous to
Definition 2.2 except that the absolute tangent complex L•

X is replaced by the relative
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cotangent complex L•
X/Y. Given any separated DM stack X endowed with a perfect

obstruction theory it is possible to associate to it a cycle in A∗(X)Q of the expected
dimension called the virtual fundamental class. Such a cycle can be seen more conve-
niently as a bivariant class in A∗(X → S) ≃ A∗(X), S = SpecC. Analogously, in the
relative case we get a class in A∗

Q(X → Y) ≃ A∗
Q(X) (see [17, Ch. 17] for the theory

of bivariant classes). The construction works as follows. Let us observe first that any
DM type morphism of Artin stacks f : X→ Y defines a cone stack CX/Y called intrinsic
relative normal cone. For any such a morphism one can find a diagram as follows [22]

U

ét
��

� � // M

sm
��

X
f // Y

(1)

where the upper row is a closed immersion, the arrow on the left is étale and the arrow
on the right is smooth. This is called in [11] a local embedding. Such a diagram defines
a cone stack [CU/M/TM/Y] which is shown to be in fact independent on the chosen local
embedding of X. Moreover, the cone stacks constructed locally glue to yield a global
cone stack.

Definition 2.4. The intrinsic relative normal cone CX/Y is the unique cone stack such
that CX/Y|U ≃ [CU/M/TM/Y].

Let X→ Y be a morphism from a DM stack to a smooth Artin stack of pure dimen-
sion. Let E• be a perfect obstruction theory of amplitude contained in [−1, 0] for X

relative to Y. Let E• := (E∨
fl)

•, where the subscript fl denotes the derived pullback to
the big fppf site. The quasi-isomorphism class of such an obstruction theory determines
a Picard stack h1/h0((E•

fl)
∨) ≃ [E1/E0] (the stack theoretic quotient). Note that if

E• admits a global resolution, namely it is globally isomorphic to a complex of vector
bundles F−1 → F 0, then the associated Picard stack is simply [F1/F0]. The conditions
in Definition 2.2 ensure that there is a closed embedding CX/Y →֒ [E1/E0]. If E

• admits
a global resolution by pulling-back CX/Y along F1 → [F1/F0] we get a closed substack
C →֒ F1. The virtual fundamental class is obtained as the intersection of C with the
zero section of F1.

3

The stacks Kg,n(X, β) and Mg,n(X,β) admit perfect obstruction theories of ampli-
tude contained in [−1, 0] relative to Mtw

g,n and Mg,n. In [10] it is shown that a perfect

obstruction theory relative to Mg,n for Mg,n(X,β) is given by

E• := Rπ∗(f
∗ΩX ⊗ ωπ)→ LMg,n(X,β)/Mg,n

,

where

C

π
��

f // X

M g,n(X,β)

3In [22] intersection theory for Artin stacks was developed. Using such a theory it is possible to
intersect CX/Y with the zero section of [E1/E0] without needing to assume that the obstruction theory

admits a global resolution.
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is the universal stable map. Consider the universal twisted stable map to the gerbe G:

C

π̃
��

f̃ // G

Kg,n(G, β).

According to [3] the moduli stack Kg,n(G, β) has a perfect obstruction theory Ẽ• relative
to Mtw

g,n analogously constructed:

Ẽ• := Rπ̃∗(f̃
∗ΩG ⊗ ωπ̃)→ LKg,n(G,β)/Mtw

g,n
.

The complex Ẽ• turns out to be quasi-isomorphic to the pullback of E• as an object in
DCoh(Kg,n(G, β)).

2.3. Gromov-Witten invariants and Descendant Potential. In this paper we will
work with cohomological GW-invariants. For us [Kg,n(X, β)]

vir and [Mg,n(X,β)]
vir will

be classes in H∗(Kg,n(X, β),Q) and in H∗(Mg,n(X,β),Q). Let γ1, .., γn be homogeneous
elements in H∗(IX,Q). Then n-points genus g orbifold GW-invariants are defined4 as

〈γ1, .., γn〉Xg,β =

∫

[Kg,n(X,β)]vir

n∏

i=1

ev∗i (γi).(2)

The vector space H∗(IX,Q) can be made into a graded vector space in the following
way:

H∗(IX,Q) = ⊕ΩH
a−age(Ω)(Ω,Q),(3)

where the direct sum is over the connected components Ω ⊆ IX and age(−) is a locally
constant function on the inertia stack defined in [3, Definition 7.1.1]. The genus g
descendant potential is defined as follows. Let L1, ..,Ln be the tautological line bundles
over Kg,n(G, β), defined as the line bundles whose fiber at a point is the cotangent
space of the corresponding coarse moduli space curve. For any i = 1, .., n let ψi =
c1(Li). Note that with this definition the classes ψi are a pullback of the analogous
classes in H∗(M g,n(X,β),Q). Let α1, .., αm be an additive basis of H∗(X,Q). Let ti,j,
i = 1, ..,m, j ≥ 0 be supercommuting variables such that deg ti,j = deg αi. We put

γ =
∑∞

d=0

∑m
i=1 ti,jτjαi, where τjαi is defined as αiψ

j
∗ where ∗ = k if τjαi is inserted at

the k-th place in (2). Then the genus g descendant potential is the series with coefficients
in C[[ti,j ]] defined as follows

Fg(γ,Q) =
∑

n≥0

∑

β∈H2(X,Z)

Qβ

n!
〈γn〉 =

∑

n≥0

∑

β∈H+
2 (X,Z)

∑

i1,..,in
j1,..,jn

Qβ

n!

n∏

k=1

tik,jk〈
n∏

k=1

αikψ
jk
k 〉X,β.(4)

The genus g descendant potential is an exponential generating function for genus g
descendant orbifold Gromov-Witten invariants.

4Here we ignore the subtlety involving IX and its rigidification.
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3. Twisted curves

In this section we present a few facts about prestable curves and twisted curves.

3.1. The Picard group of prestable curves. Let C be a genus g smooth curve. Let
PicC0 denote the subgroup of degree 0 line bundles. The extension

1→ PicC0 → PicC → Z→ 1(5)

is a semidirect product. Moreover Pic0C is a divisible group and for any r ∈ N the
kernel of the multiplication by r is a subgroup of rank r2g [30]. Therefore, for any line
bundle L ∈ PicC such that deg L is multiple of r, there are r2g line bundles N ∈ PicC
such that N⊗r ≃ L. If C is prestable, which means that it only admits ordinary double
points as singularities, then Pic0 C is a semi-abelian variety (see e.g. [26]) as described
in the following Lemma.

Lemma 3.1. Let C be a genus g nodal prestable curve. Then there is an exact sequence

1→ T → PicC → PicCν → 1,(6)

where T is an algebraic torus and Cν denotes the normalization of C. Therefore PicC
is a semi-abelian variety.

Remark 3.2. The algebraic torus T in the Lemma above is isomorphic to Gs
m where

s is the number of double points. It can be thought of as parametrizing descent data
for line bundles. Indeed it is a well known fact (see e.g. [20]) that the category of
line bundles over C is equivalent to the category of line bundles over Cν endowed with
an identification of the fibers over the preimages of the nodes. Isomorphisms of 1-
dimensional k-vector spaces are given by Gm,k.

In the following it will be convenient to make use of dual graphs (introduced in [12],
Definition 1.1 and Definition 1.5). Given a prestable curve the associated dual graph
encodes its topological type.

Definition 3.3. A graph τ is a quadruple (Fτ , Vτ , jτ , ∂τ ), where Fτ and Vτ are finite
sets, ∂τ : Fτ → Vτ is a map and jτ : Fτ → Fτ an involution. We call Fτ the set of
flags,Vτ the set of vertices, Sτ = {fFτ |jτf = f} the set of tails and Eτ = {{f1, f2} ⊂
Fτ |f1 = jτf1} the set of edges of τ . For v ∈ Vτ let Fτ (v) = ∂τ (v) and |v| = #Fτ (v), the
valence of v.

Definition 3.4. A modular graph is a graph τ endowed with a map gτ : Vτ → Z≥0;
v 7→ g(v). The number g(v) is called the genus of v.

Notation 3.5. Let τ be a modular graph. We denote by b1(τ) the first Betti number of
τ defined as b1(τ) = 1− |Vτ |+ |Eτ |

The following lemma characterizes the torsion subgroups of the Picard group of a
prestable curve.

Lemma 3.6. Let C be a nodal prestable curve of dual graph τ . Let r ∈ N. Let PicC[r]
be the r-torsion part of the Picard group. Then

|PicC[r]| = 2g(τ) − b1(τ),(7)

where b1(τ) = 1−#Vτ +#Eτ is the first Betti number of the graph τ .
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3.2. The Picard group of twisted curves. As for ordinary prestable curves in order
to describe the Picard group of a twisted curve along with its torsion subgroups we will
make use of dual graphs encoding the topological type of the curve and the isotropy
groups of its special points. In [7] we introduced gerby modular graphs generalizing
Definition 3.4. They will allows us to suitably label strata and irreducible components
of stacks parametrizing twisted curves and twisted stable maps and will make much
easier our notation in Section 6.2.

Notation 3.7. Let 0 be a finite set and o : 0→ N, a : 0→ Q two set maps.

The following example is important.

Example 3.8. Let X be a smooth proper Deligne-Mumford stack. A triple (0, o, a) is
obtained as follows. Let 0 = 0(X) be the set of connected components of the rigidified
cyclotomic inertia stack of X. Let o be the set map 0(X) → N taking U ∈ 0(X) to the
integer r such that U ⊆ Iµr(X). Let a : 0(X)→ Q be the set map taking U to its age.

Definition 3.9 (Gerby dual graph). Let (0, o, a) be as in Notation 3.7. A gerby modular
graph τ̃ associated to (0, o, a) is the data of an underlying modular graph τ with a map
g : Fτ̃ → 0 such that g(f) = g(f ′) whenever the flags f , f ′ form an edge {f, f ′} ∈ Eτ̃ .
We define γ := o ◦ g.

Let A be a semigroup with indecomposable zero. A gerby A-graph is a gerby modular
graph τ̃ whose underlying modular graph τ is endowed with an A-structure (i.e. a map
Vτ → A).

Notation 3.10. Let τ̃ be a gerby dual graph over τ . We establish the following conven-
tional notations,

• For any edge ej ∈ Eτ̃ we put rj := γ(ej). If C is a twisted curve with gerby
dual graph τ̃ , we denote by Γej the automorphisms group of a twisted node of C
corresponding to ej . Such a group is cyclic of order rj ;
• for any flag pi ∈ Fτ̃/Eτ̃ we put bi = γ(bi). If C is a twisted curve with gerby
dual graph τ̃ , We denote by Γpi the automorphisms group of a stacky point of C
corresponding to pi. Such a group is cyclic of order bi;

Lemma 3.11. Let C be a twisted curve over SpecC of gerby dual graph τ̃ . Let ν : Cν → C

be its normalization. Then there is an exact sequence

1→
s∏

i=1

C∗ → PicC→ PicCν →
s∏

i=1

PicBΓei → 1(8)

where s = |Eτ̃ | and BΓei are the gerbes corresponding to twisted nodes.

Proof. It follows from the normalization exact sequence

1→ OC → ν∗OCν → ⊕si=1OBΓei
→ 1(9)

by taking the invertible elements and by computing the long exact cohomology se-
quence. 2

Lemma 3.12. Let C be a twisted curve over SpecC with coarse moduli space C. Let τ̃
be the dual graph of C. With reference to Notation 3.10, there is an exact sequence

1→ PicC → PicC→ (
⊕

ej∈Eτ̃

Z/rjZ
⊕

pi∈Fτ̃/Eτ̃

Z/biZ)→ 1.(10)
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Proof. Consider the exact sequence of complexes

1→ π∗Gm → Rπ∗Gm →
Rπ∗Gm

π∗Gm
→ 1.(11)

The Hypercohomology long exact sequence yields

1→ H1(C,Gm)
π∗

−→ H1(C,Gm)
res−→ H0(C,R1π∗Gm)→ 1,(12)

where the arrow on the right is surjective because of Tsen’s theorem (cf. Section 3.3).
By a result proven in [1, Proposition A.0.1] there is a canonical isomorphism

H0(C,R1π∗Gm) ≃
∏

ej∈Eτ̃

H1(Γej ,Gm)×
∏

pi∈Fτ̃/Eτ̃

H1(Γpi ,Gm),(13)

where the groups above are group cohomology for the trivial action of Γej , Γpi on

Gm. It is a standard result that there are isomorphisms H1(Γej ,Gm) ≃
∏
j Z/rjZ,

H1(Γpi ,Gm) ≃
∏
i Z/biZ. The map res in (12) is given by restricting line bundles to

the twisted points of C. 2

Remark 3.13. Let C be a twisted curve with gerby dual graph τ̃ . Let #Eτ̃ = s, #(Fτ̃ \
Eτ̃ ) = n. There is a commutative diagram

1 // PicC //

��

PicC

ν∗

��

// ⊕ni=1Z/bi
⊕⊕sk=1Z/rk

I
⊕

∆−1

��

// 1

1 // PicCν // PicCν //

��

⊕ni=1Z/bi
⊕⊕sk=1Z/r

⊕2
k

uukkkkkkkkkkkkkk

// 1

⊕sk=1Z/rk

��
1

(14)

where the map I
⊕

∆−1 is the identity of the first factor and the anti-diagonal on the
second factor. The diagonal arrow is its cokernel. This corresponds to the fact that a line
bundle which is non trivial when restricted to a twisted node over C pulls-back over Cν to
a line bundle involving opposite powers of the tautological line bundles associated to the
two preimages of the node. This is a consequence of the fact that nodes of twisted curves
are balanced. We observe that any two line bundles in PicC pulling back to isomorphic
line bundles in PicCν differ by a degree zero line bundle because the normalization map
is of degree 1.

The following lemma gives a characterization of torsion subgroups for unmarked
twisted curves.

Lemma 3.14. Let C be an unmarked twisted curve with gerby dual graph τ̃ . With
reference to Notation 3.10 we define le := g.c.d.(re, r) ∀e. Then there is a non split
short exact sequence

1→ Z/rZ2g(τ̃)−b1(τ̃) → PicC[r]→
n.s.⊕

e∈Eτ̃

Z/leZ→ 1,(15)

where the direct sum
⊕n.s.

e∈Eτ̃
is taken over the non separating nodes.



10 ELENA ANDREINI, YUNFENG JIANG, AND HSIAN-HUA TSENG

Proof. Note that Z/rZ2g(τ̃)−b1(τ̃) = Z/rZ2g(τ)−b1(τ) ≃ PicC[r]. We will see that line
bundles which are non-trivial when restricted to non-separating nodes contribute to
PicC[r] ≃ H1(C, µr), where we use the equivalence between the category of r-torsion
line bundles and the category of µr-principal bundles. Consider the exact sequence of
complexes

1→ π∗µr → Rπ∗µr →
Rπ∗µr
π∗µr

→ 1.(16)

By taking the Hypercohomology long exact sequence we get the short exact sequence

1→ H1(C,µr)→ H1(C, µr)→ Ker(H0(C,R1π∗µr)
δ→ H2(C,µr))→ 1.(17)

The morphism H1(C, µr) → H0(C,R1π∗µr) can be seen as the restriction map, which
takes an r-torsion line bundle to its restriction to the stacky points. The bound-
ary morphism δ is explicitly described in [14]. Let ~α = (α1, .., αm) be a class in
H0(C,R1π∗µr) ≃

∏
e∈Eτ̃

H1(BΓe, µr) ≃ Pic(
∐
e∈Eτ̃

BΓe). Let L~α be any line bun-

dle over C which restricts to a line bundle of class ~α over
∐
eBΓe. Then δ(~α) is the

isomorphism class of the gerbe over C induced by the r-th root of L⊗r
~α . Note that there

is a commutative diagram (cfr. [14, Lemma 3.2.19])

H1(Cν , R1πν∗µr) // H2(Cν , µr)

H1(C,R1π∗µr)

ν∗

OO

// H2(C,µr),

≀
OO

(18)

where Cν denotes the normalization of C. Using the notations in Remark 3.13, the
above diagram becomes

⊕sk=1Z/rk
⊕2 // ⊕v∈τ (Z/r)v

��
⊕sk=1Z/rk

//

∆−1

OO

⊕v∈τ (Z/r)v

∼
OO

(19)

where for any v, (Z/r)v = Z/r. The maps ⊕sk=1Z/rk
⊕2 → ⊕v∈τ (Z/r)v take an element

(m1, ...,m2s) in the image of ∆−1 to
∑

ek∈Ev
(r/rk)mk. Choose a set of line bundles whose

images in PicC/PicC generate it. Assume moreover that for any such line bundle there
exists a node e in C such that the restriction of this line bundle to the complement of
e in C is trivial. The class of each line bundle of the above set is (0, .., α, .., 0) with α
in the k-th position. If ek is a non separating node, then α is sent to zero, because the
preimages of the node in the normalization belong to the same irreducible component.
If ek is separating, its preimages in Cν belong to two different irreducible components,
hence the image of α is (rrkα,−rrkα) ∈ (Z/r)v ⊕ (Z/r)v′ where v, v′ are the vertices
associated to the irreducible components of Cν containing the preimages of the node.
Therefore Ker(δ) is generated by the subset of line bundles whose restriction to non-
separating nodes is non trivial. The claim follows from the fact that for any node e,
H1(BΓe, µr) ≃ Z/le. 2

For any twisted curve C we will fix a set of (isomorphisms classes of) line bundles in
PicC lifting the standard basis of PicC/PicC. We start from the right factor group in
(13) in Lemma 3.12. Recall that any smooth twisted curve is obtained as stack over its
coarse moduli space by the construction known as taking roots of line bundles as shown
in [3], [13]. This construction provides for any marked twisted point pi a tautological line
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bundle whose fiber over pi is the standard representation of Γpi ≃ µbi . We will denote
such line bundles by Ti for any marked point pi. If pi is twisted, Ti has non-trivial
image in PicC/PicCand it is our choice for the lift of its image. We come to the second
factor in (13). Unlike twisted marked points, for twisted nodes there is no universal
construction providing a canonical choice for line bundles whose restriction to a twisted
node is non trivial. However, due to Lemma 3.14 we can choose a set of line bundles,
that we will denote by Q1, ..,Qs, s = |Eτ̃ |, satisfying the following properties

Property 3.15.

(1) for any ei ∈ Eτ̃ , i = 1, .., s, Q|ei is the standard representation of Γei ≃ µri;
(2) for any i = 1, .., s, Qrii ≃ OC, ri = γ(ei);
(3) for any i = 1, .., s Qi|C\ei ≃ OC\ei .

We remark that any two line bundles Qi, Q
′
i satisfying the above conditions for some

i differ by an ri-torsion line bundle.

3.3. The Brauer group. The Brauer group of a smooth algebraic curve over SpecC is
trivial. This is a consequence of Tsen’s theorem as explained e.g. in [29, III §2 Example
2.22 Case (d)]. In fact by the same argument the Brauer group of a prestable curve is
also trivial. It is not hard to see that the same result also holds for the Brauer group of
a twisted curve. Consider sequence (17) in Lemma 3.14. The result follows by taking
the long exact cohomology sequence and by the result in [1, Proposition A.0.1]. Indeed
for Γ any cyclic group H2(Γ,Gm) = 0. See also [34].

Lemma 3.16. Let CA → SpecA be a twisted curve over an artinian ring. Then
H2(CA,O

∗
CA

) = 0.

Proof. Let I ⊂ A be the ideal of the closed point 0. Let C0 denote the pullback of the
curve to the closed point. By flatness I ·OCA

is the ideal sheaf of C0. The result follows
by taking the long exact cohomology sequence of the short exact sequence

1→ 1 + I · OCA
→ O∗

CA
→ O∗

C0
→ 1,(20)

and from H2(CA,OCA
) = 0. 2

Lemma 3.17. Let π : CS → S be a twisted curve over a scheme S. Let G → C be a
µr-banded gerbe of class α ∈ H2(C,µr). Then étale locally over S, G is isomorphic to a
gerbe of roots of a line bundle.

Proof. As explained e.g. in [25], G is a root gerbe if and only if it admits a line bundle
whose fibers carry an action of µr given by multiplication by χ(α) where χ denotes
the natural inclusion of the sheaof of r-th roots of unity in OC. By standard limit
arguments, such kind of sheaf exists over a geometric fiber Gs of π and extends to an
étale neighborhood of s. 2

4. Rephrasing the moduli problem

Recall that for the purpose of computing GW invariants, we can pretend that there
are evaluation morphisms taking values on the usual inertia stack (rather than on the
rigidified inertia stack)

evi : Kg,n(G, β)→ IG ≃ G×X G,
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where the last canonical isomorphism is due to the fact tha G is a G-banded gerbe.
Given an n-tuple ~g ∈ G×n we define

Kg,n(G, β)
~g := ∩ni=1ev

−1
i (IGgi),(21)

where IGgi := G×{gi}. The substack Kg,n(G, β)
~g is either empty or an open and closed

component ofKg,n(G, β). It turns out that Kg,n(G, β)
~g 6= ∅ if and only if ~g is β-admissible

in the sense of Definition 4.5. By definition Kg,n(G, β) =
∐
~gKg,n(G, β)

~g.

Let G→ X be a µr-gerbe. The moduli problem of twisted stable maps to G relative to
the moduli problem of stable maps to X is equivalent to the moduli problem of twisted
stable maps to gerbes induced by pullback over the prestable curves admitting stable
maps to X. This fact follows easily from the universal property of the fiber product in

the strict 2-category of algebraic stacks. The datum of a twisted stable map [f̃ : C→ G]
is equivalent to the outer part of the following diagram:

C

h

  @
@

@@
@

@@
@ f̃

��

π

""

GC //

��
�

G

��
C

f
// X.

(22)

By the universal property the morphism f̃ induces a unique representable morphism
h : C→ GC , where GC is the pull-back gerbe.

In order to benefit from the above reformulation of the moduli problem we need to
characterize the gerbes obtained by pullback to the prestable curves admitting stable
maps to X. Note that for a family of prestable curve π : C → S, the Brauer group
of a geometric fiber is isomorphic to the stalk of the constructible sheaf R2π∗µr at the
corresponding geometric point (see e.g. [29], VI 2 Corollaries 2.3 and 2.5). In particular
the Brauer group is not constant over S. The class of the pull-back gerbe GC inH2(C,µr)
induces a global section of R2π∗µr whose evaluation at any geometric point s of S is
the class of the gerbe induced by pull-back over Cs. By applying the relative trace
map to the section of R2π∗µr defined by [GC ] ∈ H2(C,µr), we get a function over S
with values in Z/r. A priori such a function is only locally constant. In fact we will
prove it is constant. The element of Z/r obtained by evaluating this function has the
following geometric meaning. The gerbe GCs

induced over any geometric curve Cs is
isomorphic to the gerbe of r-th root of some line bundle. Any two line bundles over
Cs of the same degree induce isomorphic root gerbes. Therefore we can associate to
the gerbe GCs

the degree of any line bundle inducing (a gerbe isomorphic to) it. If
Cs is reducible, we consider the total degree of such a line bundle. Moreover, we can
consider componentwise the degree mod r, since the r-th root gerbe of a line bundle
whose degree is a multiple of r is trivial. In Lemma 4.1 and Proposition 4.3 we describe
the restriction map of the gerbe G along stable maps to X. It turns out that once the
curve class β = f∗[C] is fixed, the total degree of any line bundle inducing a gerbe
isomorphic to the pullback of G to the geometric fibers of the domain curve is constant
over Mg,n(X,β) and only depends on β and on the class of G.
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Lemma 4.1. Let f : C → X be an object of Mg,n(X,β)(C). Let G → X be a gerbe of
class α ∈ H2(X,µr). Then

f∗G ≃ r
√
L/C

for any L ∈ PicC with deg L = αan ∩ β, where αan is the image of α in H2(Xan,Z/r)

and β is the image of β in H2(X
an,Z/r). Here (and henceforth) r

√
L/C denotes the

stack of r-th roots of the line bundle L.

Proof. Since we work over C we have a canonical isomorphism (Z/r)
X

∼−→ (µr)X .
Therefore from now on we will identify µr and its tensor powers with Z/r. Moreover,
because Z/r is a finite group, for any i ≥ 0 there are isomorphisms between étale and
complex cohomology ([29, III §3.3])

H i(X,Z/r) → H i(Xan,Z/r).(23)

δ 7→ δan

Since f is a proper map of proper schemes over C, a restriction map for the étale cohomol-
ogy f∗ : H i(X,Z/r) → H i(C,Z/r) is defined. A pushforward map f∗ : H i(C,Z/r) →
H i−2c(X,Z/r), where c := dimX − dimC, is also defined by duality. A class η ∈
H i(C,Z/r) is taken to the unique class f∗η such that the condition

TrC(f
∗ξ ∩ η) = TrX(ξ ∩ f∗η).

is satisfied for any ξ ∈ H2−i(X,Z/r). The operation Tr(f∗(−) ∩ 1), where 1 is the
generator of H0(C,Z/r), defines an element f∗1 of the dual space of H2(X,Z/r). Such
an element is the same for any map of class β. Indeed, by the isomorphism (23) we get

TrC(f
∗α ∩ 1) = TrCan(f∗an α

an ∩ [C]
P.D.

) = TrXan(αan ∩ βP.D.),(24)

where [C] and β are the images of the fundamental class [C], resp. of β , inH2(C
an,Z/r),

resp. in H2(X
an,Z/r), and P.D. means the Poincaré dual. 2

Remark 4.2. Note that when there is L ∈ PicX such that G ≃ r
√
L/X, by the func-

toriality of the r-th root construction, the restriction map takes α ∈ H2(X,µr) to the
class of the gerbe root of a line bundle of degree c1(L) ∩ β modulo r. Here β is seen as
usual as an element of HomZ(PicX,Z).

Proposition 4.3. Consider the universal diagram

C

π
��

f // X

Mg,n(X,β),

(25)

where C is the universal curve and f is the universal stable map. Let e : H2(C, (µr)C)→
H0(Mg,n(X,β), R

2π∗µr) be the edge map obtained from the Leray’s spectral sequence for
the sheaf (µr)C and the morphism π. Then the map

Tr (e(f∗⊔)) : H2(X,µr)→ (Z/r)
Mg,n(X,β)

determines a constant global section of (Z/r)
Mg,n(X,β)

. The evaluation of such a section

at a geometric point p gives the total degree of any line bundle whose r-th root gerbe is
isomorphic to the gerbe GCp

obtained by pulling back G to Cp. Moreover such a degree
depends linearly on β modulo r.
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Proof. Let (µr)C be the sheaf of r-th roots of unity over C. The higher direct image
sheaves Riπ∗(µr)C are constructible sheaves. From the low degree exact sequence asso-
ciated to the Leray’s spectral sequence for the sheaf (µr)C and the morphism π, we get
the following morphism of cohomology groups

H2(M g,n(X,β), µr)
H2(π∗)−→ H2(C,µr)

e−→ H0(M g,n(X,β), R
2π∗µr).(26)

Note that we denoted by µr both the sheaf (µr)C and π∗(µr)C ≃ (µr)Mg,n(X,β)
, where the

last isomorphism holds because families of prestable curves are geometrically connected.
Let α = [G] ∈ H2(X,µr). The pullback f∗α ∈ H2(C, (µr)C) induces via the edge map e

a global section of the constructible sheaf R2π∗(µr)C . Let p : SpecC → Mg,n(X,β) be
a geometric point. Let Cp be the pre-stable curve over p and ιp : Cp → C the inclusion.
Let αp be the image of f∗α along the map H2(ι∗p) : H

2(C, (µr)C)→ H2(Cp, (µr)Cp
). By

the universal property of the quotient (obviously H2(ι∗p) ◦H2(π∗) = 0) it follows from

sequence (26) that there is a factorization of H2(ι∗p) through the edge map e as follows

H2(C, (µr)C)

H2(ι∗p)
��

e // H0(M g,n(X,β), R
2π∗(µr)C)

H0(p∗)

��
H2(Cp, (µr)Cp

) ∼ // H0(p, (R2π∗(µr)Cp
)) H0(p, p∗(R2π∗(µr)C)).∼

oo

(27)

where the isomorphism on the right of the last row holds by proper base change theorem.
Therefore the evaluation of e(f∗α) at a geometric point p gives αp in p∗R2π∗(µr)C ≃
H2(Cp, (µr)Cp

). Since the universal curve is representable relative to its base, there is a

trace map constructed as in the case of schemes:

R2π∗(µr)C
∼← R2π!(µr)Csm

Tr−→ Z/r,(28)

where Csm ⊆ C is the smooth locus of the universal curve. The natural morphism
R2π!µr,Csm → R2π∗µr,C in (28) is an isomorphism because C\Csm is finite over the base.
A priori Tr(e(f∗α)) is only locally constant. However, by Lemma 4.1 we conlcude that
it is in fact constant, because its evaluation depends only on α and β. 2

Notation 4.4. In what follows for the sake of simplicity we will denote by α ∩ β the
element αan ∩ β ∈ Z/r computed in Lemma 4.1. This element characterizes the gerbe
GC pulled back to a prestable curve C of class β. In fact it is the total degree of any line
bundle over C whose r-th root is isomorphic to GC .

Definition 4.5. Given an identification G ≃ µr, a β-admissible vector is an n-tuple

~g = (exp(2π
√
−1m1

b1
), .., exp(2π

√
−1mn

bn
)) ∈ G×n, with bi|r and (mi, bi) = 1 for i = 1, .., n,

and such that
n∏

i=1

exp(
2π
√
−1mi

bi
) = exp(

2π
√
−1k
r

),

where k = α ∩ β mod r.

Lemma 4.6. Let C be a prestable curve of dual graph τ . Let G ≃ r
√
L/C for some

L ∈ PicC. Let C be a twisted curve of gerby graph τ̃ over C admitting a representable
morphism to G. By the universal property of root gerbes, there exists a pair (N, φ) such
that φ : N⊗r ≃ L. Let n = |Fτ̃ \ Eτ̃ |. Then

N ≃ ⊗ni=1T
mi
i ⊗M,(29)



GW THEORY OF BANDED GERBES OVER SCHEMES 15

where (mi, bi) = 1, the restriction of M to the marked points is trivial and for any
e ∈ Eτ̃ M|e is a faithful representation of Γe ≃ µre.
Proof. Let us consider the normalization ν : Cν → C. This is a representable morphism.
Let l = 1, ..,m be an index labeling the irreducible components of C. For any l there are
induced morphisms Cνl → Cl, with Cνl a smooth twisted curve. Let nl := |Fτ̃(vl) \Eτ̃ (vl)|,
kl := |En.l.τ̃ (vl)

|, sl := |Eloopτ̃(vl)
|, where τ̃(vl) is the gerby graph of the irreducible component

Cl. Then

N|Cν
l
≃ ⊗nl

i=1T
mi
i

⊗
⊗klj=1T

mj

j

⊗
⊗slt=1T

mt
t ⊗M ′(30)

where M ′ is pelled-back from the coarse moduli space Cνl . Note that there is a bijection
between marked points and separating nodes of Cl and of its normalization. On the
contrary, for any non-separating node of Cl there are two marked points in its preimage
in Cνl . To study representability of f νl : Cνl → G by [6, Lemma 4.4.3], it suffices to study
the homomorphism

(31) Aut(σi)→ Aut(f νl (σi)),

induced by f νl on stack points. Here σi can be either a stack point mapping to a smooth

point or to a node in Cl. By σi we mean precisely a morphism h̃i : SpecK → C from
an algebraically closed field K to Cνl with image in the special locus. By the root
construction description of Cνl (see e.g. [13, Example 2.7] and [3, Section 4.2]), the stack
point σi is equivalent to the data (hi,Ni, τi, φi), where hi : SpecK → C with image

pi, Ni is a line bundle over SpecK, φi : N⊗ri
i

∼→ h∗iO(pi), τi is a section of Ni such

that φi(τ
ri
i ) = h∗i si, hence τi = 0. The image f νl (σi) is given by h̃∗i ν

∗N and h̃∗iψ :

h̃∗i ν
∗N⊗r ≃ h̃∗i π

∗f∗L. Note that h̃∗i Ti is naturally isomorphic to Ni. An automorphism
ǫ ∈ Aut(σi) ≃ µri is mapped to ǫmi ∈ Aut(f νl (σi))) ≃ µr since N = π∗M ′ ⊗⊗n

i=1 T
mi
i .

We conclude by observing that for any σi in Cνl , the restriction of the normalization
map is an isomorphism with its image. Hence in particular for any e in Eτ̃ M|e is

isomorphic to T
mi
i over σi for some σi in Cν . Therefore M|e is a faithful representation

of Γe ≃ Aut(σi) because T
mi
i is. 2

Lemma 4.7. Let [f̃ : (C, {σi}) → G] ∈ Kg,n(G, β)
~g(C) with G ≃ r

√
L/X for some L in

PicX. Then f̃ is equivalent to a line bundle

N ≃ ⊗ni=1T
mi
i

⊗
M(32)

where M is an in Lemma 4.6 and for i = 1, .., n mi are determined by ~g.

Proof. By definition the morphism f̃ |σi : Bµri ≃ σi → G is equivalent to an injective
homomorphism

µri →֒ µr, exp(2π
√
−1/ri) 7→ gi.

The argument in the proof of Lemma 4.6, applied to the irreducible component of C
containing σi, shows that we may write

(33) gi = exp(2π
√
−1mi

bi
), with 0 ≤ mi < bi, and (mi, bi) = 1.

Furthermore, if L1/r is the universal r-th root of L over G, then f̃ |∗σiL1/r is the µbi-

representation on which the standard generator exp(2π
√
−1/bi) ∈ µbi acts by multipli-

cation by exp(2π
√
−1mi/bi). In other words

(34) ageσi(f̃
∗L1/r) =

mi

bi
.
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2

Lemma 4.8. Let [f̃ : C→ G] be an object of Kg,n(G, β)
~g(C) with underlying map between

coarse spaces being [f : C → X]. Then the orders of the isotropy groups of marked points
and separating nodes are determined by ~g.

Proof. The proof proceeds by induction on the number of irreducible components of
C. If C is irreducible the claim follows from Lemma 4.7. Let us prove the induction
step. Let C1 ⊂ C be an irreducible component containing only a separating node e. Let

C2 = C \ C1. Set β1 = f∗[C1]. Then f̃|C1 is equivalent to a line bundle N1 of degree k1/r,

where k1 = c1(L) ∩ β1. By Riemann-Roch for twisted curves

k1
r
−

n∑

i=1

agepi(N1) = agee(N1) +N =
k1
r
−

n1∑

i=1

mi

bi
=
me

be
+N(35)

where N ∈ N. Note that the preimage of e along the closed immersion i : C1 →֒ C is a
smooth point, that we denote again by e. By taking the fractional part of (35) we get

〈k1
r
−

n1∑

i=1

mi

bi
〉 = me

be
(me, be) = 1.(36)

We conclude by observing that the order of the node e is given by be. 2

Remark 4.9. We observe that unlike separating nodes, ~g does not determine the order
of non-separating nodes. In Lemma 4.8 we used Riemann-Roch componentwise in order
to determine the order of the inertia group of separating nodes. That works because
the preimage of a separating node along the inclusion of an irreducible compoents is a
smooth point. Of course this is false for a non-separating nodes. Riemann-Roch formula
for twisted curve does not take into account the ages of line bundles at nodes. This is a
consequence of the fact that twisted nodes are assumed to be balanced.

Definition 4.10. Let τ be a dual graph. Let ~g be an admissible vector. We say that a
dual graph τ̃ over τ is ~g-compatible if the following conditions are satisfied:

i) for all pi ∈ Fτ̃/Eτ̃ , we have γ(pi) = bi where bi is determined by ~g as in Definition
4.5.

ii) for all non-looping ej ∈ Eτ̃ , we have γ(ej) = sj where sj is determined by ~g as
in the proof of Lemma 4.8.

The definition of β-admissible vector is useful to characterize twisted stable maps to
arbitrary banded gerbes. Let G be a µr-banded gerbe. Let α ∈ H2(X,µr) be the class
of G. Let [f : C → X] be a geometric point in Mg,n(X,β). Let k be a lift to Z of
α ∩ β. Let us choose a degree k line bundle L over C and an isomorphism θ such that
θ : f∗G

∼−→ r
√
L/C. Let us consider the diagram

C

f̃

&&h //

(N,φ) ##H
HH

HH
HH

H GC
g //

��

�

G

��

α ⇒
r
√
L/C

θ−1

::uuuuuuuu

C
f

// X.

(37)
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We claim that the twisted stable map f̃ : C → G determines a β-admissible vector ~g
which can be computed as the β-admissible vector of (N, φ). Indeed it turns out that ~g
is well defined in the sense that it does not depend on the choice of L and θ. First we
know that (N, φ) determines some ~g as in Lemma 4.11. Let {pi} be the set of marked

points in C. Let us consider the restrictions h|pi and f̃ |pi . They define (up to the choice
of a section) objects of the cyclotomic inertia stacks IµGC and IµG. We recall that over
C the cyclotomic inertia stack is canonically isomorphic to the usual inertia stack. By
definition of banded gerbe, there are canonical isomorphisms IG ≃ G ×X (µr)X and
IGC ≃ GC ×C (µr)C , where (µr)C ≃ f−1(µr)X . Indeed GC is canonically banded by the
restriction of (µr)X to C ([18, IV 2 Corollary 2.2.4]). There is a 2-commutative diagram

I r
√
L/C

∼ //

��
⇒

r
√
L/C ×C (µr)C

(θ−1,id)

��
IGC

��
⇒

∼ // GC ×C (µr)C

(g,f∗)
��

IG
∼ // G×X (µr)X ,

(38)

where the arrows on the left are the morphisms between the inertia stacks induced by
θ−1 and g while f∗ denotes the morphism of schemes corresponding to the morphism
of sheaves (µr)X → f∗(µr)C . The restriction h|pi is an object of I r

√
L/C, therefore by

(38) and by the projection GC ×C (µr)C → (µr)C it defines an object of µr. By the

1-commutativity of the upper part of diagram (37), we see that f̃ |pi is associated to the
same element of µr. Once we choose θ and L we get a bijection between the possible
representable morphisms C→ GC and the representable morphisms C→ r

√
L/C. Since

θ is an isomorphism of banded gerbes, which is the same as to say that the upper square
of diagram (38) commutes, any two morphisms (N, φ), h corresponding to each other
via θ define the same n-tuple of elements of µr. Therefore we can associate to a twisted

stable map [f̃ : C → G] over [f : C → X] the n-tuple of elements of µr defined by the

morphism C → r
√
L/C associated to f̃ by any choice of θ and L. Such an n-tuple by

definition is a β-admissible vector. We will sometimes call a twisted stable map with
β-admissible vector ~g a twisted stable map of contact type ~g.

The above discussion allows to state the following Lemma.

Lemma 4.11. Let G ≃ G be a µr-banded gerbe. Let [f : C → X] be an object of
Mg,n(X,β)(C). Let C → C be a twisted curve over C such that the order of all of its
special points divides r. Then a representable morphism C→ f∗G lifting f is equivalent
to a pair (N, φ), where N ∈ PicC and φ : Nr → f∗L satisfy the following conditions

(1) φ : Nr ∼−→ f∗L;
(2) N ≃ ⊗ni=1T

mi
i ⊗M, where Ti are the tautological line bundles associated to the

marked points and M ∈ PicC such that, for any marked point pi, M|pi ≃ Opi;

(3) ~g ∈ µ×nr , defined as the n-tuple (g1, .., gn) such that gi = exp(2π
√
−1mi
bi

), is β-
admissible;

(4) for any twisted node e ∈ C, M|e is a vector bundle carrying a faithful represen-
tation of the isotropy group of e.
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Moreover if [f̃ : C→ G] is in Kg,n(G, β)
~g, then the order of the inertia groups of marked

points and of separating nodes is determined. In oter words, the dual graph τ̃ of C is
~g-compatible over the dual graph τ of its coarse moduli space C.

Proof. It follows from Lemmas 4.6, 4.8 and from the discussion starting on page 16 2

Proposition 4.12. Let G → X be a µr-banded gerbe. Let [f : (C, p1, ..., pn) → X] be
an object of Mg,n(X,β)(C). Let τ be the dual graph of C. Let ~g = (g1, ..., gn) ∈ µ×nr
a β-admissible vector. Let τ̃ be a ~g-compatible gerby graph such that for any e ∈ Eloopτ̃
γ(e)|r. Let C be the twisted curve over C with dual gerby graph τ̃ . Then C admits twisted
stable maps to G with associated β-admissible vector ~g lifting [f : C → X]. Moreover,
the number of non isomorphic twisted stable maps is

N(τ̃ ) = r2g−b1(τ) ×
|Eτ̃ |∏

l=1

φ(γ(el))(39)

where φ( ) denotes the Euler totient function.

Proof. We sketch the proof, details are left to the reader. We fix a line bundle L
in PicC such that f∗G ≃ r

√
L/C. Let C be a twisted curve as above. Then a twisted

stable map C → G lifting f corresponds to a pair (N, φ) such that φ : N⊗r ≃ L.
By Lemma 4.11 we know that the admissible vector ~g fixes the restriction of N to
⊕pi∈Fτ̃/Eτ̃

Bµbi
⊕⊕ej∈En.l.

τ̃
Bµrj . By definition of β-admissible vector and by discussion

on page 11 it is possible to lift this image to a line bundle N′ which is an r-th root of
L and it is trivial when restricted to the complement of marked points and separating
nodes. In order to get a line bundle N corresponding to a representable morphism (cfr
Lemma 4.6) we need to tensor N′ with an r-torsion line bundle whose restriction to
non-separating nodes yields a faithful representation of their inertia groups and which is
trivial elsewhere. Such a line bundle can be obtained as a tensor product of line bundles
Ql satisfying Property 3.15. The condition on the faithfulness of the representations of

the inertia groups of the nodes is equivalent to the requirement for each el ∈ Eloopτ̃ the
associated line bundle Ql appears raised to a tensor power coprime with γ(el) (see again
Lemma 4.6). Moreover, N can be further tensored by r-torsion line bundles pulled-back
from C to obtain non-isomorphic r-th roots of L. The number of non-isomorphic (N, φ)
yielding non-isomorphic twisted stable maps to G is computed as

N(τ̃) = r2g−b1(τ) ×
|Eτ̃ |∏

l=1

φ(γ(el)),(40)

where φ(−) denotes the Euler totient function, whose evaluation on n ∈ N gives the
number of integers less than n and coprime with n. 2

5. The structure morphism p

As sketched in the introduction, in order to compare orbifold Gromov-Witten invari-
ants of G with Gromov-Witten invariants of X we need to prove a push-forward formula
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for the virtual fundamental class of Kg,n(G, β). We consider the following diagram:

Kg,n(G, β)
~g

%%KK
KK

KK
KK

KK

t //

p

&&
Pg,n

q′ //

��
�

Mg,n(X,β)

��
Mtw

g,n q
// Mg,n.

(41)

Here the morphism q maps a twisted curve to the underlying prestable curve. The
right vertical arrow is the forgetful morphism taking a stable map [f : C → X] to the
prestable curve C. The stack Pg,n is defined as the fiber product. There is a natural

morphism p : Kg,n(G, β)
~g →M g,n(X,β) associating to a twisted stable map [f̃ : C→ G]

the underlying stable map [f : C → X] between the coarse moduli spaces. Just like
the case of Mg,n(X,β) there is a natural forgetful morphism Kg,n(G, β)

~g →Mtw
g,n taking

a twisted stable map [f̃ : C → G] to the twisted curve C. The square defined by the
forgetful morphisms and the morphisms q and q′ is commutative. Therefore by the
universal property of the fiber product there is an induced morphism t.

We will prove that the pushforward map

p∗ : H∗(Kg,n(G, β)
~g,Q)→ H∗(M g,n(X,β),Q)

takes [Kg,n(G, β)
~g ]vir to a multiple of [Mg,n(X,β)]

vir , see Theorem 6.8 below. In order
to prove this push-forward formula we will need the following Proposition, which says
that the morphism t in (41) is étale.

Proposition 5.1. The morphism t in diagram (41) is étale.

Proof. Since all our stacks are locally noetherian locally of finite type, to prove that a
morphism is étale we can use the infinitesimal lifting criterion and check it over square
zero extensions of Artinian local rings ([19, §17]). Let

1→ I → B → A→ 1(42)

be a square zero extension of local Artinian rings. Assume that we have the following
2-commutative diagram

SpecA
_�

��

//

⇒

Kg,n(G, β)

��
SpecB // Pg,n.

(43)

This is the datum of an object (CB , fB : CB → X) of Pg,n(B), an object (CA, f̃A :

CA → G) of Kg,n(G, β)(A) and a pair of isomorphisms ϕ ∈ Mor Mg,n(X,β)(A) and
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ψ ∈ Mor Mg,n(A) making the following diagram commutative

CA
//

��

∼
ψ // CB|A

��
CA ∼

ϕ //

fA
��

CB |A
fB|A
��

X
id

// X.

(44)

Here fA denotes the morphism induced by f̃A by passing to the coarse moduli spaces.
The morphism t is étale if and only if there exists a unique (up to isomorphism) arrow
SpecB → Kg,n(G, β) making the following diagram 2-commute

SpecA
_�

��

// Kg,n(G, β)

��
SpecB

88r
r

r
r

r

// Pg,n.

(45)

Let us start by observing that the pullback of G to CB is a root gerbe by Lemma 3.16.
Choose a line bundle LB over CB and an isomorphism ξB such that ξB : f∗BG

∼−→
r
√
LB/CB . Let ι : CB |A →֒ CB denote the inclusion. There is a composite isomorphism

f∗AG
∼−→ ϕ∗ι∗f∗BG

∼−−−−→
ϕ∗ι∗ξB

r
√
ϕ∗ι∗LB/CA,(46)

where the first arrow is canonical. Define LA := ϕ∗ι∗LB . According to this definition

and isomorphism (46), f̃A corresponds to a pair (NA, φA) where NA is a line bundle

over CA and φA is an isomorphism such that φA : Nr
A

∼−→ LA. To give an extension

of f̃A to B is equivalent to giving an extension (NB , φB) of the pair (NA, φA) and an
isomorphism φB lifting φA such that φB : N⊗r

B ≃ LB . By flatness we have an exact
sequence

1→ J → OCB
→ OCA

→ 1,(47)

where J = I ⊗B OCB
is a square zero ideal in OCB

. By restricting to the subsheaves of
invertible elements and by taking the long exact cohomology sequence we get

1→ H1(CA,OCA
)⊗ J → PicCB → PicCA → 1,(48)

where the last arrow is surjective because of dimensional reasons. Exactness on the left is
due to the surjection H0(O∗

B)→ H0(O∗
A). Choose a line bundle NB lifting NA. Let SB =

N
⊗r
B ⊗L∨

B . Then SB |A ≃ O, hence SB belongs to the subgroupH1(CA,OCA
)⊗J . Since J is

a square zero ideal, it is not hard to see that H1(CA,OCA
)⊗J is divisible (e.g. by working

with cocycles). We can therefore assume that N
⊗r
B ≃ LB . We need to show that any

two line bundles N′
B , N

′′
B lifting NA and satisfying the above condition are isomorphic.

Indeed by assumption N′
B ⊗N′′∨

B is an r-torsion line bundle in H1(CA,OCA
)⊗ J . Again

by using that J is square zero one can see that this group does not contain torsion.
Moreover any two choices of (NB , φB) lifting (NA, φA) and such that φB : N⊗r

B
∼−→ LB

define two isomorphic morphisms to r
√
LB/CB . 2
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Let K := Kg,n(G, β)
~g and P := Pg,n. We observe that the relative inertia of the

morphism t : Kg,n(G, β)
~g → Pg,n, defined as

I(K/P ) = K×K×PK K,

contains as a subsheaf the étale sheaf (µr)K. Indeed, the automorphisms group of an
object [f : CT → G] over T leaving CT fixed is f∗(µr)G ≃ (µr)CT

bacause G is a µr-banded
gerbe. Twisted curves are geometrically connected, therefore Γ(CT , µr) = Γ(T, µr).
Whenever the the inertia of a finitely presented stack X contains an étale subgroup
stack G there exists a construction called rigidification [4], which yields a canonical
morphism X→ X(((G such that any morphism f : X→ Y whose relative inertia I(X/Y)
contains G factors through X→ X(((G. Moreover X→ X(((G is an étale gerbe. In our case
the rigidification of K along µr is isomorphic to the relative coarse moduli space [5] for
the morphism t. The relative coarse moduli space construction is recalled in Appendix
A. By the above arguments we get the following

Lemma 5.2. The morphism t : Kg,n(G, β)
~g → Pg,n factors through

Kg,n(G, β)
~g → Kg,n(G, β)

~g((( µr → Pg,n,(49)

where the first arrow is a µr-banded gerbe and the second arrow is representable and
étale.

Proof. The second arrow is representable because the rigidification coincides in this
case with the relative coarse moduli space. The second arrow is also étale because the
first arrow is étale and surjective, and being étale for a morphism is a property étale
local on the source. 2

6. Push-forward formula

Consider again diagram (41). In this Section we prove the pushforward formula,
Theorem 6.8, which states that the pushforward along p of [Kg,n(G, β)

~g ]vir is a multiple

of [M g,n(X,β)]
vir in H∗(Mg,n(X,β),Q). We will show that the multiplicative factor is

given by r2g−1. The first step in the proof is to show that the natural perfect relative
obstruction theory for Kg,n(G, β) is quasi-isomorphic to the pull-back of the natural

perfect relative obstruction theory for Mg,n(X,β). We refer the reader to Section 2.2
for definitions and notations.

6.1. Comparison of Obstruction Theories.

Lemma 6.1. Let s : Kg,n(G, β) → Mg,n(X,β) be the natural morphism. There is a
natural isomorphism of objects in DCoh(Kg,n(G, β))

s∗E• ∼−→ Ẽ•.

Proof. We will prove the statement for Ẽ∨• = Rπ̃∗f̃∗TG and E∨• = Rπ∗f∗TX . Con-
sider the complex Ls∗Rπ∗f∗TX inDcoh(Kg,n(G, β)). It suffices to show that Ls∗Rπ∗f∗TX ≃
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Rπ̃∗f̃∗TG. For this we consider the diagram

C
ρ

$$I
IIIIIIIII

π̃

��6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6

**VVVVVVVVVVVVVVVVVVVVVVVVVVV
f̃ // G

ǫ

%%K
KKKKKKKKKKK

p∗C

π′

��

s′ // C

π
��

f // X

Kg,n(G, β)
s // Mg,n(X,β).

Observe that ǫ∗TX ≃ TG. Also we have Rρ∗Lρ∗ ≃ Id because the map ρ is the relative
coarse moduli space for the map π̃. The arrow s is flat, because it is the composition of
a flat morphism with an étale morphism. The arrow π is flat because it is the structure
morphism of the universal curve. Moreover the square in the above diagram is cartesian,
hence we calculate (using [27, Proposition 13.1.9])

Ls∗Rπ∗f
∗TX ≃ Rπ′∗Lp′∗f∗TX

≃ Rπ′∗Rρ∗Lρ∗Lp′∗f∗TX
≃ Rπ′∗Rρ∗f̃∗ǫ∗TX
≃ Rπ′∗Rρ∗f̃∗TG
≃ Rπ̃∗f̃∗TG.

Since s∗ is exact, we write s∗ for Ls∗. 2

Lemma 6.2. The diagram of morphisms in Dcoh(Kg,n(G, β))

s∗E• //

��

s∗L•
Mg,n(X,β)/Mg,n

��

Ẽ• // L•
Kg,n(G,β)/Mtw

g,n

(50)

is commutative.

Proof. The obstruction theories above are determined by adjunction from the mor-
phisms obtained by composing the arrows in the following diagram

s∗f∗L•
X

//

��

f̃∗LG

��
s∗LC //

��

L•
C

��
s∗L•

C/C′ // L•
C/C′

s∗π∗L•LMg,n(X,β)/Mg,n

OO

// π̃∗L•
Kg,n(G,β)/Mtw

g,n

OO

(51)

Each arrow in diagram (51) is commutative since every arrow is part of a transitivity
exact sequence involving cotangent complexes. Commutativity follows from functorial
properties of transitivity exact sequences (cfr. [24, 2.1.5]). 2
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Corollary 6.3. The induced morphism s∗E• → LKg,n(G,β)/Mtw
g,n

coincides with the orb-

ifold GW obstruction theory Ẽ• → LKg,n(G,β)/Mtw
g,n

.

Corollary 6.4. For any β-admissibe vector ~g, the induced morphism s∗E• → LKg,n(G,β)~g/Mtw
g,n

coincides with the orbifold GW obstruction theory Ẽ• → LKg,n(G,β)~g/Mtw
g,n

.

Proof. Kg,n(G, β)
~g →֒ Kg,n(G, β) is an open immersion. 2

6.2. Proof of the pushforward formula. By Corollary 6.4 the natural perfect relative

obstruction theory Ẽ• over Kg,n(G, β)
~g is quasi-isomorphic to the pull-back of the natural

perfect relative obstruction theory E• over Mg,n(X,β). We know that such obstruction
theories admit global resolutions. We choose a length 2 complex of vector bundles F •

quasi isomorphic to E•. Its pullback to Kg,n(G, β)
~g, that we denote by F̃ •, is a global

resolution of Ẽ•. We denote the dual complexes by F̃• and F•. We have a cartesian
diagram (put K = Kg,n(G, β)

~g, M =Mg,n(X,β))

C̃� _

��

p′′ //

�

C� _

��
F̃1

π̃

��
�

p′
// F1

π

��
K p

// M

(52)

where C̃ = F̃1 ×[F̃1/[F̃0]
CK/Mtw and C = F1 ×[F1/F0] CM/M. We observe that F̃1 and F1

are vector bundles. Hence the intersections with the zero sections provide isomorphisms

0!
K

: A∗(F̃1)Q
∼−→ A∗(K)Q and 0!

M
: A∗(F1)Q

∼−→ A∗(M )Q. By compatibility of Gysin

morphisms with proper pushforward we get that for any α ∈ A∗(F̃1)Q

p∗ 0!K α = 0!
M
p′∗ α.(53)

We argue in the spirit of [15] that p∗[K]vir = d[M ]vir for some d ∈ Q if and only if

p′∗[C̃] = d[C] ∈ A∗(F1)Q.(54)

We will show that C̃ is the pullback of C and that

p′∗[C̃] = p′∗p
′∗[C] = r2g−1[C] ∈ A∗(F1)Q.(55)

Proposition 6.5. Consider diagram (41). The intrinsic normal cone CK/Mtw is isomor-

phic to the pullback of the relative instrinsic normal cone CM/M, where K = Kg,n(G, β)
~g ,

M =Mg,n(X,β), M
tw = Mtw

g,n and M = Mg,n.

Proof. Note first that the relative instrinsic normal cone CPg,n/Mtw is isomorphic to the
pullback of CM/M because q is flat. This follows from [11, Proposition 7.2 ]. We claim

that CK/Mtw is isomorphic to t∗CPg,n/Mtw . By the functorial properties of the intrinsic
normal cone there is a natural morphism

CK/Mtw → t∗CPg,n/Mtw .(56)
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Being an isomorphism is a local property. We will show that such a morphism is an
isomorphism in local charts. Any local embedding of K over Mtw

g,n is also a local embed-

ding for Pg,n over Mtw
g,n because t is étale. Let (U,M) such a local embedding. Restrict

the natural morphism (56) to U . By the local description of the intrinsic relative normal
cone we get

CK/Mtw |U //

∼
��

t∗CPg,n/Mtw |U
∼
��

[CU/TM/Mtw ] ∼ // [CU/TM/Mtw ].

(57)

2

In order to prove the equality in (55) we will show that p, hence p′ is of pure degree.
We will use the facts recalled in Appendix A. We make a few preliminary remarks. The

morphism t : Kg,n(G, β)
~g → P~gg,n is étale by Proposition 5.1. The morphism g : Mtw

g,n →
Mg,n is flat by [33]. Moreover p : Kg,n(G, β)

~g → Mg,n(X,β) is proper because it is a
morphism between proper stacks and is quasi finite because e.g. it is a composition of
two quasi finite morphisms. Indeed, the image of Kg,n(G, β)

~g in Mtw
g,n factors through

the open substack where the orders of isotropy groups of points in the boundary divisors
divide r. Such an open substack is of finite type and quasi-finite over Mg,n. Therefore q

′

is also quasi-finite. The morphism t is quasi-finite because it is étale. Finally, p = q′ ◦ t,
hence p is quasi-finite.

Proposition 6.6. With the notations in diagram (52)

p′∗[C̃] = r2g−1[C].(58)

Proof. Let us denote by Cr the reduced substack of an irreducible component of C.

Let C̃ ′ = p−1(Cr) and let C̃r be the reduced substack of C̃ and C̃ ′. Let m(C), m(C̃ ′)
denote the geometric multiplicities. Equation (58) can be written as

p′∗p
′∗[C] = m(C)m(C̃ ′)p′∗[C̃

r] = m(C)m(C̃ ′)deg(C̃r/Cr)[Cr]

= deg(C̃ ′/Cr)[C].(59)

We compute the degree of C̃ ′ over Cr by using the characterization given in Appendix
A. Assume that Cr factors through an integral substack M(τ)r of Mg,n(X,β) such
that its generic geometric points correspond to stable maps with domain curve of dual
graph τ . Let K(τ) be the preimage of M(τ)r along p. The dimension of the ring K(K)
over K(M(τ)r), [K(K) : K(M (τ)r)], is equal to the number of points weighted with
multiplicity in a generic geometric fiber of p : K(τ) → M(τ)red, which is the relative

coarse moduli space of p : K(τ) → M(τ)red (see Appendix A). Let Eloopτ ⊂ Eτ be the
subset of looping edges. Let P (τ) = Pg,n×Mg,n(X,β)

M (τ)red. Let x : SpecC→M(τ)red

be a generic geometric point. Let P (τ)(x) be the fiber of P (τ)→M(τ)red over x. Then

K(τ)×M(τ)red SpecC ≃ K(τ)×P (τ) P (τ)(x).(60)

Let A(τ) be the set of all ~g-compatible gerby graphs over τ . For any τ̃ in A(τ) and for
any i = 1, .., |Eτ̃ | let si(τ̃) = γ(ei), ei ∈ Eτ̃ . Then

P (τ)(x) =
∐

τ̃∈A(τ)
[SpecC[x1, ..., xr]/(x

si(τ̃ )
i )/µ(τ̃ )] :=

∐

τ̃∈A(τ)
W (τ̃),(61)
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where µ(τ̃) = µs1(τ̃) × ... × µsr(τ̃) and (ǫ1, .., ǫr) in µ(τ̃) acts on (x1, .., xr) taking it to
(ǫ1x1, .., ǫrxr). Let J(τ) ⊂ A(τ) be the set of ~g-compatible gerby graphs τ̃ over τ such
that for any ei ∈ Eτ̃ , γ(ei) divides r. Let I(τ̃) be the number of non-isomorphic line
bundles over a twisted curve of gerby dual graph τ̃ . For any τ̃ ∈ J(τ̃) there is a cartesian
diagram

∐
l(τ̃)(Bµr)l(τ̃ ) //

��

∐
l(τ̃) Z(τ̃)l(τ̃)

��

// K(τ)(x)

��∐
l(τ̃)W (τ̃)l(τ̃)

��

// K(τ)((( µr(x)

��
SpecC // W (τ̃) // P (τ)(x)

(62)

where 1 ≤ l(τ̃) ≤ I(τ̃), (Bµr)l(τ̃ ) = (Bµr), Z(τ̃)l(τ̃ ) = Z(τ̃) and W (τ̃)l(τ̃ ) = W (τ̃). By
Lemma 5.2 the upper vertical arrows are the structure morphisms of a µr-gerbe and
the lower vertical arrows are étale and representable. In our case, as can be checked by
using groupoid presentations5, the lower central arrow is a trivial cover. The upper left
corner is a disjoint union of I(τ̃ ) trivial gerbes. We recall that I(τ̃) is the number of
non isomorphic r-torsion line bundles over a twisted curve of dual graph τ̃ associated to
a fixed ~g and with fibers carrying faithful representations of the isotropy groups of the
nodes. Connected components ofK(τ)(x)×P (τ)(x)W (τ̃) are labeled by the corresponding
connected component in

∐
l(τ̃)(Bµr)l(τ̃ ). Note that for any τ̃ the (relative) coarse moduli

space of W (τ̃) (over SpecC) is SpecC and for any τ̃ and any l(τ̃) the same is true for
Z(τ̃)l(τ̃ ). Therefore the following diagram is cartesian

∐
τ̃∈J(τ)

∐
l(τ̃) Z(τ̃)l(τ̃)

πx
��

�

// K(τ)

π

��∐
τ̃∈J(τ)

∐
l(τ̃)(SpecC)l(τ̃)

px
��

//

�

K(τ)

p

��
SpecC

x
// M(τ)r

(63)

Here p : K → M(τ)r is the relative coarse moduli space for p and px is the relative
coarse moduli space of px ◦πx because the formation of the relative coarse moduli space
commutes with arbitrary base change for tame stacks. The number of points in the fiber
of px is computed in Lemma 6.7 below. It is equal to r2g and it does not depend on τ .
According to the degree formula in Appendix A, in order to compute the degree of p we
need to multiply by the number δ(Kg,n(G, β))/δ(M g,n(X,β)) in case there are non trivial
generic stabilizers. Note that for any T → Kg,n(G, β) corresponding to an object [C→ G]
over [C → X], there is a surjection of sheaves of groups AutT (C→ G)→ AutT (C → X).
Hence δ(Kg,n(G, β))/δ(M g,n(X,β)) is equal to the degree of the relative inertia I(K/M ).

This is in turn equal to deg I(K/K) = r, because K→ K is a µr-gerbe. By putting all
together we get

deg p = r2g−1.(64)

5Artinian local rings with residue field C admit only trivial étale covers
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2

Lemma 6.7. Consider the morphism p : K(τ)→M(τ) defined in Proposition 6.6. Let
x : SpecC→M(τ)r be a generic geometric point. Then the number of geometric points
of K(τ) over x is equal to r2g.

Proof. We first observe that geometric points of K(τ) are in bijection with geometric
points of K(τ). Therefore we have to count the number of (non isomorphic) twisted
curves C over C with ~g-compatible gerby dual graph over τ admitting twisted stable maps
to G. Moreover, for any such C we have to count the number of non-isomorphic twisted
stable maps to G. Note first that a twisted curve over SpecC is determined by its coarse
moduli space and by the order of the isotropy groups of its special points6. Let us start by
computing the number of ~g-compatible gerby graphs τ̃ over τ such that the corresponding
C admits a twisted stable map to G. By Proposition 4.12 we know that any twisted curve

with ~g-compatible τ̃ such that for any ei ∈ Eloopτ̃ γ(ei) divides r admits twisted stable

maps to G. Choose a line bundle L such that f∗G ≃ r
√
L/C. We fix a set of line bundles

satisfying the properties listed in Property 3.15 and we use the same notations we used
there. After making this choice, the admissible vector ~g determines a line bundle S over

C such that degL⊗ S−r is multiple of r. Explicitly, S ≃ ⊗ni=1T
mi
i

⊗⊗n.l.j∈Eτ̃
Q
tj
j where for

all ei ∈ Fτ̃ \ Eτ̃ , (mi, γ(ei)) = 1 and for all ej ∈ Eτ̃ \ Eloopτ̃ , (γ(ej), tj) = 1. Any line
bundle defined as

N~s = S⊗ R~s = S⊗⊗el∈Eloop
τ̃ Q

sl
l , (sl, γ(el)) = 1 ∀el ∈ Eloopτ̃(65)

corresponds to a twisted stable map C→ r
√
L/C ≃ f∗G. Indeed by definition R⊗r

~s ≃ OC.
The condition (sl, γ(el)) = 1 as usual implies the representability of the corresponding
morphism. By tensoring S with different possible choices of line bundles of the form R~s
we get different isomorphism classes of twisted stable maps. The number of choices of
R~s is computed by

N(r1, .., rk) =

k∏

l=1

φ(rl),(66)

where k = |Eloopτ̃ |, rl = γ(el) for any el ∈ Eloopτ̃ and φ(−) is the Euler totient function7.
Moreover, by tensoring any N~s with different possible choices of r-torsion line bundles
in PicC we get r2g−b1(τ) non isomorphic twisted stable maps. Finally, in order to get
the total number of geometric points over x we have to sum over all τ̃ ∈ J(τ̃ ) with J(τ̃)
defined in Proposition 6.6. This is the same as summing the numbers N(r1, .., rn) over

all possible n-tuples (r1, .., rn) of integers dividing r. Let |Eloopτ | = k. By the properties
of Euler totient function we get

Ñ =
∑

r1,..,rk|r
N(r1, .., rk) =

∑

r1,..,rk|r

k∏

l=1

φ(rl) = rk = rb1(τ).(67)

6This can be understood e.g. by considering the characterization of twisted curves in terms of log-
twisted curves given in [33] and by observing that the only isomorphism class of locally free log structure
over SpecC corresponds to a monoid of the form Nr, where r ∈ N is equal to the number of nodes of
the coarse moduli space C

7For any n ∈ N, the Euler totient function φ(n) is defined to be the number of integers less than n
and coprime with n. The following property holds:

∑
d|n φ(d) = n.



GW THEORY OF BANDED GERBES OVER SCHEMES 27

Finally, we get the total number of points over x as

Ntot = Ñ × r2g−b1(τ) = r2g.(68)

Note that this number does not depend on the dual graph τ . 2

Combining the above discussions, we get the desired pushforward formula.

Theorem 6.8. Let ~g be a β-admissible vector. Let p : Kg,n(G, β)
~g →Mg,n(X,β) be the

morphism defined in diagram (41). Then

p∗[Kg,n(G, β)
~g ]vir = r2g−1[Mg,n(X,β)]

vir ∈ H∗(M g,n(X,β),Q).(69)

Proof. It follows from arguments at the beginning of Section 6.2 and from Proposition
6.6. 2

7. Orbifold Gromov-Witten theory of banded gerbes

In this Section we examine the Gromov-Witten invariants of the gerbe G using results
in previous sections. In particular in Theorem 7.3 we prove the decomposition conjecture
for G.

7.1. Orbifold Gromov-Witten invariants. Let

ǫ : G→ X

be a G-banded gerbe with G a finite abelian group over X. Let α ∈ H2(X,G) be the
isomorphism class of G (as a G-banded gerbe). Since the gerbe is G-banded there is a
canonical isomorphism

IG = G×X G ≃
∐

g∈G
Gg,(70)

where Gg is a root gerbe isomorphic to G. Let ǫg : Gg → X be the induced morphism.
On each component there is an isomorphism between the rational cohomology groups

ǫ∗g : H
∗(X,Q)

≃−→ H∗(Gg,Q).

To simplify notation, from now on we assume G = µr for some r ∈ N. The discussion
for the general G requires only notational changes. The genus 0 case is spelled out
explicitly in [8, Appendix A]. The higher genus case is similar.

Let ~g = (g1, ..., gn) be a β-admissible vector. There are evaluation maps

evi : Kg,n(G, β)
~g → Ī(G)gi ,

where Ī(G)gi is a component of the rigidified inertia stack Ī(G) = ∪g∈µr Ī(G)g. Although
the evaluation maps evi do not take values in IG, as explained in [3], Section 6.1.3, one
can still define a pull-back map at cohomology level,

ev∗i : H
∗(Ggi ,Q)→ H∗(Kg,n(G, β)

~g ,Q).

Given δi ∈ H∗(Ggi ,Q) for 1 ≤ i ≤ n and integers ki ≥ 0, 1 ≤ i ≤ n, one can define
descendant orbifold Gromov-Witten invariants

〈δ1ψ̄k11 , · · · , δnψ̄knn 〉Gg,n,β :=

∫

[Kg,n(G,β)~g ]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i ,

where ψi are the pullback of the first Chern classes of the tautological line bundles over
Mg,n(X,β) (which by abuse of notation we also denote by ψ̄i).
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For classes δi ∈ H∗(Ggi ,Q), set δi = (ǫ∗gi)
−1(δi). Descendant Gromov-Witten in-

variants 〈δ1ψ̄k11 , · · · , δnψ̄knn 〉X0,n,β of X are similarly defined. Theorem 6.8 implies the
following comparison result.

Theorem 7.1.

〈δ1ψ̄k11 , ..., δnψ̄knn 〉Gg,n,β = r2g−1〈δ1ψ̄k11 , · · · , δnψ̄knn 〉Xg,n,β.
Moreover, if ~g is not admissible, then the Gromov-Witten invariants of G vanish.

Proof. Denote by evi :Mg,n(X,β)→ X the i-th evaluation map. Using the definition

of ev∗i one can check that ev∗i (δi) = p∗ev∗i (δi). Note also that p∗ψ̄i = ψ̄i. Thus using
Theorem 6.8 we have

〈δ1ψ̄k11 , ..., δnψ̄knn 〉Gg,n,β =

∫

[Kg,n(G,β)~g ]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i

=

∫

[Kg,n(G,β)~g ]vir

n∏

i=1

p∗ev∗i (δi)ψ̄
ki
i

=

∫

[Kg,n(G,β)~g ]vir

n∏

i=1

p∗(ev∗i (δi)ψ̄
ki
i )

= r2g−1

∫

[Mg,n(X,β)]vir

n∏

i=1

ev∗i (δi)ψ̄
ki
i

= r2g−1〈δ1ψ̄k11 , · · · , δnψ̄knn 〉Xg,n,β.
2

7.2. Decomposition of Gromov Witten theory. In the following we use complex
numbers C as coefficients for the cohomology. For α ∈ H∗(X,C) and an irreducible
representation ρ of G, we define

αρ :=
1

r

∑

g∈G
χρ(g

−1)ǫ∗g(α),

where χρ is the character of ρ. The map (α, ρ) 7→ αρ clearly defines an additive isomor-
phism

(71)
⊕

[ρ]∈Ĝ

H∗(X)[ρ] ≃ H∗(IG,C),

where Ĝ is the set of isomorphism classes of irreducible representations of G, and for

[ρ] ∈ Ĝ we define H∗(X)[ρ] := H∗(X,C).

Theorem 7.1 together with orthogonality relations of characters of G implies the
following

Theorem 7.2. Given α1, ..., αn ∈ H∗(X,Q) and integers k1, ..., kn ≥ 0, we have

〈α1ρ1 ψ̄
k1
1 , ..., αnρnψ̄

kn
n 〉Gg,n,β

=

{
r2g−2〈α1ψ̄

k1
1 , · · · , αnψ̄knn 〉Xg,n,βχρ(exp(

−2π
√
−1(α∩β)
r )) if ρ1 = ρ2 = ... = ρn =: ρ,

0 otherwise .

(Recall that α ∈ H2(X,µr) is the class of the gerbe G→ X.)
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Proof. By our definition we have

〈α1ρ1ψ̄
k1
1 , ..., αnρnψ̄

kn
n 〉Gg,n,β

=r2g−1
∑

g1,...,gn∈µr

n∏

i=1

χρi(g
−1
i )〈

n∏

i=1

ǫ∗gi(αi)ψ̄
ki
i 〉Gg,n,β.

The term associated to ~g := (g1, ..., gn) in the above sum vanishes unless ~g is an ad-

missible vector. This implies that
∏n
i=1 gi = exp(2π

√
−1(α∩β)
r ). We rewrite this as

g−1
n = exp(−2π

√
−1(α∩β)
r )

∏n−1
i=1 gi. Substitute this into above equation and use Theorem

7.1 to get

〈α1ρ1ψ̄
k1
1 , ..., αnρnψ̄

kn
n 〉Gg,n,β

=r2g−1
∑

g1,...,gn−1∈µr
χρn(exp(

−2π
√
−1(α ∩ β)
r

))

(
n−1∏

i=1

χρi(g
−1
i )χρn(gi)

)
1

r
〈
n∏

i=1

αiψ̄
ki
i 〉Xg,n,β.

Applying the orthogonality condition

1

r

∑

g∈µr
χρ(g

−1)χρ′(g) = δρ,ρ′ ,

we find

〈α1ρ1ψ̄
k1
1 , ..., αnρnψ̄

kn
n 〉Gg,n,β

=
1

r
χρn(exp(

−2π
√
−1(α ∩ β)
r

))

(
n−1∏

i=1

δρi,ρn

)
r2g−1〈

n∏

i=1

αiψ̄
ki
i 〉Xg,n,β.

The result follows. 2

We now reformulate this in terms of generating functions. Let

{φi | 1 ≤ i ≤ rankH∗(X,C)} ⊂ H∗(X,C)

be an additive basis. According to the discussion above, the set

{φiρ | 1 ≤ i ≤ rankH∗(X,C)}, [ρ] ∈ Ĝ
is an additive basis of H∗(IG,C). Recall that the genus g descendant potential of G is
defined to be

F
g
G
({tiρ,j}1≤i≤rankH∗(X,C),ρ∈Ĝ,j≥0;Q) :=

∑
n≥0,β∈H2(X,Z)

i1,...,in;ρ1,...,ρn;j1,...,jn

Qβ

n!

∏n
k=1 tikρk,jk〈

∏n
k=1 φikρk ψ̄

jk
k 〉Gg,n,β.(72)

The descendant potential Fg
G
is a formal power series in variables tiρ,j, 1 ≤ i ≤ rankH∗(X,C), ρ ∈

Ĝ, j ≥ 0 with coefficients in the Novikov ring C[[NE(X)]], where NE(X) is the Mori
cone of the coarse moduli space of G. Here Qβ are formal variables labeled by classes
β ∈ NE(X). See e.g. [38] for more discussion on descendant potentials for orbifold
Gromov-Witten theory.

Similarly the genus g descendant potential of X is defined to be

(73) F
g
X({ti,j}1≤i≤rankH∗(X,C),j≥0;Q) :=

∑

n≥0,β∈H2(X,Z)

i1,...,in;j1,...,jn

Qβ

n!

n∏

k=1

tik,jk〈
n∏

k=1

φik ψ̄
jk
k 〉X0,n,β.
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The descendant potential FgX is a formal power series in variables ti,j, 1 ≤ i ≤ rankH∗(X,C), j ≥
0 with coefficients in C[[NE(X)]] and Qβ is (again) a formal variable. Theorem 7.2 may
be restated as follows.

Theorem 7.3.

F
g
G
({tiρ,j}1≤i≤rankH∗(X,C),ρ∈Ĝ,j≥0;Q) = r2g−2

∑

[ρ]∈Ĝ

F
g
X({tiρ,j}1≤i≤rankH∗(X,C),j≥0;Qρ),

where Qρ is defined by the following rule:

Qβρ := Qβχρ

(
exp

(−2π
√
−1(α ∩ β)
r

))
,

and χρ is the character associated to the representation ρ.

Theorem 7.3 confirms the decomposition conjecture for genus g Gromov-Witten the-
ory of G.

Appendix A. A few useful facts about degree of morphisms

We want to characterize the degree of proper and quasi-finite morphisms of algebraic
stacks in terms of number of points in the generic geometric fibers. Let f : X → Y be
a separated quasi-finite dominant morphism between Deligne-Mumford stacks with Y

integral. Then according to [39] its degree is given by

deg(X/Y) =
δ(Y)

δ(X)
[K(X) : K(Y)],(74)

where δX := deg(IX/X), δY := deg(IY/Y). If f : X → Y is representable, then the
degree of the field extension [K(X) : K(Y)] is equal to the number of points counted
with multiplicity in the generic geometric fiber. A similar characterization can be given
in the general case for a representable morphism f : X → Y canonically determined by
f as described below. Let X and Y be algebraic stacks. Let f : X → Y be a morphism
locally of finite presentation such that the relative inertia

Ker(I(X)→ f∗I(Y)) ≃ X×X×YX X

is finite. Then in [5] it is proved that there exists a factorization of f

X
π→ X

f→ Y,(75)

called the relative coarse moduli space, such that

(1) f is representable;
(2) π is proper and quasi-finite;
(3) π∗OX = O

X
;

(4) for any X
π′

→ X′ f ′→ Y with f ′ representable there is a unique morphism h : X′ → X

such that π′ = h ◦ π and f = f ′ ◦ h.
Moreover the formation of the relative coarse moduli space commutes with flat base
change and, if f is tame, with arbitrary base change.

We observe that π∗K(X) = K(X) if X is reduced. Indeed K(X) is the ring of mor-
phisms X→ A1

C defined over an open dense substack. For any such a morphism there is

a factorization X → X → X → A1
C, where X is the absolute coarse moduli space of X.
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Since we work over the complex numbers and f : X → Y is a representable morphism
[K(X) : K(Y)] can be computed as the number of points (weighted by the geometric
multiplicity) in a generic geometric fiber.
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