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Using Lemma 4.14 and Property (10) of the elimination and duplication matrices gives
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being separated into
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 I p

�
and a function of(n � k) b� + B� 1 only, which gen-

erally cannot be done. Thus, the transformationU = � � 1=2
�
(n � k) b� + B� 1

�
� � 1=2 does not lead

to a suitable formulation of the RVM method.

A similar di� culty arises if the Cholesky decomposition is used instead of the square root

decomposition. Let� � 1 be decomposed as� � 1 = � � � �0, where� � is a lower triangular matrix.

Beginning with the joint likelihood in Equation (4.63), which is
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consider the transformations

U = Σ∗′
(
(n − k) Σ̂ + B−1

)
Σ∗

and

V = (a − p − 1)1/2 B1/2Σ̂B1/2 (a − p − 1)1/2 .

The Jacobian of the transformation remains JΣ−1→U JΣ̂→V, but now JΣ−1→U is given by

JΣ−1→U = JΣ−1→Σ∗ JΣ∗→U

= JΣ−1→Σ∗
1

JU→Σ∗

using Properties (1) and (2) of Jacobians. Using Lemma 4.31,

JΣ−1→Σ∗ = 2p
p∏

i=1

σ
p−i+1
ii

where σii, i = 1, 2, . . . , p are the diagonal elements of Σ∗. Using Lemma 4.31,

JU→Σ∗ = 2p
p∏

i=1

σi
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
Thus

JΣ∗→U =
2p ∏p

i=1 σ
p−i+1
ii

2p
∏p

i=1 σ
i
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
=

∏p
i=1 σ

p−2i+1
ii∏p

i=1

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣ .
Since σii are the diagonal elements of Σ∗, it is clear that the use of the Cholesky decompo-

sition will not lead to a transformation in terms of U and V only. Thus, the transformation
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U = Σ∗
(
(n − k) Σ̂ + B−1

)
Σ∗ does not lead to a suitable formulation of the RVM method.

Although an exact distribution for Λ̃ is not available, since it is a likelihood ratio test, the

value of −2 log Λ̃ approximately follows a χ2 distribution and may be used for hypothesis testing.

This is an asymptotic approximation, so the accuracy of the test may be compromised for small

sample sizes. The likelihood ratio test in Equation (4.48) may be written as

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣Σ−1
∣∣∣ ∣∣∣∣ŜS + B−1

∣∣∣∣∣∣∣Σ−1
∣∣∣ ∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣∣Σ−1
(
ŜS + B−1

)∣∣∣∣∣∣∣∣∣Σ−1
(̂̂SS + B−1

)∣∣∣∣∣ .

The distributional results in Equation (4.68) show that Σ−1
(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and, by extension, that Σ−1

(
(n − k) ̂̂Σ + B−1

)
∼ Wp

(
Ip, n − r + a

)
. This implies that the degrees

of freedom for the χ2 test are k − r. Using these results, the multivariate RVM may be applied

to a wide variety of GLMs in a similar manner to the univariate RVM. For the multivariate

RVM, the ratio of the generalized variances under the null and alternative hypotheses are used

in conducting the hypothesis tests, and both the numerator and denominator sums of squares and

degrees of freedom are adjusted. The hyperparameters a and B may be estimated from Σ̂, the

residuals from the standard GLM without any assumptions on the distribution of Σ−1, using a nu-

merical maximization routine. However, previous studies have noted problems of identifiability

when estimating an unstructured prior for the Wishart distribution, even when numerical opti-

mization routines report convergence to a solution (Le et al., 1998). To avoid such problems in

the multivariate RVM method, structure may be imposed on the B matrix to reduce the number

of parameters estimated. A compound symmetric structure is a reasonable choice for microarray

studies based on the assumed structure of the sample variance-covariance matrix as well as the

previous work by Archer et al. (2006). Once estimates of the hyperparameters are obtained, the
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value of −2 log Λ̃ may be computed and compared to the χ2
k−r distribution with the appropriate

cutoff value.

The multivariate RVM method may be applied to class comparison problems for determining

the significance of gene expression changes between conditions. For such a parameterization, k

would represent the number of conditions, and the columns of X would be indicator variables

denoting the condition of each chip in the experiment. The reduced model would correspond

to the hypothesis that k − r of the conditions are equivalent, with the corresponding reduction

in the dimension of X. The class comparison problem then becomes a multivariate analysis of

variance (MANOVA) problem with adjustment in the residuals and degrees of freedom for the

test statistic based on the RVM assumptions. Thus, although the multivariate RVM method is not

currently implemented in software packages for microarray data analysis, hypothesis tests based

on multivariate RVM may be carried out using standard packages for MANOVA or multivariate

regression.

4.3.5 Modified Random Variance Model for Singular Covariance Matrices

The preceding formulation of the multivariate RVM method relies on the sample covariance ma-

trix Σ̂ (or, equivalently, the samples sums of squares and crossproducts ŜS ) being nonsingular

and of full rank. These conditions require that n − k > p; otherwise, the Wishart density function

given in Definition 4.34 does not exist. The requirement that n−k > p may be unrealistic for most

microarray studies; despite efforts to increase the sample size for microarray experiments, many

studies still use only a small number of chips (Jain et al., 2003). For example, the most com-

mon probeset size on the human U95 and U133 GeneChips is 11 probes. Assuming a two class

comparison, 7 chips would be required in each class to achieve an adequate number of samples.

Other types of chips, such as the Drosophilia DrosGenome1 chip with 14 probes per probeset,

would require an even larger number of replicates. However, the requirement that n − k > p

may be removed by utilizing the pseudo-Wishart distribution in Definition 4.35 when n − k ≤ p.

However, based on Lemma 4.36, a different computational formula would need to be used in
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software implementations to account for the differences in the nonsingular and pseudo-Wishart

distributions.

Theorem 4.48 is unaltered by the sample covariance matrix Σ̂ being singular, with the assump-

tion that B and Σ are of full rank. Thus, the same likelihood ratio test may be used for hypothesis

testing in the singular case as in the nonsingular. However, modifications to Theorem 4.49 are

necessary to incorporate the pseudo-Wishart distribution of Σ̂. These modifications lead to the

following theorem.

Theorem 4.50. Assume that n − k ≤ p, so that Σ̂ is singular. Then, for Σ̂ and Σ̃ defined as in

nonsingular multivariate RVM,

Σ−1
(
(n − k + a) Σ̃

)
= Σ−1

(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and

(a + p − 1) B−1/2Σ̂B−1/2 ∼ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
≡ Mβn−k

II

(
p, n − k, a + p − 1; n−k

a+p−1 Ip

)
Proof. From singular GLM theory, (n − k) Σ̂ ∼ Wp (n − k,Σ). Since n − k < p by assumption,

(n − k) Σ̂ has a pseudo-Wishart distribution. Let L1 = diag (λ1, λ2, . . . , λn−k), where λ1 ≥ λ2 ≥

· · · ≥ λn−k are the first n − k ordered eigenvalues of (n − k) Σ̂, and let E1 be the matrix of the

corresponding eigenvectors, so that E1E′1 = In−k. Then the density of (n − k) Σ̂ is given by

f
(
(n − k) Σ̂

)
=
π(−p(n−k)+(n−k)2)/2 |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

Under RVM, Σ−1 ∼ Wp (B, a), where B is assumed to be full rank. The joint density of Σ̂ and Σ−1
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is

L
(
Σ̂,Σ−1

)
=
π(−p(n−k)+(n−k)2)/2 (n − k) |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

·

∣∣∣Σ−1
∣∣∣(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
B−1Σ−1

])
.

This simplifies to

L
(
Σ̂,Σ−1

)
=

π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

) |L1|
(n−k−p−1)/2

∣∣∣Σ−1
∣∣∣(n−k+a−p−1)/2

· exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

This is equivalent to

= c1
|L1|

(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

where

c1 =
π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

)
is a constant. Let

U = Σ−1
(
(n − k) Σ̂ + B−1

)
and

V = (a + p − 1)1/2 B1/2Σ̂B1/2 (a + p − 1)1/2
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so that

Σ−1 = U
(
(n − k) Σ̂ + B−1

)−1

= U
(

n − k
a + p − 1

B−1/2VB−1/2 + B−1
)−1

and

Σ̂ = (a + p − 1)−1/2 B−1/2VB−1/2 (a + p − 1)−1/2 .

Let L2 = diag (κ1, κ2, . . . , κn−k), where κ1 ≥ κ2 ≥ · · · ≥ κn−k are the first n−k ordered eigenvalues of

V, and let E2 be the matrix of the corresponding eigenvectors, so that E2E′2 = In−k. The Jacobian

of the transformation is

JΣ−1,Σ̂→U,V =

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

∂Σ̂

∂U′
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

0
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∂Σ−1

∂U′

∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∂Σ̂∂V′

∣∣∣∣∣∣∣
= JΣ−1→U JΣ̂→V.

Then

JΣ−1→U =

(∣∣∣∣∣ n − k
a + p − 1

B−1/2VB−1/2 + B−1
∣∣∣∣∣−1)p

=
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣p
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and

JΣ̂→V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2

by Lemma 4.32. Thus

JΣ−1,Σ̂→U,V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2
∣∣∣∣ n−k
a+p−1 B−1/2VB−1/2 + B−1

∣∣∣∣p (4.73)

Applying standard change of variables with the Jacobian in Equation (4.73) gives

L (U,V) = c1 |L1|
(n−k−p−1)/2

∣∣∣∣∣∣∣U
(

n − k
a − p + 1

B−1/2VB−1/2 + B−1
)−1

∣∣∣∣∣∣∣
(n−k+a−p−1)/2

· exp
(
−

1
2

Tr U
)
·

|L2|
(n−k−p−1)/2

|L1|
(p+1−(n−k))/2

|(a − p − 1) B|(n−k)/2
∣∣∣∣ n−k
a−p+1 B−1/2VB−1/2 + B−1

∣∣∣∣p
This is equivalent to

L (U,V) = c2
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣(n−k+a+p−1)/2 |L2|

(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

where

c2 = c1
1

|(a + p − 1) B|(n−k)/2
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is a constant. This can be further simplified to

L (U,V) = c2
1∣∣∣∣B−1/2

(
n−k

a+p−1V + Ip

)
B−1/2

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

= c3
1∣∣∣∣ n−k

a+p−1V + Ip

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

|U|(n−k+a+p−1)/2 exp
(
−

1
2

Tr U
)

(4.74)

where

c3 = c2
1∣∣∣B−1

∣∣∣(n−k+a+p−1)/2

is a constant. Using the definitions of the singular multivariate F and Wishart distributions, Equa-

tion (4.74) separates into

L (U,V) ∝ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
(V) ·Wp

(
Ip, n − k + a

)
(U) . (4.75)

Thus Σ−1
(
ŜS + B−1

)
is distributed as Wp

(
Ip, n − k + a

)
and (a + p − 1) B1/2Σ̂B1/2 is distributed

as Fn−k
p

(
p, n − k, a + p − 1; a+p−1

n−k Ip

)
. �

Using this result, the multivariate RVM may also be applied to GLMs when the sample co-

variance matrix is singular. The generalized variances under the null and alternative hypotheses

are computed as in the case of RVM with a nonsingular covariance matrix. The hyperparameters

a and B are estimated from Σ̂ using a numerical maximization routine, with the singular multi-

variate F distribution being fitted. The hyperparameters are then used to adjust the numerator and

denominator sums of squares in the likelihood ratio test. Values of the likelihood ratio test are

then compared to cutoff values from the χ2 distribution with the adjusted degrees of freedom to

determine significance.
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4.4 Parametric Error Models for Intensities

A third type of multivariate error model would be a parametric model for both the probe inten-

sities and the variances. This approach is implemented in the mmgMOS algorithm, which is

extensively reviewed in Section 1.8.2. The error model is constructed by first modeling the probe

level intensities; in the mmgMOS algorithm, the gamma distribution is selected for this purpose.

After fitting the model for the intensities, the variance of the intensities can be computed using

standard formulae. The mmgMOS method is used as one of the comparison algorithms in this

research project to assess the accuracy of parametric models based on probe intensities.



Chapter 5

Performance Assessment

5.1 Introduction

One of the greatest challenges in the development of algorithms for the analysis of microarray

data is assessing the performance of the new method (Choe et al., 2005). Comparisons of one al-

gorithm to another without a proper reference data set are of little use. Unless the true state of gene

expression between experimental conditions is known, the investigator cannot determine whether

algorithms with larger number of genes declared significant have greater accuracy in detecting

true positives or simply have a higher number of false positives. Early studies relied on confirma-

tion of microarray results by use of independent laboratory techniques, such as Northern blotting,

quantitative PCR, or ISH (Karsten et al., 2004). However, this approach is very labor-intensive

and time-consuming, so that only a small number of genes can be independently verified. Thus,

it typically provides validation that the genes with the most significant test statistics represent

true positives, but gives little information about the overall sensitivity and specificity of a given

algorithm.

An alternative approach to assessing the accuracy of algorithms is to perform comparisons

using spike-in datasets. The general methodology for construction of spike-in datasets is to in-

troduce specific cDNA fragments into an experimental medium at prespecified concentrations.

Because the concentration of the spiked probes in each condition is known, the number of truly

differentially expressed genes is known and can be used for calculation of measures of sensitiv-

ity and specificity. Thus, application of statistical algorithms to spike-in datasets also represent

160
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an independent means of assessing the performance of the statistical method. Such datasets are

constructed by a considerable investment of time and resources, but these initial costs incurred

by creating the dataset have an enormous return, since subsequent analyses can be conducted by

any number of investigators with relatively little expense. Variations in the design of spike-in

datasets allow the assessment of algorithms in different manners. For example, one design may

be to spike all genes at a single concentration on a chip; alternatively, the concentration may

vary among genes. The former represents a simpler design and assessment, while the latter per-

mits comparisons under perhaps more realistic conditions, in which the expression differs among

genes. The experimental medium may be a hybridization solution with or without background

RNA present. Again, the former is a simpler design and assessment. The latter represents more

realistic conditions, in which the differentially expressed genes must be separated from a large

number of genes that have an unchanging level of expression, but it has the potential drawback

that the hybridization properties of the background RNA may not be fully characterized. Finally,

as with any experiment, stringent quality control measures are necessary in the construction of

spike-in datasets to avoid erroneous results. In particular, cross-hybridization among probes must

be addressed so that the list of genes expected to be declared differentially expressed is accurate.

5.2 Overview of Spike-in Studies

The first spike-in dataset was created by Affymetrix using the U95 GeneChip. This is a subset

of the data used in the development and validation of the MAS5 statistical analysis algorithm.

As detailed in the documentation accompanying this dataset, 14 experimental groups were con-

structed from 14 spiked-in human genes arranged in a Latin Square design (Tables 5.1 and 5.2).

Group 1 contains 2 genes, group 12 is empty, and the remaining groups contain 1 gene. The

concentrations of the 14 gene groups in the first experiment are 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,

128, 256, 512, and 1024pM. Each subsequent experiment rotates the spike-in concentrations by

one group, so that experiment 2 begins with 0.25pM and ends at 0pM, on up to experiment 14,

which begins with 1024pM and ends with 512pM. Experiments 13 and 14 contain four technical
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Group
Number Probeset IDs
1 37777 at

407 at
2 684 at
3 1597 at
4 38734 at
5 39058 at
6 36311 at
7 36889 at
8 1024 at
9 36202 at
10 36085 at
11 40322 at
12 empty
13 1091 at
14 1708 at

Table 5.1: Probeset Groupings for the Affymetrix U95 Spike-In Study

replicates, while experiments 1 through 12 contain only a single hybridization. Two sets of exper-

iments were performed, one set with a complex RNA background and one without. The complex

background consists of RNA isolated from biological sources, which would contain a variety of

RNA species and is intended to model the background hybridization present in most biological

experiments. For the Affymetrix U95 experiments, mRNA isolates from human pancreas were

selected. Each experiment contains 3 replicates except one (experiment C with complex back-

ground), which contains 2 replicates.

Affymetrix later produced a second spike-in dataset using the human U133 GeneChip. This

dataset uses a common complex cRNA derived from a human HeLa cell line as background.

Fourteen separate hybridizations were performed in which 42 transcripts were spiked into the

hybridization cocktail using a Latin Square design (Tables 5.3 and 5.4). These spike-in genes

contain 30 transcripts corresponding to cDNA clones isolated from a human lymphoblast cell

line. The remaining spike-in genes consist of foreign and artificial clones expected to show little

hybridization with human GeneChip probes, with 4 being bacterial sequences used as eukary-

otic controls and 8 being artificially engineered sequences believed to be unique to the human
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Table 5.2: Concentration Data for the Affymetrix U95 Spike-In Study. All concentrations are
given in pM.



164

Group Group
Number Probeset IDs Number Probeset IDs
1 203508 at 2 204205 at

204563 at 204959 at
204513 s at 207655 s at

3 204836 at 4 207777 s at
205291 at 204912 at at
209795 at 205569 at

5 207160 at 6 209606 at
205692 s at 205267 at
212827 at 204417 at

7 205398 s at 8 206060 s at
209734 at 205790 at
209354 at 200665 s at

9 207641 at 10 203471 s at
207540 s at 204951 at
204430 s at 207968 s at

11 AFFX-r2-TagA at 12 AFFX-r2-TagD at
AFFX-r2-TagB at AFFX-r2-TagE at
AFFX-r2-TagC at AFFX-r2-TagF at

13 AFFX-r2-TagG at 14 AFFX-LysX-3 at
AFFX-r2-TagH at AFFX-PheX-3 at
AFFX-DapX-3 at AFFX-ThrX-3 at

Table 5.3: Probeset Groupings for the Affymetrix U133 Spike-In Study

genome. Other improvements of this dataset over the U95 dataset are a wider spread of RNA

concentrations and smaller (18 micron) chip features scanned using improved technology (the

Affymetrix GeneChip Scanner 3000).

GeneLogic has also created a spike-in dataset consisting of three conditions. The Dilution

and AML Latin Square data were previously described in the performance assessment of the S-

Score in Section 2.3. A second Latin Square dataset, called the Tonsil Latin Square dataset, was

produced in a manner similar to that of the AML Latin Square. The former differs from the latter

in that complex cRNA derived from a tonsil tissue sample was used for background hybridization

and in the arrangement of the spike-in concentrations in the Latin Square design (Table 5.5). Each

experiment contains 3 technical replicates.

Choe et al. (2005) have provided an even more ambitious spike-in dataset, called the Golden
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167

Spike dataset. This experiment used the Affymetrix Drosophilia GeneChip, which has 14010

probesets. The samples for this experiment are divided into constant (C) and spike (S) conditions,

each with 3 technical replicates. The hybridization cocktail for the dataset consisted of 3860

cRNAs of known sequence spiked in at specific concentrations. The concentrations of 1309

cRNAs differ between the C and the S conditions. The fold changes range from 1.2 to 4, with

the condition S arrays always having the higher concentration (Table 5.6). The remaining 2551

sequences, having the same concentration in the C and S conditions, represent a well-defined

background population. A total of 3866 probesets should be detected as being expressed, while

1331 probesets should be identified as differentially expressed between the two conditions. (These

figures differ slightly from the number of spike-ins because some sequences match more than

one probe, while a few sequences do not match with any probes.) With approximately 10%

of the probesets differing between the C and S conditions, this dataset allows the evaluation of

algorithms in a setting that more closely resembles the typical gene expression study.

5.3 Methods for Comparisons

5.3.1 Data

Data for the Affymetrix U95 and U133 datasets were downloaded in ZIP archive format from

the Affymetrix website (http://www.affymetrix.com/support/technical/sample data/datasets.affx).

The Golden Spike dataset was downloaded as a ZIP archive from the corresponding author’s

website (http://www.ccr.buffalo.edu/halfon/spike). A CD-ROM containing the GeneLogic Dilu-

tion and Latin Square datasets in self-extracting archives was obtained free of charge by request

from the company (http://www.genelogic.com/newsroom/studies/studies.cfm). Each dataset con-

sists of a series of *.CEL files, with one file for each chip hybridized. A listing of the filenames

associated with each experiment is provided in Appendix 2.

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.ccr.buffalo.edu/halfon/spike
http://www.genelogic.com/newsroom/studies/studies.cfm
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5.3.2 Data Processing

Three methods - RMA, Logit-T, and mmgMOS - were selected for comparison to the proposed

S-Score and multivariate RVM methods. Although RMA is a probeset-level method rather than

a probe-level method, it is one of the most widely used summary methods and commonly used

as a comparator for assessing the performance of new algorithms. Logit-t and multi-mgMOS

are alternative probe-level algorithms, and their inclusion will assess the merits of the proposed

methods relative to other probe-level methods. In comparing the five methods using the spike-in

datasets, the respective *.CEL files were read into the R programming environment version 2.5.1

using the ReadAffy function in the affy package version 1.14.1. Both RMA (Section 1.5.5) and

mmgMOS (Section 1.8.2) generate expression summary values, which are then compared with

standard statistical tests. RMA expression summaries were computed using the rma function

in the affy package. Expression summaries for mmgMOS were computed using the mmgmos

function in the puma package version 1.2.0.

The S-Score (Section 4.2), multivariate RVM (Section 4.3), and Logit-t (Section 1.8.1) al-

gorithms produce a test statistic for each probeset on a GeneChip, which is a direct measure of

expression change. Multichip S-Scores were computed using the SScore function in version 1.8.0

of the sscore package. Values for the SF and SDT parameters were calculated using the Com-

puteSFandSDT function in the same package. The Pooled S-Score values were computed using

a custom modification of the SScore function. For Logit-t, the July 2003 version of the C source

code was obtained from the authors and compiled using the GNU C compiler gcc version 4.0.1.

This executable was called from within R, using the system call function, to compute the Logit-t

values. For the multivariate RVM method, probe intensity values were extracted directly from the

*.CEL files using the intensity function in the affy package. Only the PM values within a probe

pair were used in analyses. The PM intensities were log2 transformed and centered about zero

as recommended by Chu et al. (2002). Mappings of probes to probesets were obtained using the

pmindex function.

All computations were performed on a Macintosh Powerbook system with a G4 PowerPC
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processor running Mac OS X 10.4.9. Source code for all programs are provided in Appendix 1.

5.3.3 Selection of Baseline

Since analyses were conducted in a pairwise fashion between conditions, it was necessary to

specify a baseline condition to which all other conditions were compared. For the four Latin

Square datasets, Experiment 1 was selected as a baseline for analyses. For the Dilution dataset,

only Experiments 9 through 14 had sufficient chips to conduct analyses using all algorithms, and

Experiment 9 was used as a baseline for comparisons. The Golden Spike dataset contains only

two conditions, with the control (C) condition used as the baseline. For attaining optimal per-

formance, comparisons using each algorithm should identify all spiked probesets as differentially

expressed. Identification of fewer probesets among the spike-ins would be false negative findings,

while identification of probesets in addition to these would be false positive findings. Therefore,

using this information, sensitivity and specificity of comparisons made with each algorithm can

be estimated. Based on the concentration data from the various datasets, a number of false neg-

atives was to be expected. For some probesets, the relative change between the two conditions,

expressed by the fold change, was too low to be detected despite high concentrations of RNA.

For other probesets, the absolute amount of RNA may be too low to generate sufficient signal

for detection, despite a high fold change between conditions. Also, given the large number of

hypotheses being tested simultaneously, a number of false positives would also be expected.

5.3.4 Quality Assessment and Data Integrity Checks

Prior to analysis, a quality assessment was performed on each chip. Because of the nature of

the spike-in experiments, many tests for quality control, such as RNA degradation, could not

performed. The primary quality control measures were assessment of linearity and lack of fit,

which could be performed on a subset of the data. For the GeneLogic Dilution dataset, all spike-

ins on each chip have the same concentration, so that linear effects of concentration could not

be examined. However, the intensities of all probe sets at a fixed concentration level should be
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similar under the assumption of linearity. Quantile-quantile plots of the MAS5 intensity values

were used to examine the assumption that the intensities were from a single distribution with a

common mean. For the Affymetrix U95 and GeneLogic Latin Square datasets, the spike-ins have

differing concentrations, and a linear increase in signal intensity with increasing concentration

would be expected on each chip. Plots of probeset concentration versus the MAS5 intensity value

were generated for each chip. Visual inspection of linearity within a chip was supplemented with

calculation of the R2 value of the linear regression equation. Assessment of lack of fit could not

be performed as there were not multiple probes at the same concentration on each chip.

For the Affymetrix U133 Latin Square and the Golden Spike dataset, several groups of spike-

ins were present at differing concentrations, and each concentration level contained multiple

probesets. Assessment of linearity was performed by visually inspecting plots and examining

linear regression results as for the Affymetrix U95 and GeneLogic Latin Square datasets. Lack

of fit statistics were computed for probesets at the same concentration on each chip to determine

if significant differences existed. For the Golden Spike dataset, data integrity was also examined

by comparing the mapping of probesets to concentration values by two different methods. The

first method was the direct mapping of probesets to concentration available on the corresponding

author’s website. The second method was an indirect mapping of probesets to pool numbers,

followed by a mapping of pool numbers to concentrations, using supplementary data from the

original manuscript. A Perl script was written to compare the results of the indirect mapping to

that of the direct mapping to determine if any discrepancies existed. In addition, the number of

probesets assigned to each pool was checked against the values in the original manuscript for

accuracy.

5.3.5 Statistical Analysis

For each of the five algorithms, statistical tests were conducted between the baseline condition and

each of the remaining conditions in a dataset in a pairwise fashion. All replicates for each condi-

tion were included in the analysis. Expression summary values produced by RMA and mmgMOS
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were compared using the functions in the multtest package version 1.14.0 from Bioconductor. A

two-sample t-test with unequal variances was performed between each pair of conditions using

the mt.teststat function. The resulting raw p-values were used for subsequent analyses; adjust-

ment of the p-values by controlling FDR were not used so that results reflect the performance of

the expression algorithm rather than the algorithm for FDR control.

The S-Score and Logit-t algorithms both produce test statistics that are easily converted into

p-values without adjustment. The S-Score values, representing standard deviations from a mean

of zero, were converted to p-values using the standard normal CDF

p-value = 2 (1 −Φ (|S s|))

where S is the S-Score value for the probeset s. The Logit-t is converted to p-values using the

CDF of the t distribution, with the degrees of freedom equal to the total number of arrays minus

2, as recommended by the authors (Lemon et al., 2003).

For multivariate RVM, a mixed effects model was constructed for the transformed and cen-

tered probe-level intensities of each probeset s:

Ycms = µ + βc + bs + εcms m = 1, 2, . . . ,Nm; c = 1, 2, . . . ,Nc (5.1)

For this model,

Ycms =

[
y1 y2 y3 . . . yNp

]′

is the Np × 1 vector of transformed intensities, µ = µJ is the Np × 1 vector of mean intensities for

probeset s, βc = βc J is the Np × 1 vector of effects for the the cth treatment, and

bs =

[
b1 b2 b3 . . . bNp

]′

is the Np × 1 vector of effects for the pth probe of probeset s. These effects are assumed to be
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fixed. The random error term εcms is assumed to have a multivariate normal distribution with an

expectation of 0 and covariance matrix Σ, or εcms ∼ MVN (0,Σ). Thus

E (Ycms) = µ + βc + bs.

A compound symmetric covariance structure was chosen for modeling the relationship among the

probes in a probeset, based on previous work by Archer et al. (2006), so that

Var (εcms) =



σ2 σ2
c σ2

c . . . σ2
c

σ2
c σ2 σ2

c . . . σ2
c

...
...

...
. . .

...

σ2
c σ2

c σ2
c . . . σ2


= Σ

where σ2 is the variance of and σ2
c is the covariance among the individual probes in the probeset.

Since the multivariate RVM method requires that the covariance matrix ε have the same di-

mension for all probesets in an analysis, which in turn requires the transformed intensity vector

Y to have same number of probes within each probeset, a separate analysis was conducted for

each probeset size. For the Affymetrix U133 GeneChip, probeset sizes range from 8 to 20. There

are 21,765 probesets containing 11 probes, 482 probesets containing 16 probes, and 40 probe-

sets containing 20 probes. These groups of probesets were used in the analysis. Although the

sample size for the 40 probesets with 20 probes may be insufficient for accurate estimation of

the hyperparameters, this group was retained as it contains several of the spike-in probes. The

remaining groups of probesets contained 1 to 4 probesets in each group. The sample size for

these groups was deemed too small to yield meaningful results, and these groups were excluded

from the analysis. It is expected that the typical RVM analysis will only include those groups of

probesets that are sufficiently large for adequate estimation of the hyperparameters, with smaller

groups of probesets being excluded. The smaller groups contain probesets used for quality con-

trol that are unlikely to be of interest in most differential expression studies. A brief annotation

of the probesets in these smaller groups is provided in Appendix C.
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Model fitting was performed using the gls function from version 3.1-83 of the nlme package,

available from the Comprehensive R Archive Network (CRAN; http://cran.r-project.org). Maxi-

mum likelihood, rather than restricted maximum likelihood, was used to permit likelihood ratio

tests of the fixed treatment effects (see Pinheiro and Bates, 2000, p. 83). As the gls function

does not allow for multivariate response variables, the model in Equation (5.1) was modified

slightly by “stacking” the responses for each probeset s into a single
(
Nc · Nm · Np

)
× 1 vector

and introducing additional indicator variables denoting membership in each array and treatment

(see http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf for a gen-

eral discussion of this issue in R). Using a reference cell model with the first level of treatment and

probe effects as the reference level (which is the default in R), the fixed terms in Equation (5.1)

may be combined as

β =

[
µ β2 β3 . . . βNc b2 b3 . . . bNp

]′
.

Equation (5.1) then may formulated as the multivariate model

Ys = Xβ + εs (5.2)

where X is an
(
Np + Nc − 1

)
× 1 matrix of indicator variables for the fixed effects, and Y is the

matrix of intensity values formed by concatenating the intensity vectors Ycms as

Ys =

[
Y11s Y21s . . . Yc1s . . . Ycms

]
.

The random error matrix εs may be similarly formed as

εs =

[
ε11s ε21s . . . εc1s . . . εcms

]
. (5.3)

Then E (εs) = 0, where in this case the matrix 0 is an Np × NmNc matrix.

The multivariate model in Equation (5.2) is converted to a “univariate” model using the vec

http://cran.r-project.org
http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf
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operator and Kronecker products, as described in Searle (1978) and Henderson and Searle (1979).

The stacked “univariate” model is then

vec (Ys) = vec (Xβ + εs)

= vec (Xβ) + vec (εs) .

Applying Equation (4.7), this becomes

vec (Ys) = (I ⊗ X) vec (β) + vec (εs) . (5.4)

Since E (vec (εs)) = vec (E (εs)),

E (vec (εs)) = 0

and

E (vec (Ys)) = (I ⊗ X) vec (β) ,

where 0 is an NpNmNc × 1 column vector. The term vec (εs) may be partitioned as

vec (εs) =



ε11s

ε21s

ε31s

...

εc1s

...

εcms



. (5.5)
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With the partitioning given in Equation (5.5), the formula for var (vec (εs)) is

var (vec (εs)) =



var (ε11s) cov (ε11s, ε21s) cov (ε11s, ε31s) . . . cov (ε11s, εcms)

cov (ε21s, ε11s) var (ε21s) cov (ε21s, ε31s) . . . cov (ε21s, εcms)

cov (ε31s, ε11s) cov (ε31s, ε21s) var (ε31s) . . . cov (ε31s, εcms)
...

...
...

. . .
...

cov (εcms, ε11s) cov (εcms, ε21s) cov (εcms, ε31s) . . . var (εcms)



=



Σ 0 0 . . . 0

0 Σ 0 . . . 0

0 0 Σ . . . 0
...

...
...

. . .
...

0 0 0 . . . Σ


, (5.6)

or, more compactly, var (vec (εs)) = Σ ⊗ Imc = var (vec (Ys)). The variable Ys is said to have a

matrix variate normal distribution (Dawid, 1981), denoted in this case as Y ∼ NNp,mc (Xβ,Σ ⊗ Imc).

After fitting the model in Equation (5.4) using the nlme package, the residuals from this anal-

ysis were then used to estimate the parameters a and B of the Wishart prior, as given in Equa-

tion (4.62). Parameter estimates were found using numerical optimization as implemented in the

optim function in the stats package. The optim function minimizes a specified function using an

implementation of the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), which is rela-

tively robust to discontinuities compared to the Newton-Raphson algorithm and does not require

a gradient for the function being optimized. After obtaining estimates for a and B, revised like-

lihood ratio test statistics were computed on a probeset-by-probeset basis using Equation (4.48).

The p-values were obtained from the χ2 distribution with 1 degree of freedom using -2 times the

logarithm of the likelihood ratio test statistic.

The analyses differed between the GeneLogic Dilution dataset and the remaining datasets be-

cause of the differing nature of the experiments. For the GeneLogic Dilution dataset, all probesets

on a chip were spiked in at the same concentration, so that the effects of concentration on the de-
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tection of differential expression could only be examined across chips. The primary measure of

performance was the sensitivity and specificity of each of the five algorithms. Higher values of

sensitivity and specificity would indicate better performance of a particular method. To calculate

these two quantities, it was necessary to establish cutoffs for declaring probesets differentially

expressed. For multivariate RVM, RMA, and mmgMOS, a cutoff value of p < 0.001 was used,

as suggested by Simon et al. (2002). A cutoff value of 3.29 was used for the absolute values

of the S-Score, corresponding to greater than 3.29 standard deviations of change in intensity or

p < 0.001. This is slightly higher than the previously recommended cutoff of 3, which corre-

sponds to p < 0.003. For Logit-t, the t-test value corresponding to p < 0.001 was used as the

cutoff value. This is slightly lower than the cutoff of p < 0.01 recommended by the authors

(Lemon et al., 2003). The use of these cutoff values for the S-Score and Logit-t is intended to

provide uniformity across methods, so that differences in performance are not due to differences

in cutoff values. Sensitivity and specificity were tabulated for each method based on the appro-

priate cutoff values. This was supplemented with plots of the S-scores and of multivariate RVM

versus each of the three remaining algorithms to assess the comparative ability of each algorithm

to clearly separate the spike-in clones from the remaining probe sets.

A different approach was used for the Latin Square and Golden Spike datasets, which con-

tained varying concentrations of spike-in transcripts on each chip. Probe sets were rank ordered

based on p-values obtained from each algorithm, using the rank function in R. Rankings from

each algorithm were compared to the true underlying fold-change values of the spike-in clones.

The true underlying fold-change ranks were determined using the concentration of the spike-in

clones (Tables 2.2, 5.2, 5.4, 5.5, and 5.6) for the two conditions being compared. The proportion

of spike-ins ranked less than or equal to the total number of spike-ins for the dataset was calcu-

lated, and the Cochran-Mantel-Hanzel test used to compare these proportions across all chips.

This validation procedure is similar to the procedure for validation of the original S-Score using

spike-in data (Kennedy et al., 2006a).
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5.4 Results

5.4.1 Quality Assessment

A subset of the quantile-quantile plots of the MAS5 intensity values for the GeneLogic Dilution

dataset are depicted in Figure 5.1, with the full set of 26 plots in Appendix B. These plots

generally show the assumption of linearity is reasonable; that is, the intensities of the spike-in

probes are from a single underlying distribution. Two chips have a single probe falling outside

of the 95% confidence bands of the quantile-quantile plot. With only two outliers among 26

hybridizations of 10 probes each, the quality of the Dilution dataset was deemed adequate, and

this dataset was used in subsequent analyses.

Subsets of the linearity plots of the MAS5 intensity values for the Genelogic AML and Tonsil

Latin Square datasets are shown in Figures 5.2 and 5.3, respectively, with the full set of plots

in Appendix B. As evident from these plots, there are some problems with the assumption of

linearity for almost all chips in the two datasets; that is, the intensities of the spike-in probes do

not increase linearly with increases in concentration, as would be expected. The visual results

are confirmed by the linear regression of intensity on concentration. The R2 values range from

0.01 to 0.98 (mean = 0.61, median = 0.74) for the AML dataset and from 0.31 to 0.99 (mean =

0.79, median = 0.92) for the Tonsil dataset. The large number of chips violating the assumption

of linearity may indicate potential problems with the quality of these datasets, and both were

excluded from further analyses.

Subsets of the linearity plots for the Affymetrix U95 and U133 Latin Square datasets are show

in Figures 5.4 and 5.5, respectively, with the full set of plots in Appendix B. As evident from these

plots, the assumption of linearity is reasonable for almost all chips in the two datasets. The results

of the linear regression showed similar results. The R2 values range from 0.33 to 0.91 (mean =

0.74, median = 0.77) for the U95 Latin Square dataset. The R2 values for the U133 Latin Square

dataset ranged from 0.79 to 0.96 (mean = 0.88, median = 0.88). The lack of fit test for the U133

dataset was significant, p < 0.01. This indicates that intensities at the same concentration level
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Figure 5.1: GeneLogic Dilution Quality. Plots of the computed MAS5 intensity values versus
theoretical normal quantiles for a subset of chips. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.2: GeneLogic AML Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.3: GeneLogic Tonsil Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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do not appear to come from a single underlying distribution, as would be expected. Although the

lack of fit test may suggest potential problems with the U133 dataset, it was retained for further

analyses based on the excellent results from the linearity plots. The U95 dataset was also retained,

due to its inclusion in other benchmark studies (Irizarry et al., 2006).

Quantile-quantile plots for the Golden Spike constant arrays and a linearity plot for the spike

arrays are shown in Figure 5.6. As evident from these plots, there are significant deviations from

the expected values, indicating that the intensities for the control chips are not from a single dis-

tribution. Similarly, the linearity plot shows that the probe intensities in the spike arrays do not

increase linearly as a function of concentration, with the R2 values ranging from 0.07 to 0.08. The

lack of fit statistic for the spike arrays was highly significant, p < 0.001, suggesting that inten-

sities at the same concentration level are not from a single underlying distribution as expected.

Finally, results of the data integrity check using indirect mapping of probesets to pool numbers to

concentrations is depicted in Table 5.7. The indirect mapping shows several discrepancies com-

pared to the direct mapping in Table 5.6. One clone in the probeset file (SD01117) did not map

to any pool assignment. There were also several pools (numbers 6, 13, and 14) for which the

number of assigned clones and/or probesets differed between the direct and indirect mappings.

These differences would affect the concentration value of only one probeset (152452 at), but do

indicate potential problems with the quality of the Golden Spike dataset. Based on the results

of the data integrity check, as well as the quantile-quantile and linearity plots, this dataset was

excluded from further analyses.

5.4.2 Statistical Analysis

The results of the analysis of the GeneLogic Dilution dataset are shown in Tables 5.8 through 5.11.

The statistical significance of the comparisons between different algorithms is given in Table 5.12.

Both the multichip S-Score and Logit-T did well in detecting the spike-in probes for all but the

lowest fold change. There were no significant differences in the performance of the two. RMA

fared worse, failing to detect most of the spike-in probes except at the highest fold change. The
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Figure 5.4: Affymetrix U95 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.5: Affymetrix U133 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.6: Choe Golden Spike Quality. All intensity values are scaled to give a median intensity
value of 100 for each chip.
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Pool Number Number of assigned
number of clones Affymetrix probe sets

1 87 84
2 141 143
3 85 83
4 180 185
5 90 89
6 88 95
7 186 188
8 90 95
9 180 190

10 183 191
13 392 376
14 368 354
15 394 404
16 452 453
17 419 434
18 372 407
19 163 191

Table 5.7: Clone and Pool Assignments for the Choe et al. Golden Spike Dataset Using Indirect
Mappings

results of the multichip S-Score and Logit-T analyses were significantly better than RMA. The

mmgMOS, pooled S-Score, and RVM methods all performed quite poorly, often failing to detect

any of the spike-ins. It should be noted that the analyses of Experiments 10, 13, and 14 using the

RVM method failed to converge in the estimation of the matrix hyperparameter. Implications of

nonconvergence on these results are discussed in the next chapter.

The results of the analysis for the Affymetrix U95 Latin Square dataset are shown in Ta-

ble 5.13. The statistical significance of the comparisons between different algorithms is given in

Table 5.14. The performance of the multichip S-Score was quite favorable, being significantly

better than mmgMOS and RMA and comparable to Logit-T. For four experiments (numbers 1, 2,

3, and 11), the Logit-T detected a slightly higher number of spike-in probes than the multichip

S-Score. For four other experiments (numbers 9, 16, 17, and 18) the multichip S-Score detected

a slightly higher number of spike-in probes than the Logit-T. The pooled S-Score also showed

significantly better results than mmgMOS and RMA. However, both the multichip S-Score and
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 0 0 5 0 0 0
11 9 2 10 0 1 0
12 10 0 10 0 0 0
13 10 0 9 0 3 0
14 10 0 10 0 9 2

Table 5.8: Number of True Positives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true positives,
i.e. the number of spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of spike-in probes that could be detected is 10. Note
that analyses of Experiments 10, 13, and 14 using RVM had lack of convergence in estimating
the matrix hyperparameter.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 410 24 1 1 54 0
11 0 2 2 1 3 0
12 2 3 5 1 1 0
13 82 22 1 1 12 0
14 4 3 5 1 6 0

Table 5.9: Number of False Positives in Analysis of the GeneLogic Dilution Dataset. All compar-
isons are made using Experiment 9 as the baseline chip. Values are the number false positives, i.e.
the number of non-spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of false positives is 12580 for the RVM method and
12616 for all other methods.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 12206 12592 12615 12615 12562 12580
11 12616 12614 12614 12615 12613 12580
12 12614 12613 12611 12615 12615 12580
13 12534 12594 12615 12615 12604 12580
14 12612 12613 12611 12615 12610 12580

Table 5.10: Number of True Negatives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true negatives,
i.e. the number of non-spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of true negatives is is 12580 for the RVM
method and 12616 for all other methods.
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 10 10 5 10 10 10
11 1 8 0 10 9 10
12 0 10 0 10 10 10
13 0 10 1 10 7 10
14 0 10 0 10 1 8

Table 5.11: Number of False Negatives in Analysis of the GeneLogic Dilution Dataset. All
comparisons are made using Experiment 9 as the baseline chip. Values are the number false
negatives, i.e. the number of spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of false negatives is 10.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 2.690 67.955 — 74.116 43.959 67.955

S-Score 0 .101 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 68.762 0.527 — — 16.189 0.528

S-Score < 0.001 0.468 — — < 0.001 0.468
RVM 62.339 0.260 — — 11.243 —

< 0.001 0.610 — — < 0.001 —

Table 5.12: Statistical Significance for True Positives the GeneLogic Dilution Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.



189

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 9 2 8 7 4 0
3 10 0 9 7 3 0
4 12 6 11 10 11 0
5 12 10 12 9 10 0
6 12 10 12 12 10 0
7 13 11 13 12 10 4
8 13 9 13 12 12 1
9 13 9 13 12 10 0

10 12 8 13 9 11 0
11 12 8 12 12 11 1
12 11 7 10 7 6 0
13 10 5 10 10 7 0
13 10 6 10 8 6 0
13 10 4 10 8 7 0
13 10 5 10 8 8 0
14 5 2 9 6 1 0
14 7 2 9 7 1 0
14 7 2 9 6 4 2
14 8 4 8 8 5 1

Table 5.13: Statistical Analysis of the Affymetrix U95 Latin Square Dataset. All comparisons are
made using Experiment 1 as the baseline chip, and Experiments 13 and 14 contain four technical
replicates each. Values are the number of spike-in probes ranked in the top 14 according to the
test statistic generated by each algorithm. The maximum number of spike-in probes that could be
detected is 14. Note that all analyses conducted using RVM had lack of convergence in estimating
the matrix hyperparameter.

Logit-T outperformed the pooled S-Score. Finally, the results obtained using the RVM method

were significantly worse than the other five algorithms. For most of the experiments, the RVM

method failed to detect any of the spike-in probes. However, it must also be noted that there was

a lack of convergence in estimating the matrix hyperparameter for the RVM method with all 18

experiments as well. Implications of nonconvergence on these results are discussed in the next

chapter.

The results of the analysis for the Affymetrix U133 Latin Square dataset are shown in Ta-

ble 5.15. The statistical significance of the comparisons between the different algorithms is given

in Table 5.16. As with the U95 Latin Square analysis, the multichip S-Score and Logit-T were



190

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.169 68.623 — 8.405 35.913 283.857

S-Score 0.681 < 0.001 — 0.004 < 0.001 < 0.001
Pooled 5.876 29.134 — — 8.922 216.067

S-Score < 0.015 < 0.001 — — 0.003 < 0.001
RVM 274.490 115.355 — — 161.051 —

< 0.001 < 0.001 — — < 0.001 —

Table 5.14: Statistical Significance for the Affymetrix U95 Latin Square Analysis. The first row of
each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value obtained
using the χ2

1 distribution to determine significance.

comparable and outperformed the remaining algorithms. The pooled S-Score performed more

poorly than the multichip S-Score and Logit-T. For this analysis, the pooled S-Score was also

inferior to RMA, although it did outperform mmgMOS. The RVM method detected a number of

spike-in probes and was superior to mmgMOS, but still fared poorly compared to the other four

algorithms. However, in several instances, the estimation of the matrix hyperparameter for the

RVM method failed to converge.
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 52 22 49 41 40 37
3 53 35 55 45 44 44
4 59 39 59 49 54 29
5 61 40 61 55 56 27
6 63 47 63 49 55 42
7 64 52 63 56 55 39
8 64 50 64 57 57 45
9 64 51 64 41 55 45

10 64 48 63 40 51 27
11 60 49 60 38 49 42
12 60 48 58 42 48 46
13 57 38 57 40 45 38
14 52 17 48 34 37 22

Table 5.15: Statistical Analysis of the Affymetrix U133 Latin Square Dataset. All comparisons
are made using Experiment 1 as the baseline chip. Values are the number of spike-in probes
ranked in the top 64 according to the test statistic generated by each algorithm. The maximum
number of spike-in probes that could be detected is 64.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.587 197.000 — 126.938 67.103 258.651

S-Score 0.443 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 142.660 7.263 — — 10.998 28.553

S-Score < 0.001 0.007 — — < 0.001 < 0.001
RVM 278.170 7.289 — — 74.329 —

< 0.001 0.007 — — < 0.001 —

Table 5.16: Statistical Significance for the Affymetrix U133 Latin Square Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.



Chapter 6

Discussion

6.1 Overview

This study represents the first analysis of probe-level algorithms using a comprehensive set of

spike-in datasets. Although probe-level analysis has several potential advantages over probeset-

level expression summary algorithms, claims of superiority for probe-level methods must be eval-

uated critically prior to acceptance. Previous studies of probe-level algorithms have several short-

comings that this study attempts to address. First, most studies have relied on datasets for which

the true status of differential expression for each probeset is unknown, so that separation of true

positives from false positives is difficult. Second, the studies that have utilized spike-in datasets

were conducted prior to the development of some of the spike-in datasets available for this study.

These newer datasets incorporate recent advances in microarray design that would be expected

to lead to more accurate results, and would be more comparable to current microarray studies

than analyses conducted a few years ago. Third, previous probe-level studies have not examined

the quality of the datasets that are utilized, which may have a significant effect on the results

obtained. Fourth, few comparisons between probe-level methods have been made, so that the

relative advantages and disadvantages of different methods are not readily apparent.

192



193

6.2 Quality of Spike-In Datasets

The first set of significant results from this study concerns the quality of the available spike-in

datasets, which was sufficiently poor to exclude many of the datasets from analyses. The na-

ture of the spike-in experiments precludes the use of many standard tests for quality control for

microarray data. For example, checks for the presence of ribosomal RNA degradation products

are not useful, as these sequences would not be present in the spike-in studies even if significant

RNA degradation had occurred. Similarly, assessment of the signal intensities for “housekeeping”

genes would not be helpful as these sequences were not included in the spike-in sequences. Thus,

while the available spike-in datasets are generally believed to be of good quality, this can be dif-

ficult to verify. Assessment of linearity is possible with spike-in datasets and provide indications

of the quality of the experiments. The GeneLogic AML and Tonsil Latin Square datasets show

significant deviations from the expected linear increase in intensity with increasing concentration,

which is apparent from visual plots and from the low R2 values. Similarly, the spike arrays of the

Golden Spike dataset show significant departures from linearity, both visually and quantitatively.

Such findings might be interpreted as evidence that the assumption of linearity may not hold for

microarray data, particularly at low concentrations. Another interpretation would be that a linear

increase in signal occurs for microarray data, but the slope of the line differs among probesets. If

so, the increase in signal intensity for a given change in concentration that occurs with one probe-

set would not necessarily be the same as the increase in signal intensity that occurs with another

probeset for the same change in concentration, and data for the individual probesets could not be

combined. However, both the Affymetrix U95 and U133 Latin Square datasets show good results

for linearity, which raises concerns that the results for the GeneLogic Latin Square and Golden

Spike datasets represent poor quality in these experiments. The quantile-quantile plots for the

constant arrays of the Golden Spike dataset would represent a check for linearity when all spikes

are present at the same concentration. These plots show that the intensities are not from a single

distribution, which is also a significant violation of the assumption of linearity. Quantile-quantile

plots show that the assumption of linearity is reasonable for the GeneLogic Dilution dataset, al-
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though there are a small number of probes that fall outside of the 95% confidence bands. Finally,

it is concerning that the mappings of probesets to pool numbers could not be reproduced for the

Golden Spike dataset using the published online data, as this may also be an indicator of poor

quality for the experiment. Attempts to clarify these discrepancies with the authors were unsuc-

cessful, so it cannot be established with certainty whether these findings represent errors in the

original experiment or in the analyses from this study.

Taken collectively, the results of the quality assessment and data integrity checks for the spike-

in datasets indicate that significant problems may exist with these datasets. This is of particular

concern as these datasets are often used for establishing the accuracy of algorithms for detecting

differential expression, which is in turn used for making judgments regarding the algorithms to

pursue further. This study demonstrates that although spike-in experiments have shown improve-

ments over time, current datasets may not be adequate for the purpose of algorithm development.

Additional work is clearly needed regarding the design and creation of spike-in datasets to ensure

that the validation of existing and future algorithms is performed properly.

6.3 The S-Score Algorithm

The second set of significant results from this study concerns the nature of probe-level analyses

and how they are conducted. By extending the S-Score algorithm to multichip comparisons and

the RVM algorithm to a multivariate model, this study advances both the theoretical underpin-

nings of probe-level methodology and the practical implementation of suitable analytic methods.

For the S-Score algorithm, one of the chief concerns was that its development was based on

empiric models that were intuitively appealing but not mathematically rigorous. The results of

the current study provide initial results necessary for a more formal derivation of the S-Score

method. The S-Score statistic closely resembles the sum in the Lindeberg-Feller generalization

of the CLT. This would, in turn, predict that the S-Score statistic would approximately follow

a standard normal distribution after appropriate scaling, which was observed by the original au-

thors (Zhang et al., 2002). The convergence of the S-Score statistic would occur regardless of the
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underlying distribution of the signal intensities. This is a potential advantage over other meth-

ods that impose specific distributional assumptions, as the accuracy of the latter statistics may

not hold if the assumptions are violated. If the underlying distribution of the signal intensities is

approximately normal, the convergence of the S-Score statistic would be quite rapid. This would

allow accurate results to be obtained even with small sample sizes, such as comparisons between

two chips, which has also been observed (Kennedy et al., 2006a). The CLT would also predict

that the accuracy of the S-Score would increase as replicate chips were included in the statistic.

This study extends the original R implementation of the S-Score algorithm to include replicate

chips in the two conditions being compared and provides initial results on the performance of the

extended version using spike-in datasets. Overall, the multichip S-Score did quite well, showing

significantly better results than the standard probeset-level method RMA in the analysis of the

Affymetrix Latin Square datasets. The multichip S-Score also did significantly better than the

mmgMOS algorithm, which is a probe-level analysis method that assumes the signal intensities

follow a gamma distribution. As the complex physical properties governing the binding of sam-

ples to probe sequences on oligonucleotide microarrays may not be fully appreciated at present,

it would be quite understandable that a method that does not rely on underlying distributional

assumptions may show superior performance to a method that does, as shown in this study.

However, a critical requirement for the applicability of the CLT to the S-Score statistic is

that the denominator of the S-Score represent a consistent estimator of the variance of the signal

intensities. This has not been established for the original S-Score or, by extension, to the multichip

S-Score. Although the accuracy of the results obtained with these algorithms is encouraging,

it does not constitute a proof. Thus, this study also sought to improve the variance estimate

contained in the S-Score using an adaptation of the LPE algorithm, which was selected as its

assumptions are similar to those of the S-Score. Surprisingly, use of the variance estimator based

on the LPE algorithm led to a degradation in accuracy. The pooled S-Score did outperform RMA

in the analysis of the Affymetrix U95 Latin Square dataset, but its performance was inferior to

RMA for the Affymetrix U133 dataset. The pooled S-Score did not give comparable results to

the multichip S-Score for any of the datasets examined. The poorer performance may be due
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to limitations of the LPE method itself, particularly as applied to probe-level data. The variance

estimate produced by the LPE method is the variance of a group of probes having a similar average

intensity across chips. The upper tail of the distribution of signal intensities, which are often the

signals of interest for differential gene expression studies, tend to be sparsely populated. This

could lead to groups of probes having only a small number of members and in turn to a potentially

inaccurate estimate of the true variance for the groups of probes, especially if outliers are present.

The LPE algorithm attempts to correct the problem by requiring a minimum number of probes

within each group. However, with the sparseness of the upper tails, this requirement could lead to

probes with very different average intensities begin placed in the same group, which could inflate

the variance estimate. Thus, the LPE method may produce inflated variance estimates for the

probes with high intensity values. If such probes are likely to represent genes showing differential

expression, the inaccuracies in the variance estimates would lead to excessively small S-Scores,

making the detection of differential expression more difficult. Exploration of other methods for

estimating the probe-level variances are warranted to determine if the inflated variance estimates

can be eliminated and the performance of the pooled S-Score improved.

Taken together, these results provide a stronger theoretical background for the S-Score by

demonstrating the similarity of the S-Score formula to the CLT. These results do remain limited

by the fact that the variance estimate used in the calculation of the S-Score has not been estab-

lished as a proper variance. Application of the multichip S-Score to spike-in dataset standards

show excellent results, which is encouraging. The use of the LPE method to derive a more math-

ematically plausible variance estimate actually leads to poorer performance. This may be due to

problems with the implementation of the LPE method or may reflect the accuracy of the S-Score

variance estimator over other estimators.

6.4 The Random Variance Model

In contrast to the S-Score, the RVM method has a firm mathematical foundation by utilizing

a general linear model framework for comparing conditions and assuming an inverse gamma
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distribution for the error terms to achieve greater accuracy of the test statistics. However, it has

only been developed as a probeset-level model, which may not have the same level of accuracy

achieved by a probe-level model such as the S-Score. This study extends the RVM method to

probe-level data by adopting a multivariate model with an inverse Wishart distribution for the

error terms. The inverse Wishart is frequently viewed as a multivariate analogue of the gamma

distribution. The inverse Wishart is also the prior of choice for multivariate Bayesian analysis,

similar to the gamma for the univariate Bayesian model. This study provides two new proofs that

give the distribution of the modified likelihood ratio test under the multivariate RVM assumptions

and provide a method for estimating the hyperparameters used in the multivariate RVM method.

As originally formulated in this study, the multivariate RVM method requires that the sam-

ple variance-covariance matrix be a full rank, positive definite matrix. In the RVM method, this

would occur with probability 1 if and only if the number of chips minus the number of condi-

tions exceeds the number of probes in a probeset for a given Affymetrix chip type. Although

studies using Affymetrix GeneChips are increasing in size, the large number of chips required

by multivariate RVM with a nonsingular variance-covariance matrix remains unattainable for a

large number of experiments. Accordingly, this study incorporates recent developments in singu-

lar multivariate distribution theory to derive the RVM method for the case of a singular sample

variance-covariance matrix, although the matrix hyperparameter is still assumed to be of full

rank. Two new proofs are given for the distribution of the modified likelihood ratio test under the

singular multivariate RVM method as well as a method for estimating the hyperparameters. The

relationship between the singular and nonsingular RVM formulae is also formally established, so

that sets of computational routines specific for the singular and nonsingular cases can be devel-

oped for software implementations.

The assumption that the matrix hyperparameter B for the RVM method is of full rank, which

implies that the scalar hyperparameter a is greater than or equal to the number of probes in a

probeset, is required in the computation of the Jacobian of the transformations used in the multi-

variate F and beta distributions. The exact implications of this assumption on the RVM method

are not clear at this time. The matrix hyperparameter B, like the population covariance matrix Σ,
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is an unknown parameter; thus, its rank is unknown as well. Furthermore, although a consistent

estimator of B may be obtained using the sample data in the singular case, the latter does not

necessarily provide information about the rank of the former (Srivastava and von Rosen, 2002).

Thus, it is difficult to determine if violations of the assumption that the matrix hyperparameter is

of full rank occur. It should be noted that the current software implementation does restrict the

hyperparameter a to be greater than or equal to the number of probes in a probeset, so that the pre-

conditions on B are fulfilled. The estimates of the hyperparameters will still have the maximum

likelihood given the sample data, subject to the constraint on a, and thus represent reasonable

values for use in the multivariate RVM algorithm. However, as the optimization routines consis-

tently find the value of a on this boundary, future studies deriving formulae for the RVM method

when the matrix hyperparameter B is less than full rank seem warranted. Much of the theoretical

research on singular multivariate distributions is quite recent, so that such applications of singular

multivariate distributions must await further development of theory.

Given its theoretical rigor, and the favorable performance of the univariate RVM, the practical

results of the multivariate RVM are disappointing. The multivariate RVM was consistently poorer

than the multichip S-Score and Logit-T, which were the best performers. The multivariate RVM

was also consistently poorer than the pooled S-Score and RVM, although the differences were

less dramatic. It did outperform mmgMOS, though only on certain chips. Thus, the use of the

multivariate RVM often led to the worst results of the six class comparison algorithms chosen. It

is of course possible that these data indicate the RVM methodology is inappropriate for modeling

the intensity data of Affymetrix GeneChips and making inferences from the constructed model.

However, several other possible errors must be considered, many of which may be amenable to

improvement in future research.

The first consideration must be whether the model for the probe-level intensities given in

Equation (5.4) is correct. The residuals from this model are used in the construction of the like-

lihood ratio test in Equation (4.48) for hypothesis testing. The residuals are also used in estimat-

ing the hyperparameters through the RVM equation given in Equation (4.68) for the nonsingu-

lar case or Equation (4.75) for the singular case. Thus, misspecification of the intensity model
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in Equation (5.4) may have tremendous impact on which genes are declared differentially or

non-differentially expressed. The proposed intensity model, which incorporates fixed probe-level

and treatment-level effects, appears reasonable from both a biological and statistical perspective.

However, it might be argued that additional effects may be required for an adequate model, and

that some effects might be represented better by random rather than fixed effects. As an example,

there may be variation in the signal intensities due to the individual chip that is independent of

both the treatment and probe effects. This would lead to the inclusion of a chip-level effect in the

model of Equation (5.4). Such a chip-level effect would be appropriately modeled as a random

effect, as the chips used in an experiment constitute a random sample of chips drawn from the

population of chips that could have been selected. In the present work, consideration was given to

the inclusion of a chip-level effect as well as a probe-level effect, but this approach was ultimately

rejected due to limitations of the nlme package in fitting the model. As the probe effect is gener-

ally a greater source of variation than the chip effect in microarray experiments, the former was

retained in constructing the model. The inclusion of other effects, such as percent GC content,

may also be warranted but were not analyzed in the present work.

The hazards of underfitting and overfitting in general linear models are well-known in the

case of fixed effects (see, for example, Myers, 1990, pp. 112-114). The effects of model mis-

specification on the RVM method have not been investigated to date, but are conjectured to lead

to problems similar to those in the GLM. In underfitting, important predictor variables have been

omitted from the model, and the variation due to these omitted variables is incorporated into

the residual variance estimate. Depending on the nature of these predictors, the residuals could

become significantly biased compared to their true values, although their variance remains un-

changed. In the RVM method, the biased residuals would be expected to lead to inaccuracies in

the likelihood ratio test, as it does in the GLM. The biased residuals may have additional adverse

impact by affecting the estimate for the matrix hyperparameter B−1, which is also used in the

calculation of the likelihood ratio test. In overfitting, predictor variables of marginal importance

are included in the model. This leads to variance inflation, in which the estimates of the model

variance are excessively large compared to their true values. In the RVM method, this variance
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inflation would be expected to lead to wider confidence intervals for significance tests, difficulty

in declaring genes to be differentially expressed, and larger numbers of false negatives.

A second consideration is the choice of the covariance structure used for the matrix hyper-

parameter B−1, which is in turn reflected in the structure of the covariance matrix Σ−1. Based

on the work of Le et al. (1998), it appears that some structuring of the matrix hyperparameter

is necessary to reduce the number of estimated variance components and avoid problems with

identifiability. The compound symmetric structure, in which each of the different probes are as-

sumed to have the same correlation, was chosen based on previous work of Archer et al. (2006)

with pixel-level intensity data. In their work, the use of an first-order autoregressive structure, in

which the correlation between different probes decreases with increasing distance, did not offer

any significant advantages over the compound symmetric structure; other structures were not in-

vestigated. However, they note that this may reflect problems with distance metrics rather than

the lack of advantage for more complex structures.

A third consideration is the choice of distribution for the variances in the RVM method; for

the present work, the variance-covariance matrices are assumed to be distributed according to an

inverted Wishart distribution. This is a logical choice as the inverted Wishart is the conjugate prior

for the Wishart in Bayesian analysis. Furthermore, the inverted Wishart is the multivariate ana-

logue of the inverted gamma distribution, which was used successfully in the development and

validation of the univariate RVM. The inverted Wishart also offers computational convenience

in the manipulation of the joint likelihood of the intensity measurements and their variance-

covariance matrices, which is essential for the derivation of the RVM. Nevertheless, the form

of the distribution for the variance-covariance matrices was chosen based on theoretical assump-

tions, and it is possible that other choices might result in a better fit. Further investigation of the

effects of different distributional assumptions may be pursued in future work.

A fourth consideration is the model fitting method used for obtaining the estimates of the

hyperparameters for the RVM method. In the present work, three parameters were varied to ob-

tain empirical maximum likelihood estimates: the degrees of freedom a, the variance σ2, and the

covariance σ2
c . The variance σ2 constitutes the diagonal elements of the matrix hyperparameter
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B−1, while the covariance σ2
c constitutes the off-diagonal elements. These three parameters were

allowed to vary subject to the constraints a ≥ p and σ2, σ2
c > 0. However, this is method of

optimization is problematic, as many of the possible combinations of σ2 and σ2
c under these con-

straints lead to a matrix B−1 that is not positive definite and thus not valid for the inverted Wishart

distribution. The likelihood maximization routine does remove matrix hyperparameters that are

not positive definite from consideration, but this creates multiple discontinuities in the likelihood

function. The Nelder-Mead simplex algorithm used in the optim function is a derivative-free

search method and relatively more robust to such discontinuities than other algorithms such as

the Newton-Raphson. However, the number of discontinuities in the likelihood function still may

lead to nonconvergence or convergence to a nonoptimal solution, even with the Nelder-Mead al-

gorithm. Even if the optimization routine reports that convergence was achieved, the number of

discontinuities may lead to convergence to a nonoptimal solution.

A more proper maximum likelihood estimation for B−1 would factor the matrix hyperpa-

rameter using the Cholesky or similar decomposition to produce a matrix where the individual

elements may assume any values in a specified range with no discontinuities. These individual

elements would then be allowed to vary over their range to locate a maximum likelihood estimate

for B−1 using an optimization routine. Such an approach is more acceptable theoretically than

the method used in the present work, but in practicality much more difficult to implement. The

simple approach of allowing all of the individual elements within the decomposition matrix to

vary ignores the fact that these elements are not independent due to the imposition of structure on

the matrix B−1. Furthermore, the number of variables being optimized makes such an approach

infeasible with current software. For example, using the Cholesky decomposition would produce

a lower triangular matrix, so that p(p+1)
2 elements would need to be optimized individually. This

would quickly overwhelm the capabilities of the optim function, which can optimize up to 20

variables simultaneously; other software packages have similar or greater restrictions. The more

rigorous approach is to determine the dependencies among the individual elements of the decom-

position matrix. Since, under compound symmetry, only two variables are needed for complete

specification of B−1, only two variables (though in a different form) would be needed to specify



202

the elements of the decomposition matrix. The compound symmetry or similar structure would

be well within the capabilities of current optimization software. However, the computation of

the decomposition matrix based on the structure of B−1 is quite difficult to implement and has

not been addressed to date in the literature. Thus, improvements in the optimization methodol-

ogy, while promising, will require considerable time for the development of the relevant matrix

formulae and construction of dedicated software.

A fifth and final consideration is the singularity of the covariance matrix used in the RVM

for the spike-in datasets. This has the effect of restricting the subspace for the covariance matrix

compared to the nonsingular case and reducing the amount of information contained in the sam-

ple. Thus, it is possible that the sample does not contain sufficient information for estimation of

the population parameters, which may be accentuated in the singular case. If so, the performance

of the RVM in the nonsingular case may be superior to other methods, even though the RVM in

the singular case is not. Such a conjecture is interesting but cannot be properly evaluated with

available spike-in datasets. All of the current spike-in datasets, as reviewed in this work, do not

have an adequate number of chips to permit assessment of the nonsingular RVM. However, as

research on standards for evaluation of microarray data analysis methods continues, it is likely

that larger spike-in datasets will become available in the future. Verifying the performance of the

nonsingular RVM should be a high priority for future research, as this may clarify the reasons for

the singular RVM.

Taken collectively, these results demonstrate that the univariate RVM method can be success-

fully generalized to a multivariate one. Using multivariate distribution theory, new theorems are

proven for the likelihood ratio test under the RVM assumptions, as well as the distribution of

the modified sums of squares. Recent work on singular multivariate distributions are also in-

corporated to address small sample sizes, leading to theorems for a singular multivariate RVM.

Application of the singular multivariate RVM to spike-in dataset standards, unfortunately, leads

to poor results compared to other available class comparison methods. This may reflect problems

with the implementation of the RVM method rather than deficiencies in the underlying model.



Chapter 7

Future Research

This study represents an initial contribution to the rapidly growing field of multivariate statistics

and microarray data analysis. As such, part of the goal of this study is to develop lines of future

research that will be pursued in later studies, which will be detailed in this section. Future work

will focus on further refinements to the multivariate extensions of the S-Score and the RVM

method, both of which show promise. The unexpected collateral findings for the quality of spike-

in data will also be an important topic for future exploration.

7.1 Spike-In Datasets

Proper evaluation of algorithms for detecting differential expression in microarray experiments

requires assessment using standardized datasets. The development of spike-in datasets represents

a significant advancement in this assessment, as the differentially expressed genes are known and

can be compared to the output of different algorithms. However, this study demonstrates that

problems in quality occur with all of the presently available spike-in datasets. This is particularly

true for the first spike-in datasets created. The quality has improved with later datasets, yet none

could be considered entirely satisfactory. Additional work in the development of spike-in data

will be essential for the development of microarray data analysis, as accurate comparisons among

algorithms is not possible without a known standard for measuring differential expression.

An obvious avenue for future research is the creation of additional spike-in datasets. Such

datasets would be expected to show improved quality due to refinements in chip design, hybridiza-

203
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tion techniques, and analytical methods that have occurred since earlier spike-in experiments were

performed. Newer datasets might also be larger than current ones, allowing the evaluation of mul-

tivariate analytic techniques without resorting to singular distributions. The creation of additional

datasets is very feasible from a technical perspective, requiring that known RNA samples be

titrated to specific concentrations, hybridized under strictly controlled conditions, and analyzed

to produce the corresponding electronic data. Yet such experiments can be difficult to justify,

as they represent a considerable investment of time and resources that may offer little immedi-

ate reward to the individuals and laboratories who undertake them. The promulgation of results

such as those of this study, which demonstrate the deficiencies of current datasets, will likely be

necessary to ensure that the creation of more spike-in datasets will be undertaken.

A promising alternative to spike-in datasets is the creation of RNA titration series for vali-

dating algorithms to detect differential gene expression. The development of titration series is

newer than the development of spike-ins, but some datasets have begun to appear in the liter-

ature (Thompson et al., 2005) and as part of the MicroArray Quality Control (MAQC) project

(Shi et al., 2006). Under this approach, two or more samples from different tissues are mixed

together in a series of fixed ratios. In contrast to the spike-in datasets, the absolute levels of gene

expression in the samples are not known, but the relative gene expression changes can still be

determined based on the mixing ratios. Knowledge of these relative differences would be suf-

ficient for assessing the performance of algorithms. Such experiments would be advantageous,

as the number of differentially expressed genes would be larger than current spike-in datasets

Such experiments may also be simpler to execute from a technical perspective, as the synthesis of

spike-in clones is not necessary, but the requirements of time and resources may still make them

difficult to justify.

Yet another alternative to spike-in datasets is the creation of RNA titration series in silico

rather than in vitro. Under this approach, two or more samples from different tissues would still

be combined in a series of fixed ratios, but mixing would be done at the level of the intensities

from *.CEL files rather than at the level of extracted RNA solutions. An in silico titration would

be quite promising, as the time and resource requirements for the creation of datasets would be
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greatly reduced. It would also allow datasets to be expanded at a later date, which is not possible

with current spike-in data. However, a greater technical investment would be needed for in silico

than in vitro titration. The latter type of dataset would still need to be created to validate the

results of the former, demonstrating that the two methods of titration lead to similar results. Such

comparisons would necessitate new developments in equivalence testing, which has traditionally

been applied to univariate data. Research in multivariate equivalence testing has only recently

begun, and appropriate methods of equivalence testing for high-dimensional data have not been

investigated to date.

A final avenue for research involving spike-in datasets is the development of quality control

assessments. Research on this topic is growing rapidly, with a number of techniques being pro-

posed to address this issue. However, as seen in the current study, spike-in datasets present unique

challenges for quality control. The typical microarray experiment has a relatively large proportion

of genes showing expression changes – approximately 10% – with the fold-changes varying over a

wide range. Also, the full complement of cellular mRNA is used in the hybridization. In contrast,

spike-in experiments may involve only a small number of genes, which are present with only

a fixed number of fold-changes. Spike-in experiments may also lack specific RNA sequences,

such as ribosomal RNA and messenger mRNA from “housekeeping” genes that are often used in

quality assessments. The present study uses alternative methods, such as testing the assumption

of linearity of hybridization signal with concentration, as quality measures. These analyses did

demonstrate problems with the quality of existing spike-in datasets, but additional methods may

be necessary. Assuming the continued development of spike-in datasets, these relatively simple

methods may be adequate to detect gross quality defects, but not more subtle indicators of poor

quality that may be present.

7.2 The S-Score Algorithm

The performance of the S-Score algorithm was excellent in the original studies utilizing two-chip

comparisons. The present work extends the S-Score algorithm to incorporate multiple chips by
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averaging the intensity and background measurements of chips by condition. This multichip S-

Score compares quite favorably to other probe- and probeset-level models that are in current use.

Such improvements are to be expected, given the similarity of the S-Score error formulation to

the formulation of the Lindeberg-Feller generalization of the CLT. However, in order for the

S-Score to fulfill the requirements of the CLT, its proxy error variance must be shown to be a

consistent estimator of the true error variance. Demonstrating the consistency of the proxy error

variance, or finding a substitute that performs comparably, constitutes the primary direction for

future research on the S-Score.

The LPE algorithm represents a reasonable alternative to the proxy variance estimator of

the S-Score algorithm. It is mathematically justifiable and in keeping with the intensity-based

variance estimates used by the S-Score algorithm. The original and subsequent reports on the LPE

algorithm also showed favorable results (Jain et al., 2003; Park et al., 2007). The adapted version

of the LPE used in the current work, however, showed only modest ability to detect differentially

expressed genes that was inferior to most of the other algorithms tested. Development of a version

that more closely parallels the original LPE may result in improvements and will be explored

in further work. For example, use of all pairwise comparisons to guarantee that the expected

value of the intensity differences is 0 may offer benefits over the use of the mean intensity across

all chips. Another line of research would be to explore other methods of creating intervals of

adaptive widths in the high intensity region, so that more accurate estimates of the variance for

these probes can be obtained. The tradeoff between potentially high variance estimates due to

small numbers of probes versus potentially high variance estimates due to grouping disparate

high intensity measurements requires further investigation to determine optimal methods.

A second area of research on the S-Score algorithm would be to study alternatives to the LPE

method for obtaining a proxy variance estimate. Many of the intensity-based variance estimates

assume a specific distribution for the variances, as in Sartor et al. (2006), Weng et al. (2006), or Hu

and Wright (2007). Some distribution-free models do exist, but are probeset- rather than probe-

level models. Eaves et al. (2002) used a weighted average of the variance of a probeset across

chips and the mean of the variances for probesets with similar intensities. This includes aspects of
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both the original LPE model and the adapted model used in the present work. Mansourian et al.

(2004) obtain a robust estimate of the variance by dividing the probeset intensities into equal-sized

bins, then computing the median of the variances for the probesets in each bin. Neuhäuser and

Jöckel (2006) use a modified bootstrap as another nonparametric approach. For each gene, the

probeset expression summaries are centered using the mean expression value of the gene across

all chips. These centered expression summaries constitute the sample for obtaining the bootstrap

estimate, with resampling performed at the gene level. Significance is determined with the t test

comparing the original and bootstrap samples. Features of these approaches may be developed

into probe-level implementations for the S-Score algorithm to determine if additional gains over

the pooled S-Score can be obtained.

Finally, several minor improvements in the S-Score algorithm may be pursued in future re-

search. Rewriting the code in a compiled language such as C would result in a significant gain

in speed, particularly in the computation of the SF and SDT parameters that are required by the

SScore function. This would also allow the open source Affymetrix routines for the computa-

tion of the SF and SDT to be incorporated into the code, assuring greater compatibility with the

Affymetrix software. Creation of software routines that compute the S-Scores directly from the

*.CEL files, rather than an object stored in memory, would reduce time and memory requirements

in a manner similar to the justRMA function in the affy package. Such improvements would be

included in future releases of the sscore package through the Bioconductor project.

7.3 The Random Variance Model

The RVM method is based on a sound theoretical foundation in multivariate statistical analysis.

The imposition of a prior distribution for the covariance matrix has long been used in Bayesian

analysis, and translates well to the frequentist approach. However, the practical results of the

multivariate RVM method applied to available spike-in datasets is disappointing. Additional work

is necessary to evaluate the RVM method and determine its usefulness in microarray data analysis.

One of the greatest concerns is that the nonsingular RVM method has not been evaluated,
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due to limitations of current spike-in datasets. Thus it is difficult to ascertain the impact of the

singular multivariate distribution, with its associated data reduction, on the results of the RVM

method. The question of whether the nonsingular RVM method can achieve greater accuracy

than the singular RVM cannot be answered without the development of larger spike-in or other

standard datasets. Such datasets must have the number of chips minus the number of classes

exceed the number of probes per probeset for the sample covariance matrix to be nonsingular;

this would be 7 chips per class for a 2-class comparison involving the human U133 chip, but may

require greater numbers for other chip types. If larger standardized datasets become available

in the future, analysis using the nonsingular RVM method is straightforward, as existing code

will need only slight modification to incorporate the nonsingular rather than singular multivariate

distribution.

Another significant concern is the optimization routine for estimating the hyperparameters for

the prior distribution, subject to the constraint that the matrix hyperparameter B be positive defi-

nite. The accuracy of this estimate affects the value of the likelihood ratio test, used for declaring

genes differentially expressed, so that errors in the estimate can have a great impact on perfor-

mance. Estimation of a positive definite covariance matrix is seen as a difficult problem without

a standard solution (Schwallie, 1985). In many cases, the positive definite constraint is ignored

in the estimation process. This is often unsatisfactory as it frequently leads to negative variance

estimates that lack interpretability. Another option is to perform unconstrained estimation, then

adjust the estimate so that the matrix is positive definite, using algorithms dedicated to this pur-

pose (Hu and Olkin, 1991). This approach is usually unsatisfactory from a statistical perspective

as the estimate is no longer a maximum likelihood estimate, and no longer possesses the desir-

able properties of the MLE. The option used in the current study is to assign an infinite value

to the minus log likelihood (which corresponds to a negative infinite value for the likelihood) for

any estimate that is not positive definite. This guarantees that a positive definite matrix will be

selected for the maximum likelihood estimate, except in the improbable event that all calculated

likelihoods are negative infinite. However, it is possible that assigning infinite values to the minus

log likelihood may sufficiently distort the surface of the likelihood function that the optimization
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routine cannot locate the correct solution. It is difficult to determine whether the optimization

routine converges to an incorrect solution, indicating a need for further research to address the

positive definite constraint.

The best option would be to transform the matrix hyperparameter and address the constraint

within the transformation. Two possibilities for the transformation are the Cholesky decompo-

sition and the matrix exponential function. For the Cholesky, the positive definite matrix B is

written as

B = B∗B∗′,

where B∗ is a lower triangular matrix. The individual elements of B∗ are unconstrained, while still

guaranteeing that B∗ is positive definite. Thus the individual elements of B∗ may be used as the

parameters for the optimization routine to determine the estimate of B. The matrix exponential

B = exp (B+) may be calculated as

exp
(
B+) =

∞∑
i=0

(B+)i

i!
,

where (B+)0 = Ip and

(
B+)i

=

i︷               ︸︸               ︷
B+ · B+ · . . . · B+ .

This is the matrix analogue to the Taylor series expansion for the exponential of the scalar b,

which is given by

exp (b) =

∞∑
i=0

bi

i!
.

If the matrix B+ is real and symmetric, then exp (B+) is positive definite (Chiu et al., 1996). Thus

the individual elements of the lower triangle of B+ may be used as parameters for the optimization

routine without constraint, with exponentiation of the corresponding symmetric matrix to com-
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pute the estimate of B. Both the Cholesky and the matrix exponential would appear suitable for

the RVM method, though using a transformation would increase computational time and com-

plexity. It is also unclear how the pattern of the hyperparameter B would be maintained when

using a transformation.

A related area for further research would be the constraint that the matrix hyperparameter for

the prior distribution be nonsingular. This constraint is a consequence of deriving the Jacobian

of the transformation of Σ̂ to (a − p − 1) B1/2Σ̂B1/2, which is used to estimate the values of a

and B. Existing theorems for calculating this Jacobian require that the matrix B be nonsingular

(Dı́az-Garcı́a and Gutiérrez Jáimez, 1997). Since, under singular RVM, the matrix B serves as a

hyperparameter for the prior of the singular matrix Σ̂, there is no reason to assume that B would be

nonsingular; the constraint is merely a computational convenience. Extending current theorems

regarding the above transformation would require considerable theoretical work to incorporate the

generalized inverse of B into the Jacobian. The development of singular multivariate statistical

theory is currently a rapidly growing topic of research, and the derivation of the Jacobian with

a singular B matrix would be of great theoretical interest. If the accuracy of the singular RVM

method improves with the application of the previously mentioned modifications, the derivation

would be of practical importance as well.

Future work should also investigate the appropriateness of the large-sample χ2 approximation

for determining the significance of the likelihood ratio test statistic in the RVM method. Clearly,

the sample sizes used in the spike-in dataset analysis raise the possibility that the approximation

may not be adequate; a similar situation would arise in many microarray experiments. In the

present study, the implementation of the RVM method does not allow the effects of the large-

sample approximation to be disentangled from other potential sources of poor performance, but

the lines of research detailed above should clarify this issue. If the approximation for the likeli-

hood ratio test proves to be insufficient, potential remedial measures do exist. Ghosh and Sinha

(1980) note that the likelihood ratio test remains valid if a prior distribution is imposed on the

covariance matrix and subsequently integrated out of the likelihood. For the RVM method, this

would transform the likelihood ratio test from the ratio of the maxima of two multivariate normal
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distributions to the ratio of the maxima of two multivariate t distributions. This transformation

may lead to a form of the likelihood ratio test for which an exact distribution is available. Alterna-

tively, Dempster (1958, 1960) suggests abandoning the likelihood ratio test for high-dimensional

data, instead choosing a suitable distance metric and then using the distribution of the data to

develop an associated test of significance. Assuming multivariate normality, the proposed test

statistic becomes the ratio of the trace of the hypothesis sums of squares to the trace of the error

sums of squares, which approximately follows a χ2 distribution. Under the RVM framework,

Dempster’s test would become

Tr
(
ŜS + B−1

)
Tr

(̂̂SS − ŜS
) .

Similar to the likelihood ratio test, Dempster’s test would require that the term Σ−1 be factored

from the term Σ−1
(
(n − k + a) Σ̂

)
to derive the test statistic, which cannot be done. However, the

general approach may still be useful if another suitable distance metric can be found in future

studies.

The final major concern regarding the RVM method is the selection of the multivariate model

for the intensities and their covariances. The current study uses a model for the intensities that

incorporates a treatment effect and a probe effect to explain the observed differences between

experimental groups. The covariance matrix for the intensity measurements is assumed to follow

a compound symmetric structure. These choices are based on previous work on mixed effects

models for intensities (Archer et al., 2006) and current limitations of model-fitting software in

the R programming environment. In future work, additional terms, such as a chip effect, would

be incorporated into the mixed model, and formal statistical tests used to evaluate the degree of

improvement in the model based on the new terms. Implementation of this will largely depend

on further improvements in the R packages for fitting mixed effects models, or the porting of the

RVM method to other statistical programming environments such as SAS IML or Stata. Future

work should also explore alternative covariance structures, such as first-order autoregressive and
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Toeplitz, as choices for the mixed model. Such alternatives did not offer any advantage over

a compound symmetric structure in previous research Archer et al. (2006), but may be yield

different results with the RVM method, particularly if coupled with new distance measures. The

use of structured covariance matrices would appear to be necessary to reduce the number of

parameters sufficiently to allow the maximum likelihood estimate to be computed.

There are also several minor improvements in the RVM method to be pursued in future re-

search. Assuming that the investigations described above lead to improved accuracy of the RVM

test statistic, the p-values that are obtained should be adjusted to control the false discovery rate.

Such a modification would not be difficult to implement, but must account for the small sample

sizes in estimating the null distribution for the FDR. Jain et al. (2005) have proposed the rank

invariant resampling (RIR) method for estimating the null distribution that appears well suited to

such situations.

The computational efficiency of the RVM method may also be improved rather easily. Con-

siderable gains could be achieved by converting the code from the interpreted R language to the

compiled C language. Additional gains might be realized by development of specialized opti-

mization routines for estimating the hyperparameters under the RVM method, rather than using

the general-purpose nlme package. Finally, again assuming that the above research produces a

more accurate RVM test statistic, the method would be developed for release as an R package for

the Bioconductor project.



Chapter 8

Conclusions

The purpose of this project is to expand the knowledge and use of probe-level analysis methods

for Affymetrix GeneChip data by extending two promising models, the S-Score and the Ran-

dom Variance Model. The original S-Score implements probe-level analysis but is limited as it

performs only two-chip comparisons. This project extends S-Score algorithm by allowing com-

parisons among multiple chips. A simple averaging of the chip intensities and variances performs

quite well on spike-in datasets, and appears reasonable based on the Central Limit Theorem. The

difficulty with this approach is that the variance estimate is not well justified theoretically. The

use of alternative variance models, such as the local pooled error algorithm, result in degraded

performance, but other variance models are available and will be pursued in future work.

The RVM method is well justified theoretically, but the original formulation was limited to

probeset-level data. This project extends the RVM method to a multivariate probe-level model,

which is proven mathematically. The performance of the RVM implementation appears inferior to

probeset-level and other probe-level methods, but may well be due to deficiencies in the associated

software rather than the model itself. Several strategies for addressing this problem are proposed

and will be explored in future work.

In summary, this project contributes to the growing research on probe-level analysis by ad-

vancing two previously existing models. Neither is optimal, as one still has theoretical issues and

the other has practical issues that must be addressed. Still, this work shows the potential gains

of probe-level analysis over traditional probeset-level methods, and shows that such work has

a sound theoretical basis using recent developments in the theory of multivariate analysis. It is

213
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hoped that this project will serve to stimulate further research into this rewarding topic.
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A.1 Quality Control Assessment of the Choe et al. Spike-in
Dataset

############################################################

#

# Program Name: ChoeQuality.pl

# Author: Richard Kennedy

# Date: 12/14/2007

#

# Purpose: This program performs quality assessments for

# the Choe et al. Golden Spike dataset.

#

# Description: This program performs quality assessments for

# the Choe et al. Golden Spike dataset in two ways. First,

# the number of clone IDs and probesets assigned to each

# pool number are computed from the dataset provided on the

# authors’ website, which are compared to the table in their

# BMC Bioinformatics article. Second, the probesets are

# mapped to pool numbers, then pool numbers to fold change,

# to give the fold change data for each probeset. These

# fold change data are compared to the fold change data

# for each probeset provided on the authors’ website.

#

############################################################

# Define several hash tables for analyzing the data. The

# hash data structure makes it particularly easy to track

# the assignments using the key value, which corresponds to

# the clone ID or the pool number.

# Create a hash table for the number of clones assigned to

# each pool. Note that, in addition to the numbered pools,

# there are two additional pools (described in the Choe et

# al. article): empty, which are not assigned to any pool

# (these are probesets that were not spiked in); and mixed,

# which are weakly assigned to multiple pools. These are

# identified as such in the authors’ datafiles. The key

# value for the hash table is the pool number, and the

# associated data value is the number of clones, which

# is initialized to 0. The actual number will be calculated

# later.

%CloneCount = (empty => 0,

mixed => 0,
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1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

# Create another hash table for the fold change assigned to

# each pool. These data are obtained from columns 1 and 4

# of Table 1 in the Choe et al. article. The empty clones

# are arbitrarily assigned a concentration of -1 and the

# mixed clones a concentration -2 by the original authors

# for identification. The key value for the hash is the

# pool number, and the associated data value is the fold

# change of the spike (S) relative to control (C).

%PoolFold = (empty => -1,

mixed => -2,

unassigned => -3,

1 => 1.2,

2 => 2,

3 => 1.5,

4 => 2.5,

5 => 1.2,

6 => 3,

7 => 3.5,

8 => 1.5,

9 => 4,

10 => 1.7,

13 => 1,

14 => 1,

15 => 1,

16 => 1,

17 => 1,

18 => 1,
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19 => 1);

# Create a third hash table for the number of probesets

# assigned to each pool. These values are computed from the

# data files at the authors’ website. The values of -1 and

# -2 again represent the empty and mixed clones. The value

# of -3 is used to record any probesets which were not

# assigned to any pool. The key value for the hash table is

# the pool number, and the associated data value is the

# number of probesets.

%ProbesetCount = (empty => 0,

mixed => 0,

unassigned => 0,

1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

# Create an empty hash structure for storing the pool number

# assigned to each clone. This will be filled using the

# data file from the authors’ website. The key value for

# the hash table will be the clone ID, and the associated

# data value will be the pool number.

%ClonePool = ();

# Create an empty hash structure for storing the Flybase ID

# number assigned to each clone. This is not used in the

# analysis but is output in the data file for completeness.

# The key value for the hash table will be the clone ID, and

# the associated data value will be the Flybase ID.

%CloneFlybase = ();
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# Create an empty hash structure for storing the gene name

# assigned to each clone. This is not used in the analysis

# but is output in the data file for completeness. The key

# value for the hash table will be the clone ID, and the

# associated data value will be the gene name.

%CloneGene = ();

# Create an empty two-way hash structure (a hash of hashes)

# for identifying the probesets assigned to each pool. The

# first key value of the hash table will be the pool number,

# and the second key value of the hash table will be the

# probeset ID. The associated data value is simply an

# indicator variable set to 1 if the probeset is in the

# specified pool.

%ProbesetPool = ();

# Create a list containing the pool numbers and all possible

# key assignments (pool numbers plus empty and mixed

# categories). These will be used as indices for printing

# the data in the appropriate order (since Perl sorts by the

# ASCII collating sequence rather than numeric).

@PoolIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’);

@AllIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’,’empty’,’mixed’);

# Open the data file (from the authors’ website) containing

# the information about each clone. This is stored in

# a .csv file with the rows being the clone and the columns

# being the pool number, clone ID, Flybase ID, and gene

# name in order.

open(CHOE,"<gb-2005-6-2-r16-s8.csv");

# Loop to read the entire data file

while (<CHOE>) {

# Parse each line into fields

chomp $_;
@fields = split(/,/,$_);
$Pool = $fields[0];

$CloneID = $fields[1];

$FlybaseID = $fields[2];
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$Gene = $fields[3];

# Increment the clone ID count for the specified pool number

$CloneCount{$Pool} = $CloneCount{$Pool} + 1;

# Store each data item in the appropriate hash, indexed

# by clone ID for access

$ClonePool{$CloneID} = $Pool;

$CloneFlybase{$CloneID} = $FlybaseID;

$CloneGene{$CloneID} = $Gene;

}

close(CHOE);

# Note that the clone IDs for the empty and mixed categories

# have only the pool and clone ID columns populated. The

# concentration , Flybase ID, and gene data are set to

# arbitrary values so they can be identified later.

$ClonePool{’empty’} = ’empty’;

$CloneFlybase{’empty’} = "";

$CloneGene{’empty’} = "";

$ClonePool{’mixed’} = ’mixed’;

$CloneFlybase{’mixed’} = "";

$CloneGene{’mixed’} = "";

# Print a sorted list of the clone IDs showing the pool

# assignments. This should reproduce column 2 of Table 1

# in the Choe et al. article.

print "Clone assignments to pools\n";
print "--------------------------\n";
print "Pool Number\tNumber of Clones\n";

# Loop through each of the key values, which are the pool

# numbers, and locate the corresponding number of

# clone IDs assigned to it

$TotalCount = 0;

foreach $key (@PoolIndex) {
print $key,"\t\t",$CloneCount{$key},"\n";
$TotalCount = $TotalCount + $CloneCount{$key};

}

print "--------------------------\n";
print "Total\t\t$TotalCount\n\n";

# Open the data file (from the authors’ website) containing

# information about the mapping of the clones to Affymetrix
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# ID numbers. This is a tab-delimited text file with the

# rows being the probeset ID and the columns being the clone

# ID (there can be more than one clone ID per probeset, in

# which case the probeset is listed multiple times), the

# number of probe pairs in the probeset that match the clone

# ID, the fold change for the clone ID, and the fold change

# for the probeset (which is the weighted average of the

# clone ID fold change for probesets matching multiple clone

# IDs).

# Note that the original file on the website contains

# a header which was manually removed prior to running this

# analysis. Also, the original text file on the web does

# not have the .txt extension and, depending on the Perl

# implementation , the end-of-line character may need to be

# changed to the Unix convention (line feed) for this code

# to work.

open(PROBESETMAP ,"<mapping-affy2clones.txt");

# Create an output file showing the fold changes obtained

# in two different manners. This will be a .csv file

# with rows being the probeset ID and the columns being

# the fold change computed directly (as a weighted average

# of the clone ID fold change in the file), the fold change

# computed indirectly (as a weighted average of the fold

# change of the pool to which the clone ID is assigned, which

# is from the previous input file), and the difference between

# the two.

open(OUTFILE,">ChoeMapping.csv");
print OUTFILE "Probe ID,Direct Fold Change,Indirect Fold
Change,Difference\n";

# Initialize an accumulator variable for storing the total

# counts across all pools

$TotalCount = 0;

# Initialize the value of the previous probe read from the

# file to a null value, so that the start can be identified.

# This value is used to track the previous probe so that

# probesets mapping to multiple clone IDs can be

# appropriately processed

$PreviousProbeset = "";

# Loop through the entire input file

while (<PROBESETMAP >) {
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# Increment the total count of the number of probesets

# (which includes duplicates)

$TotalCount = $TotalCount + 1;

# Split the input line into fields

chomp $_;
@fields = split(/\t/,$_);
$ProbesetID = $fields[0];

$CloneID = $fields[1];

$NumProbes = $fields[2];

$CloneFold = $fields[3];

$ProbesetFold = $fields[4];

# If this clone ID does not exist in the previously

# created pool hash, then there is no pool assignment

# for the clone ID, so print an error message.

if (!defined($ClonePool{$CloneID})) {
print "Note: Probeset $ProbesetID is assigned to Clone
ID $CloneID ,\n";

print " but Clone ID $CloneID has no pool

assignment\n";

} else {

# Otherwise , the clone ID does have a pool assignment.

# Get the pool number and add the current probeset ID

# to the list of probesets for this pool.

$Pool = $ClonePool{$CloneID};

$ProbesetPool{$Pool}{$ProbesetID} = 1;

# Check to see if this probeset ID is the same as the

# probeset ID from the previous line. If so, add the

# weighted fold change and the total number of probes

# to the running total.

if ($ProbesetID eq $PreviousProbeset) {
$DirectFold = $DirectFold + $NumProbes * $CloneFold;

$IndirectFold = $IndirectFold + $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $TotalProbes + $NumProbes;

# If this probeset ID is not the same as the probeset ID

# from the previous line, then all of the data for the

# previous probeset has been read in. Compute the fold

# change for the previous probeset and output it to the file

} else {
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# If the previous probeset is not a null string, then this

# is not the start of the file. Compute the fold change for

# the previous probeset by dividing the total by the number

# of probes for both the direct and indirect methods, as

# well as the difference between them.

if ($PreviousProbeset ne "") {
$DirectFold = $DirectFold / $TotalProbes;

$IndirectFold = $IndirectFold / $TotalProbes;

$Difference = abs($DirectFold - $IndirectFold);

# If the difference between the direct and indirect

# computations is not zero (within round-off error), then

# the clone ID has not been assigned the same fold change as

# the pool to which it belongs, so print an error message.

if ($Difference > 1e-3) {
print "Note: Probeset ID $PreviousProbeset
has different fold change\n";

print "for direct vs. indirect
calculations.\n";

print "Direct Fold Change =
$DirectFold\tIndirect Fold Change =

$IndirectFold\n";

}

# Write the data to the output file for all probesets , so

# that it may be reviewed later if desired.

print OUTFILE "$PreviousProbeset ,$DirectFold ,
$IndirectFold ,$Difference\n";

}

# Save the data for the current probeset as the previous

# probeset, in preparation for reading the next line of

# data.

$DirectFold = $NumProbes * $CloneFold;

$IndirectFold = $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $NumProbes;

$PreviousProbeset = $ProbesetID;

}

}

# Increment the count of the number of probesets for this

# pool

$ProbesetCount{$Pool} = $ProbesetCount{$Pool} + 1;

}
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# Note that the last line of the mapping data file has not

# been processed. This sends the last line to the output

# file.

print OUTFILE "$PreviousProbeset ,",$DirectFold/$TotalProbes ,",",
$IndirectFold/$TotalProbes ,",","$Difference\n";

print "\n\n";

close(PROBESETMAP);
close(OUTFILE);

# Print the list of pool numbers and the number of

# Affymetrix probesets assigned to each pool.

print "Probeset assignments to pools\n";
print "-----------------------------\n";
print "Pool Number\tNumber of Probesets\n";

# Loop through the key values, which are the pool numbers,

# and locate the corresponding number of probesets assigned

# to it

foreach $key (@AllIndex) {
print $key,"\t\t",$ProbesetCount{$key},"\n";

}

# Show the total number of probesets across all pools

print "-----------------------------\n";
print "Total\t\t$TotalCount\n\n\n";

# Note that it is possible for a probeset to be assigned to

# a pool more than once if multiple clones in the same pool

# map to the same probeset. This prints a listing of the

# pool numbers and the number of probesets assigned to each

# pool, counting each probeset only once per pool. This

# should reproduce Table 1 in the Choe et al. article.

print "Unique probeset assignments to pools\n";
print "------------------------------------\n";
print "Pool Number\tNumber of Probesets\n";

# Loop through the key values, which are the pool numbers,

# and locate the corresponding data value, which is a hash

# table.

$TotalCount = 0;

for $key (@AllIndex) {

# The second hash table has key values that are the probeset
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# IDs for all probesets assigned to the current pool number.

# These key values are unique, so the number of keys is the

# number of unique probesets assigned to that pool.

@Probesetkeys = keys(%{$ProbesetPool{$key}});
$ProbesetCount = @Probesetkeys;

print $key,"\t\t",$ProbesetCount ,"\n";
$TotalCount = $TotalCount + $ProbesetCount;

}

print "------------------------------------\n";
print "Total\t\t$TotalCount\n\n";
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A.2 Logit-T Analysis of Spike-In Datasets

############################################################

#

# Program Name: logitTAnalysis.R

# Author: Richard Kennedy

# Date: 12/20/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the Logit-T program function as

# the primary analysis tool.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the logit-T scores

# computed. One data file is created showing the logit-T

# for all of the probesets on the chip, in increasing order

# (or decreasing order of significance); one data file gives

# the number of spike-in probes (from both the original

# Affymetrix list and the expanded list of McGee et al.)

# that are highly ranked; and one data file shows the actual

# rank based on logit-T scores versus the expected rank

# based on the concentration fold-change from the

# spike-in data. Although similar, separate computation

# routines are used for the Affymetrix U133 Latin Square,

# Affymetrix U95 Latin Square, and GeneLogic Dilution

# datasets due to slight differences in the analyses and for

# better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################
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# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")
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# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# Create the groupfile for the logit-T program indicating

# which data files to analyze. As per the documentation for

# the logit-T program, the groupfile is a tab-delimited text

# file, with the first column being the CEL file name, the

# second column designating the group membership , and the

# third column being a synonym (abbreviation) for the CEL

# file. An example would be

# 1521a99hpp_av06.CEL A a1a06

# 1521b99hpp_av06.CEL B b1a06

# The first CEL file is 1521a99hpp_av06.CEL , which is part
# of group A. Its synonym, which is the name used in

# printouts , is a1a06. The second CEL file, which is part

# of group B, is 1521b99hpp_av06.CEL and has synonym b1a06.
# The groups A and B will be compared to each other to

# generate logit-T scores.

#

# For this analysis, there are 14 groups, which will be

# labeled A-N. Each group contains 3 CEL files, so group A

# will have synonyms A1, A2, A3, group B synonyms B1, B2,

# B3, and so on.

for (i in (1:13)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
group <- c(rep("A",3),rep(LETTERS[i+1],3))
synonym <- paste(rep(c("A",LETTERS[i+1]),each=3),rep(1:
3,2),sep="")

data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU133Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}
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# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the datasets. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names
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# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42
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# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# Get the subset of the CEL files used in this analysis

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

# Since the logit-T program is a compiled C program, the

# command-line text must be generated and executed via the

# system command. As per the documentation for the logit-T

# program, the syntax for the command-line invocation is

# logitT groupFile.txt celfiles cdffile outputprefix

# where groupFile.txt is the groupfile that was previously

# generated , celfiles is a list of the CEL files to be

# analyzed, cdffile is the CDF file (Chip Definition File,

# which contains information about the layout of the chip),

# and outputprefix is the output prefix that will be

# prepended to all data files generated by the logit-T

# program.

prefix <- paste("LogitTFold",i,"U133",sep="")
fname <- paste("LogitTFoldRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "),"HG-U133A_tag.CDF",
prefix)

system(cmd)

# Get the results of the logit-T analysis. As per the

# documentation for the logit-T program, the following

# output files are produced, with the output prefix

# prepended to all filenames instead of xxxx:

# xxxxT.txt is the main output file with the t-test

# values for each probeset. Rows are

# arranged by probeset and columns are

# arranged by comparison.

# xxxxCV.txt is the file containing the coefficients of

# variation for each probeset. This file is

# not used in the present analysis.

# xxxxW.txt is the file containing the standardized

# Wilcoxon W statistics for each probeset.

# This file is not used in the present

# analysis.

# xxxx.theta is the file containing the LogitExp gene

# expression index described in the Lemon et

# al. article. This file is not used in the

# present analysis.
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# All files are tab-delimited text files. For this

# analysis, each xxxxT.txt file contains only one

# comparison , so the files are two columns with the first

# being the probeset name and the second being the logit-T

# value for that comparison , along with a header in the

# first line of the file.

fname <- paste("LogitTFold",i,"U133T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]

abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small logit-T scores indicate

# higher probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing logit-T scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("LogitTFoldCountU133.csv",sep="")
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write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the logit-T values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set.

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
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"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)
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spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in (1:length(cat.names))) {
rep1 <- sum(category==1)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

group <- c(rep("A",rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU95Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"U95",sep="")
fname <- paste("LogitTFoldU95Run",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

system(cmd)
fname <- paste("LogitTFold",i,"U95T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
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ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("LogitTFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("LogitTFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set.

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",
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"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data=c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for
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# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
rep1 <- sum(category==9)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==9],fnames[category==
cat.names[i]])

group <- c(rep(LETTERS[1],rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldGDilutionRun",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"GDilution",sep="")
fname <- paste("LogitTFoldGDilutionRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

code <- system(cmd)
fname <- paste("LogitTFold",i,"GDilutionT.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallGDilution.csv", sep="")
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write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

t.score <- 1-pt(abs.score ,df=length(index)-2)
posindex <- (t.score <= 0.001)

small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("LogitTFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.3 mmgMOS Analysis of Spike-In Datasets

############################################################

#

# Program Name: mmgmosAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the mmgmos expression

# summary computed. The mmgmos values are then compared

# using multiple t-tests to give measures of significance

# for differential gene expression. One data file is

# created showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the puma library. This is a standard library

# available through Bioconductor , which implements the

# mmgmos function

library(puma)
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# Load the multtest library. This is a standard library

# available through Bioconductor , which implements the

# multiple t-test among other functions.

library(multtest)

# This function implements a pooled degrees of freedom

# function, which computes a composite degrees of freedom

# for a two-sample comparison based on the relative size

# of each of the two samples.

# Input: exprs - a matrix containing the expression values

# compare - a vector denoting the condition of each

# column in the exprs matrix, with 0 denoting

# the baseline condition and 1 denoting the

# experimental condition

# Output: a vector containing the pooled degrees of freedom

# for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).
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spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
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"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate
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# subanalyses if necessary. For mmgmos, the model

# fitting is done over all chips.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- mmgmos.exprs[,index]

# construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small p-values indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],rank=ranking,score=
abs.score[index])
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outfile <- paste("mmgmosFoldOverallU1133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("mmgmosFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################
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fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,



267

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==1],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
gn <- geneNames(cel)
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index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("mmgmosFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("mmgmosFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("mmgmosFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.



269

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike
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# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,
14,14,14)

cat.names <- unique(category[category > 9])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==9],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(cel)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("mmgmosFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)
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small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("mmgmosFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}
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A.4 Multichip S-Score Analysis of Spike-In Datasets

############################################################

#

# Program Name: MultiSScoreAnalysis.R

# Author: Richard Kennedy

# Date: 12/14/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the multichip SScore function

# as the primary analysis tool.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the multichip S-Scores

# computed. One data file is created showing the S-Scores

# for all of the probesets on the chip, in increasing order

# (or decreasing order of significance); one data file gives

# the number of spike-in probes (from both the original

# Affymetrix list and the expanded list of McGee et al.)

# that are highly ranked; and one data file shows the actual

# rank based on S-Scores versus the expected rank based on

# the concentration fold-change from the spike-in data.

# Although similar, separate computation routines are

# used for the Affymetrix U133 Latin Square, Affymetrix U95

# Latin Square, and GeneLogic Dilution datasets due to

# slight differences in the analyses and for better

# readability.

#

############################################################

# Load the sscore library. This is a standard library

# available through Bioconductor , which implements the

# multichip sscore function

library(sscore)

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################
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# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")
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# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the SF and SDT data, which were previously

# computed using the ComputeSFandSDT function in the sscore

# package. By computing these beforehand , rather than on

# the fly, greatly speeds up the code. These are stored in

# the same order as the original filenames , i.e. using the

# ASCII collating sequence from the directory listing

SF <- c(5.051527 ,6.725639 ,6.112969 ,5.55356 ,6.591798 ,5.515133,
5.038274 ,5.457424 ,5.210437 ,5.213532 ,4.773091 ,5.170842,

4.710175 ,5.675154 ,4.853165 ,4.231661 ,5.702423 ,4.860462,

5.298943 ,4.589679 ,4.433209 ,5.372881 ,4.820332 ,4.853754,

4.243081 ,4.640638 ,4.394098 ,4.354416 ,4.831838 ,4.471514,

5.230509 ,6.470383 ,4.486733 ,4.493152 ,5.053464 ,5.441683,

5.909456 ,5.4285 ,5.656854 ,5.397539 ,5.100904 ,5.460907)

# Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716 ,23.33307 ,22.39198 ,20.10130 ,26.19655 ,21.01957,
18.94265 ,20.52486 ,18.65655 ,18.90886 ,17.14570 ,18.36193,

16.54648 ,20.35357 ,17.8932 ,16.53504 ,20.99434 ,18.89438,

20.23327 ,16.93843 ,16.72479 ,19.87543 ,17.24651 ,19.22224,

17.82088 ,18.08628 ,16.85401 ,19.35906 ,20.43274 ,20.28572,

19.90849 ,25.56167 ,17.58817 ,19.47506 ,22.84737 ,23.01953,

24.11946 ,20.12949 ,22.82104 ,21.20344 ,19.66584 ,20.07275)

SDT <- SDT[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
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"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
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"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]
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# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

# construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# compute the S-Scores

score <- SScore(data,classlabel=compare,SF=small.SF,
SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small S-Scores indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)) ,rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))
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large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("SScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
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"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389 ,16.90462 ,18.58895 ,17.57569 ,18.10556,
17.44596 ,19.05938 ,19.01886 ,15.19518 ,17.07320 ,17.70451,

15.51397 ,15.14165 ,15.71093 ,18.92873 ,17.59843 ,17.74718,

16.96576 ,19.88173 ,19.42636 ,14.22665 ,14.16075 ,11.39345,

10.92027 ,15.86836 ,13.19469 ,15.66899 ,14.32828 ,11.25717,

11.50788 ,13.16047 ,16.61321 ,13.50162 ,14.13247 ,12.45534,

13.73491 ,13.59590 ,13.24143 ,14.58290 ,13.75632 ,16.37373,

16.38092 ,13.26664 ,14.51221 ,15.94495 ,14.01617 ,13.29383,

17.34152 ,12.74790 ,13.66622 ,17.21439 ,12.42648 ,13.16133,

13.87641 ,18.97458 ,14.38793 ,14.25340 ,17.20059 ,15.56408)

SDT <- c(151.8202 ,164.8418 ,188.9549 ,179.0177 ,179.3972,
169.2196 ,188.5424 ,185.0203 ,152.1097 ,198.8227 ,176.3480,

210.3864 ,155.7234 ,163.5185 ,195.6335 ,187.2507 ,184.7659,

186.7471 ,214.4948 ,204.1949 ,207.5883 ,190.5452 ,163.2673,

158.7323 ,232.9045 ,188.8372 ,220.6606 ,205.0497 ,162.8883,

181.9430 ,185.1602 ,224.2842 ,192.2052 ,206.1543 ,179.4869,

202.1945 ,193.9658 ,196.5336 ,192.9138 ,136.5619 ,227.4531,

205.0031 ,172.1437 ,179.7536 ,220.7491 ,181.4627 ,164.0342,

203.9272 ,185.2207 ,168.6197 ,216.8669 ,164.1328 ,173.7930,

185.0183 ,254.3695 ,177.5792 ,181.8116 ,215.0447 ,199.3295)
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spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though not

# originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {
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small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])
small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)

abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("SScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("SScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution

# dataset.

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930 ,9.969553 ,10.633744 ,5.498765 ,5.835703,
7.732482 ,11.598326 ,10.133451 ,6.454634 ,5.355627 ,7.001940,

8.849713 ,7.280378 ,12.280841 ,7.331615 ,19.023698 ,7.380893,

18.712581 ,7.834392 ,6.895325 ,7.254859 ,21.076266 ,10.342030,

7.940419 ,15.479335 ,14.88527)

SDT <- c(133.89655 ,101.82649 ,114.87093 ,37.85469 ,48.64600,
86.43693 ,143.22880 ,111.54653 ,48.30689 ,31.88864 ,49.17773,

91.11646 ,43.77653 ,122.86836 ,52.00780 ,172.02050 ,50.62660,

169.93095 ,46.71437 ,48.85516 ,56.43905 ,191.73461 ,66.32453,

53.81287 ,146.23999 ,144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
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0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,14,
14,14)

cat.names <- unique(category[category > 9 & category != 13])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)
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abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex],spike.names)))
truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("SScoreFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankGDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.5 Pooled S-Score Analysis of Spike-In Datasets

############################################################

#

# Program Name: PooledSScoreAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the pooled S-Score algorithm as #

the expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the pooled S-Scores

# are computed. One data file is created showing the pooled #

S-Scores for all of the probesets on the chip, in

# increasing order (or decreasing order of significance);

# one data file gives the number of spike-in probes (from

# both the original Affymetrix list and the expanded list of

# McGee et al.) that are highly ranked; and one data file

# shows the actual rank based on S-Scores versus the

# expected rank based on the concentration fold-change from

# the spike-in data. Although similar, separate computation #

routines are used for the Affymetrix U133 Latin Square,

# Affymetrix U95 Latin Square, and GeneLogic Dilution

# datasets due to slight differences in the analyses and for

# better readability.

#

############################################################

# Load the sscore library. This is a standard library

# available through Bioconductor , which implements the

# multichip sscore function

library(sscore)

# Load the robust library. This is a standard library

# available through CRAN, which implements the lmRob

# function for robust regression

library(robust)

# This function implements the pooled S-Score. The code

# is similar to the Bioconductor package sscore, but the
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# error estimate is calculated using a modification of the

# local pooled error (LPE) method of Jain et al. Code for

# the error estimate is adapted from the LPE package, also

# available through Bioconductor.

# Input:

# Output:

PooledSScore <- function(afbatch = stop("No CEL files
specified"),

conditions = stop("No list of comparisons given"), SF =
NULL,SDT =

NULL, rm.outliers = TRUE,rm.mask = TRUE, rm.extra = TRUE,

digits =

NULL,verbose = FALSE,celfile.path = NULL, celfile.names =

NULL,quant=0.001) {

fname <- sampleNames(afbatch)

# Identify outliers using the computeOutlier function from

# the sscore package. This returns a matrix with rows

# corresponding to probe and columns to chip. The value

# of an element in the matrix is set to TRUE if the probe

# on that chip is an outlier, otherwise it is set to FALSE.

outlier <- computeOutlier(afbatch)

# Initialize various variables used in the computations. l1

# and l2 represent vectors of the variances for the

# probesets in the baseline and experimental conditions ,

# respectively. Variances are assumed to be the same for

# each probeset across chips, so that only one variance

# per probeset is computed. pnames is a vector of probe

# names in the same order as l1 and l2.

l1 <- l2 <- NULL
pnames <- NULL

# This is the gamma proportionality constant from the

# original S-Score article.

m.gamma <- 0.1

# Score is a vector of S-Scores, one for each probeset.

# probenames stores the probeset names in the same order as

# Score.

probenames <- geneNames(afbatch)
Score <- CorrDiff <- rep(0.0,length(probenames))
writeLines("Computing S-score values")
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# Get the indices for the the PM and MM probes for lookup

pmidx <- pmindex(afbatch)
mmidx <- mmindex(afbatch)

# Get the intensity values for each condition , with intens1

# being the baseline and intens2 being the experimental

# condition

intens1 <- t(t(intensity(afbatch[,conditions==0]))*
SF[conditions==0])

intens2 <- t(t(intensity(afbatch[,conditions==1]))*
SF[conditions==1])

# Find the maximum intensity for each condition

max1 <- apply(rbind(pm(afbatch[,conditions==0]),
mm(afbatch[,conditions==0])),2,max)*SF[conditions==0]

max2 <- apply(rbind(pm(afbatch[,conditions==1]),
mm(afbatch[,conditions==1])),2,max)*SF[conditions==1]

# this loops through each of the probesets on a given pair

# of chips

for (i in 1:length(probenames)) {

# get the PM and MM values, as well as minimum intensity

# values, for the given probeset on each chip of the pair

PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

# adjust each of the PM and MM intensities relative to the

# minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

# find the index of the probe pairs of the probeset to use

# in calculations. A probe pair is used if it is not

# "saturated" (i.e., the intensity is less than the maximum

# - minimum) and if it is not identified as an outlier /
# masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))
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index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]

index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

# find the PM-MM differences for the probeset on each of the

# two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

# Append the PM-MM differences for this probeset to the

# running list

l1 <- rbind(l1,diff1)
l2 <- rbind(l2,diff2)

}

# Using the PM-MM differences for each condition , calculate

# the variance using the LPE method.

# First find the mean intensity for each row (probeset)

# across chips for the baseline condition

l1.means <- rowMeans(l1)

# Find the quantiles for the intensities. For each probeset

# having a mean intensity within a quantile, assign all

# intensity values for that probeset (across chips) to the

# group for that quantile

quantile.l1 <- quantile(l1.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l1.means)-1)
for (i in 2:length(quantile.l1)) {

index[l1.means > quantile.l1[i-1] & l1.means <=
quantile.l1[i]] <- i-1

}

# Find the mean and variance (using trimmed mean for the
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# former and the median absolute deviation for the latter) #

for each quantile, if it exists. Note that it is possible

# for consecutive quantiles to have the same threshold

# points, which is particularly likely in the low intensity

# region where many probesets have the same intensity value.

# In this case, all of the probesets are assigned to the

# group for the "first" quantile of the consecutive set,

# leaving the "remaining" quantiles of the consecutive set

# empty. Assign these "remaining" quantiles to have NA

# mean and variance.

mean.l1 <- var.l1 <- rep(0,length(quantile.l1)-1)
for (i in 1:(length(quantile.l1)-1)) {

if (length(l1[index==i,]) != 0) {
mean.l1[i] <- mean(as.vector(l1[index==i,]),
na.rm=TRUE,trim=0.125)

var.l1[i] <- mad(as.vector(l1[index==i,]),
na.rm=TRUE)

} else {
mean.l1[i] <- NA
var.l1[i] <- NA

}

}

# Now address the quantiles having NA mean and variance,

# using an approach based on the original LPE method. If

# the mean and variance of the "previous" quantile is not

# NA, then the quantile having NA mean and variance is

# assigned a mean and variance that is the average of the

# "previous" and "next" quantiles. Otherwise the quantile

# having NA mean and variance is assigned the mean and

# variance of the "next" quantile, which should not be NA at

# the uppermost intensities because these are sparsely

# populated.

if (any(is.na(var.l1)) ) {
for (i in (length(var.l1)-1):1 ) {

if (is.na(var.l1[i])) {
var.l1[i] <- ifelse(!is.na(var.l1[i-1]),
mean(var.l1[i+1], var.l1[i-1]),
var.l1[i+1])

}

}

}

# Perform a robust regression of variance on mean squared



290

# intensity to estimate the fitting parameters

mean.squared <- as.vector(mean.l1)ˆ2
lm.l1 <- lmRob(as.vector(var.l1) ˜ mean.squared)

# Compute the predicted variance for each probeset based on

# the robust regression model, which will be used in the

# calculation of the S-Score values

alpha <- lm.l1$coefficients[1]
gamma <- lm.l1$coefficients[2]
predict.var1 <- gamma*l1ˆ2+alpha

# Perform a similar computation of variance for the

# experimental condition

l2.means <- rowMeans(l2)
quantile.l2 <- quantile(l2.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l2.means)-1)
for (i in 2:length(quantile.l2)) {

index[l2.means > quantile.l2[i-1] & l2.means <=
quantile.l2[i]] <- i-1

}

mean.l2 <- var.l2 <- rep(0,length(quantile.l2)-1)
for (i in 1:(length(quantile.l2)-1)) {

if (length(l2[index==i,]) != 0) {
mean.l2[i] <- mean(as.vector(l2[index==i,]),
na.rm=TRUE,trim=0.125)

var.l2[i] <- mad(as.vector(l2[index==i,]),
na.rm=TRUE)

} else {
mean.l2[i] <- NA
var.l2[i] <- NA

}

}

if (any(is.na(var.l2)) ) {
for (i in (length(var.l2)-1):1 ) {

if (is.na(var.l2[i])) {
var.l2[i] <- ifelse(!is.na(var.l2[i-1]),

mean(var.l2[i+1], var.l2[i-1]),

var.l2[i+1])

}

}

}
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mean.squared <- as.vector(mean.l2)ˆ2
lm.l2 <- lmRob(as.vector(var.l2) ˜ mean.squared)
alpha <- lm.l2$coefficients[1]
gamma <- lm.l2$coefficients[2]
predict.var2 <- gamma*l2ˆ2+alpha

# Note that the PM-MM differences are not associated with

# their respective probesets for calculation of the S-Score

# values. Thus, some of the S-Score calculations must be

# performed again, since the variance estimates were not

# available previously. This inefficiency will be corrected

# in later versions.

for (i in 1:length(probenames)) {
PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

# adjust each of the PM and MM intensities relative to the

# minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

# find the index of the probe pairs of the probeset to use

# in calculations. A probe pair is used if it is not

# "saturated" (i.e., the intensity is less than the maximum

# - minimum) and if it is not identified as an outlier /
# masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))

index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]
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index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

# find the PM-MM differences for the probeset on each of the

# two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

# Compute the S-Score values. This follows the formula in

# the original program (and the J Mol Biol article) except

# the predicted variance based on the LPE method is

# substituted for the variance based on the SDT value

f.err <- (apply(diff1,1,sum)-apply(diff2,1,sum))/
sqrt(sum(predict.var1[i,]) + sum(predict.var2[i,]))

# threshold or impute outlying f.err values. The cutoff of

# 15 was arbitrarily decided in the original version; how it

# was determined is unknown

f.err[f.err > 15.0] <- 15.0
f.err[f.err < -15.0] <- -15.0

Score[i] <- sum(f.err)

# estimate the variance / covariance values, for calculating
# the CorrDiff

Sxx <- sum(mean(diff1)ˆ2)
Syy <- sum(mean(diff2)ˆ2)
Sxy <- sum(mean(diff1)*mean(diff2))

Sx <- 0
Sy <- 0

# transform the S-Score estimate by dividing by a function

# of the number of probes in the probeset

if (N > 0)
Score[i] <- Score[i] / sqrt(N) else
Score[i] <- 0

# calculate the CorrDiff. CorrDiffs below the threshold of

# 1e-3 are imputed to be 0, which was also arbitrarily

# decided in the first version

if (N>2 && ((Sxx-Sx*Sx/N)*(Syy-Sy*Sy/N) > 1.e-3))
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CorrDiff[i] <- (Sxy-Sx*Sy/N)/sqrt((Sxx-Sx*Sx/N)*
(Syy-Sy*Sy/N)) else

CorrDiff[i] <- 0.0

}

# now renormalize the S-Score values, which gives alpha

writeLines("Renormalizing S-scores")

x <- Score
Sx <- sum(x)
Sxx <- sum(x*x)

# calculate the mean and standard deviation of the entire

# set of S-Scores

Sstdev <- sqrt((Sxx-Sx*Sx/length(Score))/length(Score))
meanSx <- Sx/length(Score)

# find the trimmed S-score values, using a cutoff of those

# S-Scores within 3 standard deviations of the mean

x <- Score-meanSx;
x <- x[abs(x) < 3*Sstdev]
Sx <- sum(x)
Sxx <- sum(x*x)
num <- length(x)

# calculate the trimmed mean and standard deviation. Again,

# the cutoff of 0.01 was arbitrarily decided in the first

# version

Sstdev <- ((Sxx-Sx*Sx/num)/num)
if (Sstdev < 0.01)

Sstdev <- 1.0 else
Sstdev <- sqrt(Sstdev)

m.alpha <- Sstdev
meanSx <- Sx/num+meanSx

# perform the renormalization , using the trimmed mean and

# standard deviation values

Score <- (Score-meanSx)/Sstdev

fn1 <- (fname[conditions==0])[1]
fn2 <- (fname[conditions==1])[1]

# output information on these parameters if desired by the

# user

if (verbose) {
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Chip <- cdfName(afbatch)
num.probesets <- length(Score)
writeLines("S-score data. Parameter section:")

writeLines(sprintf("Probearray type: %s", Chip))

writeLines(sprintf("sample1: %s", fn1))

writeLines(sprintf("sample2: %s", fn2))

writeLines(sprintf("Alpha--error coupling factor within

a probeset: %8.3f",m.alpha))

writeLines(sprintf("Gamma--weight of multiplicative

error: %8.3f",m.gamma))

writeLines(sprintf("Number of Probesets:

%i",num.probesets))

writeLines(" ")

writeLines("Scaling Factor:")

printSF <- formatC(SF[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSF,collapse=" ")))
printSF <- formatC(SF[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSF,collapse=" ")))
writeLines("SDT background noise:")

printSDT <- formatC(SDT[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSDT,collapse=" ")))
printSDT <- formatC(SDT[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSDT,collapse=" ")))
writeLines("Max Intensity:")

printMax <- formatC(max1,digits=3,width=8, format="f")
writeLines(sprintf(" sample1 (class label 0):

%s",paste(printMax,collapse=" ")))
printMax <- formatC(max2,digits=3,width=8, format="f")
writeLines(sprintf(" sample2 (class label 1):

%s",paste(printMax,collapse=" ")))
writeLines(" ")

}

# round the S-Scores and CorrDiff to the number of digits

# specified by the user. For the desktop version, this was

# 3

if (!is.null(digits)) {
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Score <- round(Score,digits)
CorrDiff <- round(CorrDiff,digits)

}

Score <- as.matrix(Score)
CorrDiff <- as.matrix(CorrDiff)
rownames(Score) <- rownames(CorrDiff) <- geneNames(afbatch)
colnames(Score) <- colnames(CorrDiff) <- "Class 0 vs 1"
comparison <- 1
Score.pData <- data.frame(comparison ,row.names="Class 0 vs
1")

Score.Metadata <- data.frame(labelDescription = "arbitrary
numbering",

row.names = "comparison")
ScorePheno <- new("AnnotatedDataFrame", data=Score.pData ,
varMetadata =

Score.Metadata)

# put the values into an ExprSet to return. The phenoData ,

# annotation , and description are the same as the AffyBatch

# object

eset <- new("ExpressionSet",
exprs=Score,

phenoData=ScorePheno ,

annotation=annotation(afbatch))

return(eset)
}

## end of adapted code

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the SF and SDT data, which were previously

# computed using the ComputeSFandSDT function in the sscore

# package. By computing these beforehand , rather than on

# the fly, greatly speeds up the code. These are stored in

# the same order as the original filenames , i.e. using the
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# ASCII collating sequence from the directory listing

SF <- c(5.051527, 6.725639, 6.112969, 5.55356, 6.591798,
5.515133, 5.038274, 5.457424, 5.210437, 5.213532, 4.773091,

5.170842, 4.710175, 5.675154, 4.853165, 4.231661, 5.702423,

4.860462, 5.298943, 4.589679, 4.433209, 5.372881, 4.820332,

4.853754, 4.243081, 4.640638, 4.394098, 4.354416, 4.831838,

4.471514, 5.230509, 6.470383, 4.486733, 4.493152, 5.053464,

5.441683, 5.909456, 5.4285, 5.656854, 5.397539, 5.100904,

5.460907)

# Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716, 23.33307, 22.39198, 20.10130, 26.19655,
21.01957, 18.94265, 20.52486, 18.65655, 18.90886, 17.14570,

18.36193, 16.54648, 20.35357, 17.8932, 16.53504, 20.99434,

18.89438, 20.23327, 16.93843, 16.72479, 19.87543, 17.24651,

19.22224, 17.82088, 18.08628, 16.85401, 19.35906, 20.43274,

20.28572, 19.90849, 25.56167, 17.58817, 19.47506, 22.84737,

23.01953, 24.11946, 20.12949, 22.82104, 21.20344, 19.66584,

20.07275)

SDT <- SDT[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone
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# group and across rows by experiment (or chip group).

spike.conc <- spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
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"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
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small.SDT <- SDT[index]

# construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# compute the S-Scores

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small S-Scores indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large], expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("PooledSScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# end of Affymetrix U133A analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
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"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389, 16.90462, 18.58895, 17.57569, 18.10556,
17.44596, 19.05938, 19.01886, 15.19518, 17.07320, 17.70451,

15.51397, 15.14165, 15.71093, 18.92873, 17.59843, 17.74718,

16.96576, 19.88173, 19.42636, 14.22665, 14.16075, 11.39345,

10.92027, 15.86836, 13.19469, 15.66899, 14.32828, 11.25717,

11.50788, 13.16047, 16.61321, 13.50162, 14.13247, 12.45534,

13.73491, 13.59590, 13.24143, 14.58290, 13.75632, 16.37373,

16.38092, 13.26664, 14.51221, 15.94495, 14.01617, 13.29383,

17.34152, 12.74790, 13.66622, 17.21439, 12.42648, 13.16133,

13.87641, 18.97458, 14.38793, 14.25340, 17.20059, 15.56408)

SDT <- c(151.8202, 164.8418, 188.9549, 179.0177, 179.3972,
169.2196, 188.5424, 185.0203, 152.1097, 198.8227, 176.3480,

210.3864, 155.7234, 163.5185, 195.6335, 187.2507, 184.7659,

186.7471, 214.4948, 204.1949, 207.5883, 190.5452, 163.2673,

158.7323, 232.9045, 188.8372, 220.6606, 205.0497, 162.8883,

181.9430, 185.1602, 224.2842, 192.2052, 206.1543, 179.4869,

202.1945, 193.9658, 196.5336, 192.9138, 136.5619, 227.4531,

205.0031, 172.1437, 179.7536, 220.7491, 181.4627, 164.0342,

203.9272, 185.2207, 168.6197, 216.8669, 164.1328, 173.7930,

185.0183, 254.3695, 177.5792, 181.8116, 215.0447, 199.3295)

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,



303

0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though not

# originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])
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small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("PooledSScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("PooledSScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))
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}

# end of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930, 9.969553, 10.633744, 5.498765, 5.835703,
7.732482, 11.598326, 10.133451, 6.454634, 5.355627, 7.001940,

8.849713, 7.280378, 12.280841, 7.331615, 19.023698,

7.380893, 18.712581, 7.834392, 6.895325, 7.254859, 21.076266,

10.342030, 7.940419, 15.479335, 14.88527)

SDT <- c(133.89655, 101.82649, 114.87093, 37.85469, 48.64600,
86.43693, 143.22880, 111.54653, 48.30689, 31.88864, 49.17773,

91.11646, 43.77653, 122.86836, 52.00780, 172.02050,

50.62660, 169.93095, 46.71437, 48.85516, 56.43905, 191.73461,

66.32453, 53.81287, 146.23999, 144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]
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spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]
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compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("PooledSScoreFoldCountGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankGDilution.csv",
sep="")
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results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.6 RMA Analysis of Spike-In Datasets

############################################################

#

# Program Name: RMAAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the RMA expression

# summary computed. The RMA values are then compared using

# multiple t-tests to give measures of significance for

# differential gene expression. One data file is created

# showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the multtest library. This is a standard library

# available through Bioconductor , which implements the

# multiple t-test among other functions.

library(multtest)
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# This function implements a pooled degrees of freedom

# function, which computes a composite degrees of freedom

# for a two-sample comparison based on the relative size

# of each of the two samples.

# Input: exprs - a matrix containing the expression values

# compare - a vector denoting the condition of each

# column in the exprs matrix, with 0 denoting

# the baseline condition and 1 denoting the

# experimental condition

# Output: a vector containing the pooled degrees of freedom

# for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
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"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
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"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary. For RMA, the normalization will

# be done over all chips, as this seems to be the commonly

# accepted practice.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
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rma.exprs <- exprs(eset)

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- rma.exprs[,index]

# construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small p-values indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=geneNames(cel)[index],rank=
ranking, score=abs.score[index])

outfile <- paste("RMAFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

num.zero <- sum(abs.score==0)
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# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
max(num.small , num.zero)],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
max(num.large , num.zero)],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("RMAFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike , expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
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"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,
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512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==1],rma.exprs[, category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")
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ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- geneNames(cel)[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("RMAFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RMAFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)), expectedrank=
fold.rank[spike.group[spike.names]], actualrank=

ranking[spike.names])

outfile <- paste("RMAFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################
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fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames
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# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==9],rma.exprs[,
category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("RMAFoldOverallGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))
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large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("RMAFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.7 RVM Analysis of Spike-In Datasets

############################################################

#

# Program Name: RMAAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the RMA expression

# summary computed. The RMA values are then compared using

# multiple t-tests to give measures of significance for

# differential gene expression. One data file is created

# showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the nlme library. This is a standard library

# available through CRAN, which implements the glsfit

# function for generalized least squares

library(nlme)
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# This function implements the matrix square root.

# Input: x - a p x p dimensional matrix for which the

# square root is desired.

# Output: A p x p dimensional matrix representing

# the matrix square root of the input.

msqrt <- function(x) {

# Find the eigen decomposition of the matrix

eig <- eigen(x)
eigvec <- eig$vectors

# The square root of the matrix is found by creating

# a diagonal matrix of the square roots of the eigenvalues ,

# then pre- and post- multiplying this by the eigenvectors

result <- eigvec %*% diag(sqrt(eig$values)) %*% t(eigvec)

return(result)
}

# This function implements the logaritm of the multivariate

# gamma function. The logarithm of the multivariate gamma

# function, rather than the function value itself, is

# returned due to the magnitude of the numbers involved.

# Formulae for the multivariate gamma function are given in

# a number of sources, e.g., Muirhead pp. 61-62.

# Input: p - rank of the matrices over whose set the

# multivariate gamma integral is being evaluated

# a - degrees of freedom

# Output: A scalar containing the value of the multivariate

# gamma function for the specified matrix rank

mvlgamma <- function(p,a) {
result <- (p*(p-1)/4)*log(pi) + sum(lgamma(a-((1:p)-1)/2))
return(result)

}

# This function implements the logarithm of the singular

# generalized multivariate beta type II density for a

# specified observation point. If the density cannot be

# computed, an infinite value is returned so that this point

# will be avoided in the minimization process. The

# logarithm is used again due to the magnitude of the

# numbers involved. The distribution function used is given

# in a variety of sources, e.g., Srivastava (2003), p. 1553.

# Input: x - a p x p matrix representing the observed value

# from the multivariate beta distribution
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# pval - size of the observed value matrix, which is

# assumed to be singular

# n1, n2 - degrees of freedom (for the "numerator"

# and "denominator" matrices respectively , if

# considering the multivariate beta as a product

# of two Wishart distributions)

# omega - the scale parameter matrix

# Output: A scalar containing the value of the generalized

# multivariate beta type II density at the

# observed value x

ldmvbeta <- function(x,pval,n1,n2,omega) {

# Obtain the spectral decomposition of x

x.eigen <- eigen(x,only.values=TRUE)

# Since the determinant of x does not exist, the singular

# multivariate beta type II distribution uses the product

# of the first n1 eigenvalues , assuming rank(x) = n1

determ <- prod(x.eigen$values[1:min(n1,pval)])

# If the parameter values are not valid for calculating the

# logarithms in the density - which occurs if the product of

# the first n1 eigenvalues is negative or the determinant of

# I + Omega * x is negative - then return infinity, the
# largest possible value. This will keep the point from

# being used in the minimization process

if ((determ < 0) | (det(diag(pval) + omega %*% x) < 0)) {
result <- Inf

} else {

# Otherwise , return the value of the density at the

# specified point

result <- ((n1*n1 - n1*pval)/2) * log(pi) +
mvlgamma(pval,(n1+n2)/2) - mvlgamma(n1,n1/2) -
mvlgamma(pval,n2/2) + (n1/2) * log(det(omega)) +
((n1-pval-1)/2)*log(determ) - ((n1+n2)/2) *
log(det(diag(pval) + omega %*% x))

}

return(result)
}

# This function implements the logarithm of the multivariate

# beta likelihood , which computes the likelihood of a series

# of observations , with each observation having a common

# multivariate beta distribution.
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# Input: x - a vector of the parameters to be optimized.

# The first element is the degrees of freedom

# for the inverse Wishart prior and the second

# and third elements are used for constructing

# the matrix parameter for the prior. The

# second element is used for the diagonal

# element of the compound symmetric matrix

# parameter and the third is used for the off-

# diagonal elements.

# pval - the dimension p of a single p x p

# observation matrix

# mdf - the degrees of freedom for the comparison

# being conducted , i.e. n-k

# msigmahat - a matrix of observations for which the

# likelihood is desired. Each row is a single

# observation matrix, which has been vectorized

# from a p x p matrix to a pˆ2 x 1 vector. Thus

# the number of rows in x also equals the number

# of observations.

# const - a vector of constants passed to the

# function. This is not used in the current

# implementation , but may be used in future

# versions to fix certain parameters to be

# constants rather than optimized.

# Output:

mvbetalik <- function(x,pval,mdf,msigmahat ,const) {

# first make a copy of the scalar parameter of the prior,

# since R uses a form of passing by reference

esta <- x[1]

# Now create the compound symmetric matrix for the matrix

# parameter of the prior. Copy the second element of the

# parameter vector to the diagonal elements of the matrix,

# and the third element to the off-diagonal elements.

estb <- diag(x[2],pval,pval)
estb[upper.tri(estb)] <- x[3]
estb[lower.tri(estb)] <- x[3]

# Check whether the parameters are valid for the

# multivariate beta density, with the prior being

# full rank. The following three conditions must be met:

# (1) the degrees of freedom esta for the prior must be

# greater than or equal to the dimension of the matrix

# parameter for the prior, which is equal to pval.
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# (2) The determinant of the matrix parameter must be

# nonzero, signifying full rank.

# (3) The eigenvalues of the matrix parameter must be

# positive, signifying positive definiteness.

# If the parameters are not valid, the likelihood is set

# to infinity so that these parameters will not be

# considered minimized.

if ((esta < pval) | (det(estb) == 0) |
any(eigen(estb,only.values=TRUE)$values <= 0)) {
result <- Inf

} else {

# The parameters are valid. First, find the matrix square

# root of the matrix parameter for use in later

# calculations.

estbhalf <- msqrt(estb)

# Iterate over all observations to find the likelihood with

# the current values of the parameters being optimized.

# Since the log likelihood is used, the total likelihood is

# the sum of the likelihoods for the individual obserations.

estlik <- rep(0,nrow(msigmahat))
for (i in 1:nrow(msigmahat)) {

# Get the value of the current observation and compute

# the likelihood of this one observation using the current

# value of the parameters

onesigma <- matrix(data=msigmahat[i,],ncol=pval,
nrow=pval)

estlik[i] <- ldmvbeta(x=(esta+pval-1)*estbhalf %*%
onesigma %*% t(estbhalf),m=pval,n1=mdf,n2=
esta+pval-1, omega=diag(mdf/(esta+pval-1),pval,
pval))

# Note that it is (a+p-1) * sqrt(B) * Sn * sqrt(B) which
# follows the multivariate F distribution , while the data

# msigmahat are for Sn only. The likelihood for Sn can be

# obtained by multiplying by the Jacobian

# det((a+p-1) * B) ˆ ((p+1)/2)
# or by adding ((p+1)/2) * log(det(a+p-1) * B) to the log
# likelihood. This is _not_ described in the Wright and
# Simon article but is contained in their code for the

# univariate RVM method.

estlik[i] <- estlik[i] + (pval+1)/2 *
log(det((esta+pval-1)* estb))
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}

# If any of the individual likelihoods is infinite (i.e. not

# valid), then return a result of infinity. Otherwise the

# total likelihood is the sum of the individual likelihoods

if (all(is.finite(estlik))) {
result <- sum(-estlik)

} else {
result <- Inf

}

}

return(result)
}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")
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# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
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"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# This is a list of the filenames of the CEL files for this
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# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

# get the expression summary data for the comparison

data <- ReadAffy(filenames=small.fnames)

# construct the comparison vector, used in building the

# design matrix for the glsfit function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# Initialize vectors that will be used for storing the RVM

# chi-square and p values

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

# For the Affymetrix U133 chip, the vast majority of the

# probesets contain 11 probe pairs each. Obtain this list

# of probesets and use it for the estimation of the

# parameters of the prior.

p <- 11
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]

# The list of probesets is a vector of lists, with each list

# containing the probe IDs within the probeset. Convert

# this into a vector of probe IDs for construction of the

# linear model and model fitting.

upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)

# Initialize matrices for storing the residual sums of

# squares from the full (ss-hat) and reduced (ss-hat-hat)

# models

ssfull <- matrix(data=0,nrow=length(pmidx), ncol= p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx), ncol= p*p)

# Get the intensity data and log2 transform it

intens <- log2(intensity(data))



332

# Loop through each probeset in the list of size 11

# probesets

for (j in 1:length(pmidx)) {

# Get the list of probe IDs for the current probeset

oneset <- pmidx[j]
uoneset <- unlist(oneset)

# Get the corresponding intensities and vectorize them

# for model fitting

oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)

# Construct the design matrix with designations for

# treatment group (0 for baseline, 1 for experimental ,

# derived from the compare vector), chip (numbered 1

# through the number of chips), probeset (which is set to 1 #

since the fitting is done separately for each probeset),

# and probe (numbered 1 through 11).

treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare), each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))

# Combine the intensity data and design matrix into a

# single data frame for model fitting

affydata <- data.frame(y,treat,chip,probeset, probe)

# Fit the full model with treatment and probe effects

glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

# Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

# Calculate the residual sums of squares for the current

# probeset, which is vectorized and stored as a row in the

# ssfull matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)
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ssfull[j,] <- as.vector(ss)

# Fit the reduced model with only probe effects

glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

# Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

# Calculate the residual sums of squares, which is

# vectorized and stored as a row in the ssreduced matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

# Calculate the residual degrees of freedom

resdf <- (length(compare) - length(unique(compare)))

# Estimate the error (sigma) matrix, which is the residual

# sums of squares divided by the residual degrees of freedom

# using the full model

sigmahat <- ssfull/resdf

# Calculate the average of the estimates for sigma, which

# will be used as the starting value for optimizing the

# matrix parameter of the prior

meansigma <- colMeans(sigmahat)

# Optimize using the optim function to obtain maximum

# likelihood estimates of the parameters

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

# Give warning messages if the optimization algorithm did

# not converge, but proceed with the likelihood ratio test

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}
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if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

# Get the maximum likelihood estimates for the parameters of

# the prior

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]

# Compute the inverse of the matrix parameter , which will be

# used to adjust the residual sums of squares in calculating

# the value of the likelihood ratio test

bvec <- as.vector(solve(bmat))

# Initialize the vectors for showing the the ratio of

# determinants for the full and reduced models (lambda),

# the chi-square value (testval), and the p-value (score)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0, -(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

# Write out the results for this probeset for later use

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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names(score) <- gn

abs.score <- score
all.lambda <- lambda
all.testval <- testval

# Repeat the calculations for the probesets with 20 probes

# and the probeset with 16 probes. In these cases, there

# are not enough probesets to obtain an accurate estimate of #

the prior through fitting the multivariate beta

# distribution. However, assuming the probesets with 11

# probes are representative of the remaining probes, the

# parameter estimates from the previous step can be used in

# constructing the estimates of the prior for the probesets

# with 20 and 16 probes

for (p in c(20,16)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol=p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
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method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")
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write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing p-values

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("RVMFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU133.csv",sep="")
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results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
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"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])
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num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

# For the Affymetrix U95 chip, the vast majority of

# probesets have 16 probes. Use the list of probesets

# having 16 probes for fitting the multivariate beta

# distribution and obtaining maximum likelihood estimates

# of the parameters for the prior

p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
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method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
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sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda
all.testval <- testval

# For the Affymetrix U95 chip, the number of probesets with

# 13, 14, 15, and 20 probes per probeset are generally

# sufficient for model fitting of the intensities , though

# not sufficiently large for estimating the values of the

# prior. Use the values of the prior from the previous step

# to obtain the likelihood ratio test statistics for these

# probesets.

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
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ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset , probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced
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for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU95.csv",sep="")
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results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,
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25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL
p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
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pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])
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optimresult <- optim(par=startvals ,fn=mvbetalik ,
method="Nelder-Mead",pval=p,mdf=resdf,msigmahat=

sigmahat ,const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda
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all.testval <- testval

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
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ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
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score=abs.score[index])
outfile <- paste( "RVMFoldOverallGLDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountGLDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankGLDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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Figure B.1: GeneLogic Dilution Quality for Experiments 1–4. Plots of the computed MAS5
intensity values versus theoretical normal quantiles for a subset of chips. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.1: GeneLogic Dilution Quality for Experiments 5–8.
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Figure B.1: GeneLogic Dilution Quality for Experiments 9–12.
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Figure B.1: GeneLogic Dilution Quality for Experiments 13–16.
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Figure B.1: GeneLogic Dilution Quality for Experiments 17–20.
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Figure B.1: GeneLogic Dilution Quality for Experiments 21–24.
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Figure B.1: GeneLogic Dilution Quality for Experiments 25–26.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.2: Affymetrix U95 Latin Square Quality 5–8.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 9-12.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 13–16.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 17–20.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 5–8.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 9–12.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 13–14.
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Table C.2: Probesets Omitted from the Affymetrix U95 Latin Square and GeneLogic Dilution
Analysis
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Table C.3: Probesets Omitted from the Affymetrix U133 Latin Square Analysis


