

150

Using Lemma 4.14 and Property (10) of the elimination and duplication matrices gives

����Lp

�
I p
 � � 1=2 + � � 1=2
 I p

�
Dp

����
����Lp

�
I p
 � � 1=2

h
(n � k) b� + B� 1

i
+ � � 1=2

h
(n � k) b� + B� 1

i

 I p

�
Dp

����
� 1

=
����Lp

�
I p
 � � 1=2 + � � 1=2
 I p

�
Dp

����
����Lp

�
I p
 � � 1=2

h
(n � k) b� + B� 1

i
+ � � 1=2

h
(n � k) b� + B� 1

i

 I p

� � 1
Dp

����

=
����Lp

�
I p
 � � 1=2 + � � 1=2
 I p

�
DpLp

�
I p
 � � 1=2

h
(n � k) b� + B� 1

i
+ � � 1=2

h
(n � k) b� + B� 1

i

 I p

� � 1
Dp

����

=
����Lp

�
I p
 � � 1=2 + � � 1=2
 I p

� �
I p
 � � 1=2

h
(n � k) b� + B� 1

i
+ � � 1=2

h
(n � k) b� + B� 1

i

 I p

� � 1
Dp

����

so that the factorization depends on
�
I p
 � � 1=2

h
(n � k) b� + B� 1

i
+ � � 1=2

h
(n � k) b� + B� 1

i

 I p

�

being separated into
�
I p
 � � 1=2 + � � 1=2
 I p

�
and a function of(n � k) b� + B� 1 only, which gen-

erally cannot be done. Thus, the transformationU = � � 1=2
�
(n � k) b� + B� 1

�
� � 1=2 does not lead

to a suitable formulation of the RVM method.

A similar di� culty arises if the Cholesky decomposition is used instead of the square root

decomposition. Let� � 1 be decomposed as� � 1 = � � � �0, where� � is a lower triangular matrix.

Beginning with the joint likelihood in Equation (4.63), which is

L
�
b� ; � � 1

�
= c1

����b�
����
(n� k� p� 1)=2

j� j(n� k+a� p� 1)=2
exp

�

1
2

Tr
h
� � 1

�
(n � k) b� + B� 1

�i !

= c1

����b�
����
(n� k� p� 1)=2

j� j(n� k+a� p� 1)=2
exp

�

1
2

Tr
h
� � � �0

�
(n � k) b� + B� 1

�i !

= c1

����b�
����
(n� k� p� 1)=2

j� j(n� k+a� p� 1)=2
exp

�

1
2

Tr
h
� �0

�
(n � k) b� + B� 1

�
� �

i !
;

151

consider the transformations

U = Σ∗′
(
(n − k) Σ̂ + B−1

)
Σ∗

and

V = (a − p − 1)1/2 B1/2Σ̂B1/2 (a − p − 1)1/2 .

The Jacobian of the transformation remains JΣ−1→U JΣ̂→V, but now JΣ−1→U is given by

JΣ−1→U = JΣ−1→Σ∗ JΣ∗→U

= JΣ−1→Σ∗
1

JU→Σ∗

using Properties (1) and (2) of Jacobians. Using Lemma 4.31,

JΣ−1→Σ∗ = 2p
p∏

i=1

σ
p−i+1
ii

where σii, i = 1, 2, . . . , p are the diagonal elements of Σ∗. Using Lemma 4.31,

JU→Σ∗ = 2p
p∏

i=1

σi
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
Thus

JΣ∗→U =
2p ∏p

i=1 σ
p−i+1
ii

2p
∏p

i=1 σ
i
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
=

∏p
i=1 σ

p−2i+1
ii∏p

i=1

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣ .
Since σii are the diagonal elements of Σ∗, it is clear that the use of the Cholesky decompo-

sition will not lead to a transformation in terms of U and V only. Thus, the transformation

152

U = Σ∗
(
(n − k) Σ̂ + B−1

)
Σ∗ does not lead to a suitable formulation of the RVM method.

Although an exact distribution for Λ̃ is not available, since it is a likelihood ratio test, the

value of −2 log Λ̃ approximately follows a χ2 distribution and may be used for hypothesis testing.

This is an asymptotic approximation, so the accuracy of the test may be compromised for small

sample sizes. The likelihood ratio test in Equation (4.48) may be written as

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣Σ−1
∣∣∣ ∣∣∣∣ŜS + B−1

∣∣∣∣∣∣∣Σ−1
∣∣∣ ∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣∣Σ−1
(
ŜS + B−1

)∣∣∣∣∣∣∣∣∣Σ−1
(̂̂SS + B−1

)∣∣∣∣∣ .

The distributional results in Equation (4.68) show that Σ−1
(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and, by extension, that Σ−1

(
(n − k) ̂̂Σ + B−1

)
∼ Wp

(
Ip, n − r + a

)
. This implies that the degrees

of freedom for the χ2 test are k − r. Using these results, the multivariate RVM may be applied

to a wide variety of GLMs in a similar manner to the univariate RVM. For the multivariate

RVM, the ratio of the generalized variances under the null and alternative hypotheses are used

in conducting the hypothesis tests, and both the numerator and denominator sums of squares and

degrees of freedom are adjusted. The hyperparameters a and B may be estimated from Σ̂, the

residuals from the standard GLM without any assumptions on the distribution of Σ−1, using a nu-

merical maximization routine. However, previous studies have noted problems of identifiability

when estimating an unstructured prior for the Wishart distribution, even when numerical opti-

mization routines report convergence to a solution (Le et al., 1998). To avoid such problems in

the multivariate RVM method, structure may be imposed on the B matrix to reduce the number

of parameters estimated. A compound symmetric structure is a reasonable choice for microarray

studies based on the assumed structure of the sample variance-covariance matrix as well as the

previous work by Archer et al. (2006). Once estimates of the hyperparameters are obtained, the

153

value of −2 log Λ̃ may be computed and compared to the χ2
k−r distribution with the appropriate

cutoff value.

The multivariate RVM method may be applied to class comparison problems for determining

the significance of gene expression changes between conditions. For such a parameterization, k

would represent the number of conditions, and the columns of X would be indicator variables

denoting the condition of each chip in the experiment. The reduced model would correspond

to the hypothesis that k − r of the conditions are equivalent, with the corresponding reduction

in the dimension of X. The class comparison problem then becomes a multivariate analysis of

variance (MANOVA) problem with adjustment in the residuals and degrees of freedom for the

test statistic based on the RVM assumptions. Thus, although the multivariate RVM method is not

currently implemented in software packages for microarray data analysis, hypothesis tests based

on multivariate RVM may be carried out using standard packages for MANOVA or multivariate

regression.

4.3.5 Modified Random Variance Model for Singular Covariance Matrices

The preceding formulation of the multivariate RVM method relies on the sample covariance ma-

trix Σ̂ (or, equivalently, the samples sums of squares and crossproducts ŜS) being nonsingular

and of full rank. These conditions require that n − k > p; otherwise, the Wishart density function

given in Definition 4.34 does not exist. The requirement that n−k > p may be unrealistic for most

microarray studies; despite efforts to increase the sample size for microarray experiments, many

studies still use only a small number of chips (Jain et al., 2003). For example, the most com-

mon probeset size on the human U95 and U133 GeneChips is 11 probes. Assuming a two class

comparison, 7 chips would be required in each class to achieve an adequate number of samples.

Other types of chips, such as the Drosophilia DrosGenome1 chip with 14 probes per probeset,

would require an even larger number of replicates. However, the requirement that n − k > p

may be removed by utilizing the pseudo-Wishart distribution in Definition 4.35 when n − k ≤ p.

However, based on Lemma 4.36, a different computational formula would need to be used in

154

software implementations to account for the differences in the nonsingular and pseudo-Wishart

distributions.

Theorem 4.48 is unaltered by the sample covariance matrix Σ̂ being singular, with the assump-

tion that B and Σ are of full rank. Thus, the same likelihood ratio test may be used for hypothesis

testing in the singular case as in the nonsingular. However, modifications to Theorem 4.49 are

necessary to incorporate the pseudo-Wishart distribution of Σ̂. These modifications lead to the

following theorem.

Theorem 4.50. Assume that n − k ≤ p, so that Σ̂ is singular. Then, for Σ̂ and Σ̃ defined as in

nonsingular multivariate RVM,

Σ−1
(
(n − k + a) Σ̃

)
= Σ−1

(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and

(a + p − 1) B−1/2Σ̂B−1/2 ∼ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
≡ Mβn−k

II

(
p, n − k, a + p − 1; n−k

a+p−1 Ip

)
Proof. From singular GLM theory, (n − k) Σ̂ ∼ Wp (n − k,Σ). Since n − k < p by assumption,

(n − k) Σ̂ has a pseudo-Wishart distribution. Let L1 = diag (λ1, λ2, . . . , λn−k), where λ1 ≥ λ2 ≥

· · · ≥ λn−k are the first n − k ordered eigenvalues of (n − k) Σ̂, and let E1 be the matrix of the

corresponding eigenvectors, so that E1E′1 = In−k. Then the density of (n − k) Σ̂ is given by

f
(
(n − k) Σ̂

)
=
π(−p(n−k)+(n−k)2)/2 |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

Under RVM, Σ−1 ∼ Wp (B, a), where B is assumed to be full rank. The joint density of Σ̂ and Σ−1

155

is

L
(
Σ̂,Σ−1

)
=
π(−p(n−k)+(n−k)2)/2 (n − k) |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

·

∣∣∣Σ−1
∣∣∣(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
B−1Σ−1

])
.

This simplifies to

L
(
Σ̂,Σ−1

)
=

π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

) |L1|
(n−k−p−1)/2

∣∣∣Σ−1
∣∣∣(n−k+a−p−1)/2

· exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

This is equivalent to

= c1
|L1|

(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

where

c1 =
π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

)
is a constant. Let

U = Σ−1
(
(n − k) Σ̂ + B−1

)
and

V = (a + p − 1)1/2 B1/2Σ̂B1/2 (a + p − 1)1/2

156

so that

Σ−1 = U
(
(n − k) Σ̂ + B−1

)−1

= U
(

n − k
a + p − 1

B−1/2VB−1/2 + B−1
)−1

and

Σ̂ = (a + p − 1)−1/2 B−1/2VB−1/2 (a + p − 1)−1/2 .

Let L2 = diag (κ1, κ2, . . . , κn−k), where κ1 ≥ κ2 ≥ · · · ≥ κn−k are the first n−k ordered eigenvalues of

V, and let E2 be the matrix of the corresponding eigenvectors, so that E2E′2 = In−k. The Jacobian

of the transformation is

JΣ−1,Σ̂→U,V =

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

∂Σ̂

∂U′
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

0
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∂Σ−1

∂U′

∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∂Σ̂∂V′

∣∣∣∣∣∣∣
= JΣ−1→U JΣ̂→V.

Then

JΣ−1→U =

(∣∣∣∣∣ n − k
a + p − 1

B−1/2VB−1/2 + B−1
∣∣∣∣∣−1)p

=
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣p

157

and

JΣ̂→V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2

by Lemma 4.32. Thus

JΣ−1,Σ̂→U,V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2
∣∣∣∣ n−k
a+p−1 B−1/2VB−1/2 + B−1

∣∣∣∣p (4.73)

Applying standard change of variables with the Jacobian in Equation (4.73) gives

L (U,V) = c1 |L1|
(n−k−p−1)/2

∣∣∣∣∣∣∣U
(

n − k
a − p + 1

B−1/2VB−1/2 + B−1
)−1

∣∣∣∣∣∣∣
(n−k+a−p−1)/2

· exp
(
−

1
2

Tr U
)
·

|L2|
(n−k−p−1)/2

|L1|
(p+1−(n−k))/2

|(a − p − 1) B|(n−k)/2
∣∣∣∣ n−k
a−p+1 B−1/2VB−1/2 + B−1

∣∣∣∣p
This is equivalent to

L (U,V) = c2
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣(n−k+a+p−1)/2 |L2|

(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

where

c2 = c1
1

|(a + p − 1) B|(n−k)/2

158

is a constant. This can be further simplified to

L (U,V) = c2
1∣∣∣∣B−1/2

(
n−k

a+p−1V + Ip

)
B−1/2

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

= c3
1∣∣∣∣ n−k

a+p−1V + Ip

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

|U|(n−k+a+p−1)/2 exp
(
−

1
2

Tr U
)

(4.74)

where

c3 = c2
1∣∣∣B−1

∣∣∣(n−k+a+p−1)/2

is a constant. Using the definitions of the singular multivariate F and Wishart distributions, Equa-

tion (4.74) separates into

L (U,V) ∝ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
(V) ·Wp

(
Ip, n − k + a

)
(U) . (4.75)

Thus Σ−1
(
ŜS + B−1

)
is distributed as Wp

(
Ip, n − k + a

)
and (a + p − 1) B1/2Σ̂B1/2 is distributed

as Fn−k
p

(
p, n − k, a + p − 1; a+p−1

n−k Ip

)
. �

Using this result, the multivariate RVM may also be applied to GLMs when the sample co-

variance matrix is singular. The generalized variances under the null and alternative hypotheses

are computed as in the case of RVM with a nonsingular covariance matrix. The hyperparameters

a and B are estimated from Σ̂ using a numerical maximization routine, with the singular multi-

variate F distribution being fitted. The hyperparameters are then used to adjust the numerator and

denominator sums of squares in the likelihood ratio test. Values of the likelihood ratio test are

then compared to cutoff values from the χ2 distribution with the adjusted degrees of freedom to

determine significance.

159

4.4 Parametric Error Models for Intensities

A third type of multivariate error model would be a parametric model for both the probe inten-

sities and the variances. This approach is implemented in the mmgMOS algorithm, which is

extensively reviewed in Section 1.8.2. The error model is constructed by first modeling the probe

level intensities; in the mmgMOS algorithm, the gamma distribution is selected for this purpose.

After fitting the model for the intensities, the variance of the intensities can be computed using

standard formulae. The mmgMOS method is used as one of the comparison algorithms in this

research project to assess the accuracy of parametric models based on probe intensities.

Chapter 5

Performance Assessment

5.1 Introduction

One of the greatest challenges in the development of algorithms for the analysis of microarray

data is assessing the performance of the new method (Choe et al., 2005). Comparisons of one al-

gorithm to another without a proper reference data set are of little use. Unless the true state of gene

expression between experimental conditions is known, the investigator cannot determine whether

algorithms with larger number of genes declared significant have greater accuracy in detecting

true positives or simply have a higher number of false positives. Early studies relied on confirma-

tion of microarray results by use of independent laboratory techniques, such as Northern blotting,

quantitative PCR, or ISH (Karsten et al., 2004). However, this approach is very labor-intensive

and time-consuming, so that only a small number of genes can be independently verified. Thus,

it typically provides validation that the genes with the most significant test statistics represent

true positives, but gives little information about the overall sensitivity and specificity of a given

algorithm.

An alternative approach to assessing the accuracy of algorithms is to perform comparisons

using spike-in datasets. The general methodology for construction of spike-in datasets is to in-

troduce specific cDNA fragments into an experimental medium at prespecified concentrations.

Because the concentration of the spiked probes in each condition is known, the number of truly

differentially expressed genes is known and can be used for calculation of measures of sensitiv-

ity and specificity. Thus, application of statistical algorithms to spike-in datasets also represent

160

161

an independent means of assessing the performance of the statistical method. Such datasets are

constructed by a considerable investment of time and resources, but these initial costs incurred

by creating the dataset have an enormous return, since subsequent analyses can be conducted by

any number of investigators with relatively little expense. Variations in the design of spike-in

datasets allow the assessment of algorithms in different manners. For example, one design may

be to spike all genes at a single concentration on a chip; alternatively, the concentration may

vary among genes. The former represents a simpler design and assessment, while the latter per-

mits comparisons under perhaps more realistic conditions, in which the expression differs among

genes. The experimental medium may be a hybridization solution with or without background

RNA present. Again, the former is a simpler design and assessment. The latter represents more

realistic conditions, in which the differentially expressed genes must be separated from a large

number of genes that have an unchanging level of expression, but it has the potential drawback

that the hybridization properties of the background RNA may not be fully characterized. Finally,

as with any experiment, stringent quality control measures are necessary in the construction of

spike-in datasets to avoid erroneous results. In particular, cross-hybridization among probes must

be addressed so that the list of genes expected to be declared differentially expressed is accurate.

5.2 Overview of Spike-in Studies

The first spike-in dataset was created by Affymetrix using the U95 GeneChip. This is a subset

of the data used in the development and validation of the MAS5 statistical analysis algorithm.

As detailed in the documentation accompanying this dataset, 14 experimental groups were con-

structed from 14 spiked-in human genes arranged in a Latin Square design (Tables 5.1 and 5.2).

Group 1 contains 2 genes, group 12 is empty, and the remaining groups contain 1 gene. The

concentrations of the 14 gene groups in the first experiment are 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,

128, 256, 512, and 1024pM. Each subsequent experiment rotates the spike-in concentrations by

one group, so that experiment 2 begins with 0.25pM and ends at 0pM, on up to experiment 14,

which begins with 1024pM and ends with 512pM. Experiments 13 and 14 contain four technical

162

Group
Number Probeset IDs
1 37777 at

407 at
2 684 at
3 1597 at
4 38734 at
5 39058 at
6 36311 at
7 36889 at
8 1024 at
9 36202 at
10 36085 at
11 40322 at
12 empty
13 1091 at
14 1708 at

Table 5.1: Probeset Groupings for the Affymetrix U95 Spike-In Study

replicates, while experiments 1 through 12 contain only a single hybridization. Two sets of exper-

iments were performed, one set with a complex RNA background and one without. The complex

background consists of RNA isolated from biological sources, which would contain a variety of

RNA species and is intended to model the background hybridization present in most biological

experiments. For the Affymetrix U95 experiments, mRNA isolates from human pancreas were

selected. Each experiment contains 3 replicates except one (experiment C with complex back-

ground), which contains 2 replicates.

Affymetrix later produced a second spike-in dataset using the human U133 GeneChip. This

dataset uses a common complex cRNA derived from a human HeLa cell line as background.

Fourteen separate hybridizations were performed in which 42 transcripts were spiked into the

hybridization cocktail using a Latin Square design (Tables 5.3 and 5.4). These spike-in genes

contain 30 transcripts corresponding to cDNA clones isolated from a human lymphoblast cell

line. The remaining spike-in genes consist of foreign and artificial clones expected to show little

hybridization with human GeneChip probes, with 4 being bacterial sequences used as eukary-

otic controls and 8 being artificially engineered sequences believed to be unique to the human

163

E
xp

er
im

en
t

Pr
ob

es
et

G
ro

up

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11
13

14
1

0
0.

25
0.

5
1

2
4

8
16

32
64

12
8

51
2

10
24

2
0.

25
0.

5
1

2
4

8
16

32
64

12
8

25
6

10
24

0
3

0.
5

1
2

4
8

16
32

64
12

8
25

6
51

2
0

0.
25

4
1

2
4

8
16

32
64

12
8

25
6

51
2

10
24

0.
25

0.
5

5
2

4
8

16
32

64
12

8
25

6
51

2
10

24
0

0.
5

1
6

4
8

16
32

64
12

8
25

6
51

2
10

24
0

0.
25

1
2

7
8

16
32

64
12

8
25

6
51

2
10

24
0

0.
25

0.
5

2
4

8
16

32
64

12
8

25
6

51
2

10
24

0
0.

25
0.

5
1

4
8

9
32

64
12

8
25

6
51

2
10

24
0

0.
25

0.
5

1
2

8
16

10
64

12
8

25
6

51
2

10
24

0
0.

25
0.

5
1

2
4

16
32

11
12

8
25

6
51

2
10

24
0

0.
25

0.
5

1
2

4
8

32
64

12
25

6
51

2
10

24
0

0.
25

0.
5

1
2

4
8

16
64

12
8

13
51

2
10

24
0

0.
25

0.
5

1
2

4
8

16
32

12
8

25
6

14
10

24
0

0.
25

0.
5

1
2

4
8

16
32

64
25

6
51

2

Table 5.2: Concentration Data for the Affymetrix U95 Spike-In Study. All concentrations are
given in pM.

164

Group Group
Number Probeset IDs Number Probeset IDs
1 203508 at 2 204205 at

204563 at 204959 at
204513 s at 207655 s at

3 204836 at 4 207777 s at
205291 at 204912 at at
209795 at 205569 at

5 207160 at 6 209606 at
205692 s at 205267 at
212827 at 204417 at

7 205398 s at 8 206060 s at
209734 at 205790 at
209354 at 200665 s at

9 207641 at 10 203471 s at
207540 s at 204951 at
204430 s at 207968 s at

11 AFFX-r2-TagA at 12 AFFX-r2-TagD at
AFFX-r2-TagB at AFFX-r2-TagE at
AFFX-r2-TagC at AFFX-r2-TagF at

13 AFFX-r2-TagG at 14 AFFX-LysX-3 at
AFFX-r2-TagH at AFFX-PheX-3 at
AFFX-DapX-3 at AFFX-ThrX-3 at

Table 5.3: Probeset Groupings for the Affymetrix U133 Spike-In Study

genome. Other improvements of this dataset over the U95 dataset are a wider spread of RNA

concentrations and smaller (18 micron) chip features scanned using improved technology (the

Affymetrix GeneChip Scanner 3000).

GeneLogic has also created a spike-in dataset consisting of three conditions. The Dilution

and AML Latin Square data were previously described in the performance assessment of the S-

Score in Section 2.3. A second Latin Square dataset, called the Tonsil Latin Square dataset, was

produced in a manner similar to that of the AML Latin Square. The former differs from the latter

in that complex cRNA derived from a tonsil tissue sample was used for background hybridization

and in the arrangement of the spike-in concentrations in the Latin Square design (Table 5.5). Each

experiment contains 3 technical replicates.

Choe et al. (2005) have provided an even more ambitious spike-in dataset, called the Golden

165

E
xp

er
i-

m
en

t
Pr

ob
es

et
G

ro
up

N
um

be
r

1
2

3
4

5
6

7
8

9
10

11
12

13
14

1
0

0.
12

5
0.

25
0.

5
1

2
4

8
16

32
64

12
8

25
6

51
2

2
0.

12
5

0.
25

0.
5

1
2

4
8

16
32

64
12

8
25

6
51

2
0

3
0.

25
0.

5
1

2
4

8
16

32
64

12
8

25
6

51
2

0
0.

12
5

4
0.

5
1

2
4

8
16

32
64

12
8

25
6

51
2

0
0.

12
5

0.
25

5
1

2
4

8
16

32
64

12
8

25
6

51
2

0
0.

12
5

0.
25

0.
5

6
2

4
8

16
32

64
12

8
25

6
51

2
0

0.
12

5
0.

25
0.

5
1

7
4

8
16

32
64

12
8

25
6

51
2

0
0.

12
5

0.
25

0.
5

1
2

8
8

16
32

64
12

8
25

6
51

2
0

0.
12

5
0.

25
0.

5
1

2
4

9
16

32
64

12
8

25
6

51
2

0
0.

12
5

0.
25

0.
5

1
2

4
8

10
32

64
12

8
25

6
51

2
0

0.
12

5
0.

25
0.

5
1

2
4

8
16

11
64

12
8

25
6

51
2

0
0.

12
5

0.
25

0.
5

1
2

4
8

16
32

12
12

8
25

6
51

2
0

0.
12

5
0.

25
0.

5
1

2
4

8
16

32
64

13
25

6
51

2
0

0.
12

5
0.

25
0.

5
1

2
4

8
16

32
64

12
8

14
51

2
0

0.
12

5
0.

25
0.

5
1

2
4

8
16

32
64

12
8

25
6

Table 5.4: Concentration Data for the Affymetrix U133 Spike-In Study. All concentrations are
given in pM.

166

Tr
an

sc
ri

pt

E
xp

er
im

en
t

B
io

B
-

B
io

B
-

B
io

B
-

B
io

C
-

B
io

C
-

B
io

D
n-

D
ap

X
-

D
ap

X
-

D
ap

X
-

C
re

X
-

C
re

X
-

nu
m

be
r

5
at

M
at

3
at

5
at

3
at

3
at

5
at

M
at

3
at

5
at

3
at

1
0.

5
3

2
12

.5
25

5
1

0.
75

50
1.

5
75

2
0.

75
5

3
25

50
12

.5
1.

5
1

75
2

10
0

3
1

12
.5

5
50

75
25

2
1.

5
10

0
3

0.
5

4
1.

5
25

12
.5

75
10

0
50

3
2

0.
5

5
0.

75
5

2
50

25
10

0
0.

5
75

5
3

0.
75

12
.5

1
6

3
75

50
0.

5
0.

75
10

0
12

.5
5

1
25

1.
5

7
5

10
0

75
0.

75
1

0.
5

25
12

.5
1.

5
50

2
8

12
.5

0.
5

10
0

1
1.

5
0.

75
50

25
2

75
3

9
25

0.
75

0.
5

1.
5

2
1

75
50

3
10

0
5

10
50

1
0.

75
2

3
1.

5
10

0
75

5
0.

5
12

.5
11

75
1.

5
1

3
5

2
0.

5
10

0
12

.5
0.

75
25

12
10

0
2

1.
5

5
12

.5
3

0.
75

0.
5

25
1

50

Table 5.5: Concentration Data for the GeneLogic Tonsil Latin Square Dataset. All concentrations
are in pM.

167

Spike dataset. This experiment used the Affymetrix Drosophilia GeneChip, which has 14010

probesets. The samples for this experiment are divided into constant (C) and spike (S) conditions,

each with 3 technical replicates. The hybridization cocktail for the dataset consisted of 3860

cRNAs of known sequence spiked in at specific concentrations. The concentrations of 1309

cRNAs differ between the C and the S conditions. The fold changes range from 1.2 to 4, with

the condition S arrays always having the higher concentration (Table 5.6). The remaining 2551

sequences, having the same concentration in the C and S conditions, represent a well-defined

background population. A total of 3866 probesets should be detected as being expressed, while

1331 probesets should be identified as differentially expressed between the two conditions. (These

figures differ slightly from the number of spike-ins because some sequences match more than

one probe, while a few sequences do not match with any probes.) With approximately 10%

of the probesets differing between the C and S conditions, this dataset allows the evaluation of

algorithms in a setting that more closely resembles the typical gene expression study.

5.3 Methods for Comparisons

5.3.1 Data

Data for the Affymetrix U95 and U133 datasets were downloaded in ZIP archive format from

the Affymetrix website (http://www.affymetrix.com/support/technical/sample data/datasets.affx).

The Golden Spike dataset was downloaded as a ZIP archive from the corresponding author’s

website (http://www.ccr.buffalo.edu/halfon/spike). A CD-ROM containing the GeneLogic Dilu-

tion and Latin Square datasets in self-extracting archives was obtained free of charge by request

from the company (http://www.genelogic.com/newsroom/studies/studies.cfm). Each dataset con-

sists of a series of *.CEL files, with one file for each chip hybridized. A listing of the filenames

associated with each experiment is provided in Appendix 2.

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.ccr.buffalo.edu/halfon/spike
http://www.genelogic.com/newsroom/studies/studies.cfm

168

Po
ol

N
um

be
r

N
um

be
ro

fa
ss

ig
ne

d
A

ss
ig

ne
d

fo
ld

ch
an

ge
A

m
ou

nt
of

R
N

A
ad

de
d

A
m

ou
nt

of
R

N
A

ad
de

d
nu

m
be

r
of

cl
on

es
A

ff
ym

et
ri

x
pr

ob
e

se
ts

(S
vs

C
)

to
ea

ch
C

ch
ip

(u
g)

to
ea

ch
S

ch
ip

(u
g)

1
87

84
1.

2
0.

47
0.

56
2

14
1

14
3

2
0.

43
0.

85
3

85
83

1.
5

0.
35

0.
52

4
18

0
18

5
2.

5
0.

73
1.

82
5

90
89

1.
2

0.
29

0.
35

6
88

96
3

0.
65

1.
94

7
18

6
18

8
3.

5
0.

76
2.

67
8

90
95

1.
5

0.
44

0.
67

9
18

0
19

0
4

0.
78

3.
11

10
18

3
19

1
1.

7
0.

48
0.

81
13

39
1

38
5

1
0.

37
0.

37
14

36
9

35
5

1
1.

23
1.

23
15

39
4

40
4

1
0.

40
0.

40
16

45
2

45
3

1
0.

57
0.

57
17

41
9

43
4

1
0.

44
0.

44
18

37
2

40
7

1
0.

31
0.

31
19

16
3

19
1

1
0.

27
0.

27

Table 5.6: Concentration Data for the Choe et al. Golden Spike Dataset

169

5.3.2 Data Processing

Three methods - RMA, Logit-T, and mmgMOS - were selected for comparison to the proposed

S-Score and multivariate RVM methods. Although RMA is a probeset-level method rather than

a probe-level method, it is one of the most widely used summary methods and commonly used

as a comparator for assessing the performance of new algorithms. Logit-t and multi-mgMOS

are alternative probe-level algorithms, and their inclusion will assess the merits of the proposed

methods relative to other probe-level methods. In comparing the five methods using the spike-in

datasets, the respective *.CEL files were read into the R programming environment version 2.5.1

using the ReadAffy function in the affy package version 1.14.1. Both RMA (Section 1.5.5) and

mmgMOS (Section 1.8.2) generate expression summary values, which are then compared with

standard statistical tests. RMA expression summaries were computed using the rma function

in the affy package. Expression summaries for mmgMOS were computed using the mmgmos

function in the puma package version 1.2.0.

The S-Score (Section 4.2), multivariate RVM (Section 4.3), and Logit-t (Section 1.8.1) al-

gorithms produce a test statistic for each probeset on a GeneChip, which is a direct measure of

expression change. Multichip S-Scores were computed using the SScore function in version 1.8.0

of the sscore package. Values for the SF and SDT parameters were calculated using the Com-

puteSFandSDT function in the same package. The Pooled S-Score values were computed using

a custom modification of the SScore function. For Logit-t, the July 2003 version of the C source

code was obtained from the authors and compiled using the GNU C compiler gcc version 4.0.1.

This executable was called from within R, using the system call function, to compute the Logit-t

values. For the multivariate RVM method, probe intensity values were extracted directly from the

*.CEL files using the intensity function in the affy package. Only the PM values within a probe

pair were used in analyses. The PM intensities were log2 transformed and centered about zero

as recommended by Chu et al. (2002). Mappings of probes to probesets were obtained using the

pmindex function.

All computations were performed on a Macintosh Powerbook system with a G4 PowerPC

170

processor running Mac OS X 10.4.9. Source code for all programs are provided in Appendix 1.

5.3.3 Selection of Baseline

Since analyses were conducted in a pairwise fashion between conditions, it was necessary to

specify a baseline condition to which all other conditions were compared. For the four Latin

Square datasets, Experiment 1 was selected as a baseline for analyses. For the Dilution dataset,

only Experiments 9 through 14 had sufficient chips to conduct analyses using all algorithms, and

Experiment 9 was used as a baseline for comparisons. The Golden Spike dataset contains only

two conditions, with the control (C) condition used as the baseline. For attaining optimal per-

formance, comparisons using each algorithm should identify all spiked probesets as differentially

expressed. Identification of fewer probesets among the spike-ins would be false negative findings,

while identification of probesets in addition to these would be false positive findings. Therefore,

using this information, sensitivity and specificity of comparisons made with each algorithm can

be estimated. Based on the concentration data from the various datasets, a number of false neg-

atives was to be expected. For some probesets, the relative change between the two conditions,

expressed by the fold change, was too low to be detected despite high concentrations of RNA.

For other probesets, the absolute amount of RNA may be too low to generate sufficient signal

for detection, despite a high fold change between conditions. Also, given the large number of

hypotheses being tested simultaneously, a number of false positives would also be expected.

5.3.4 Quality Assessment and Data Integrity Checks

Prior to analysis, a quality assessment was performed on each chip. Because of the nature of

the spike-in experiments, many tests for quality control, such as RNA degradation, could not

performed. The primary quality control measures were assessment of linearity and lack of fit,

which could be performed on a subset of the data. For the GeneLogic Dilution dataset, all spike-

ins on each chip have the same concentration, so that linear effects of concentration could not

be examined. However, the intensities of all probe sets at a fixed concentration level should be

171

similar under the assumption of linearity. Quantile-quantile plots of the MAS5 intensity values

were used to examine the assumption that the intensities were from a single distribution with a

common mean. For the Affymetrix U95 and GeneLogic Latin Square datasets, the spike-ins have

differing concentrations, and a linear increase in signal intensity with increasing concentration

would be expected on each chip. Plots of probeset concentration versus the MAS5 intensity value

were generated for each chip. Visual inspection of linearity within a chip was supplemented with

calculation of the R2 value of the linear regression equation. Assessment of lack of fit could not

be performed as there were not multiple probes at the same concentration on each chip.

For the Affymetrix U133 Latin Square and the Golden Spike dataset, several groups of spike-

ins were present at differing concentrations, and each concentration level contained multiple

probesets. Assessment of linearity was performed by visually inspecting plots and examining

linear regression results as for the Affymetrix U95 and GeneLogic Latin Square datasets. Lack

of fit statistics were computed for probesets at the same concentration on each chip to determine

if significant differences existed. For the Golden Spike dataset, data integrity was also examined

by comparing the mapping of probesets to concentration values by two different methods. The

first method was the direct mapping of probesets to concentration available on the corresponding

author’s website. The second method was an indirect mapping of probesets to pool numbers,

followed by a mapping of pool numbers to concentrations, using supplementary data from the

original manuscript. A Perl script was written to compare the results of the indirect mapping to

that of the direct mapping to determine if any discrepancies existed. In addition, the number of

probesets assigned to each pool was checked against the values in the original manuscript for

accuracy.

5.3.5 Statistical Analysis

For each of the five algorithms, statistical tests were conducted between the baseline condition and

each of the remaining conditions in a dataset in a pairwise fashion. All replicates for each condi-

tion were included in the analysis. Expression summary values produced by RMA and mmgMOS

172

were compared using the functions in the multtest package version 1.14.0 from Bioconductor. A

two-sample t-test with unequal variances was performed between each pair of conditions using

the mt.teststat function. The resulting raw p-values were used for subsequent analyses; adjust-

ment of the p-values by controlling FDR were not used so that results reflect the performance of

the expression algorithm rather than the algorithm for FDR control.

The S-Score and Logit-t algorithms both produce test statistics that are easily converted into

p-values without adjustment. The S-Score values, representing standard deviations from a mean

of zero, were converted to p-values using the standard normal CDF

p-value = 2 (1 −Φ (|S s|))

where S is the S-Score value for the probeset s. The Logit-t is converted to p-values using the

CDF of the t distribution, with the degrees of freedom equal to the total number of arrays minus

2, as recommended by the authors (Lemon et al., 2003).

For multivariate RVM, a mixed effects model was constructed for the transformed and cen-

tered probe-level intensities of each probeset s:

Ycms = µ + βc + bs + εcms m = 1, 2, . . . ,Nm; c = 1, 2, . . . ,Nc (5.1)

For this model,

Ycms =

[
y1 y2 y3 . . . yNp

]′

is the Np × 1 vector of transformed intensities, µ = µJ is the Np × 1 vector of mean intensities for

probeset s, βc = βc J is the Np × 1 vector of effects for the the cth treatment, and

bs =

[
b1 b2 b3 . . . bNp

]′

is the Np × 1 vector of effects for the pth probe of probeset s. These effects are assumed to be

173

fixed. The random error term εcms is assumed to have a multivariate normal distribution with an

expectation of 0 and covariance matrix Σ, or εcms ∼ MVN (0,Σ). Thus

E (Ycms) = µ + βc + bs.

A compound symmetric covariance structure was chosen for modeling the relationship among the

probes in a probeset, based on previous work by Archer et al. (2006), so that

Var (εcms) =

σ2 σ2
c σ2

c . . . σ2
c

σ2
c σ2 σ2

c . . . σ2
c

...
...

...
. . .

...

σ2
c σ2

c σ2
c . . . σ2

= Σ

where σ2 is the variance of and σ2
c is the covariance among the individual probes in the probeset.

Since the multivariate RVM method requires that the covariance matrix ε have the same di-

mension for all probesets in an analysis, which in turn requires the transformed intensity vector

Y to have same number of probes within each probeset, a separate analysis was conducted for

each probeset size. For the Affymetrix U133 GeneChip, probeset sizes range from 8 to 20. There

are 21,765 probesets containing 11 probes, 482 probesets containing 16 probes, and 40 probe-

sets containing 20 probes. These groups of probesets were used in the analysis. Although the

sample size for the 40 probesets with 20 probes may be insufficient for accurate estimation of

the hyperparameters, this group was retained as it contains several of the spike-in probes. The

remaining groups of probesets contained 1 to 4 probesets in each group. The sample size for

these groups was deemed too small to yield meaningful results, and these groups were excluded

from the analysis. It is expected that the typical RVM analysis will only include those groups of

probesets that are sufficiently large for adequate estimation of the hyperparameters, with smaller

groups of probesets being excluded. The smaller groups contain probesets used for quality con-

trol that are unlikely to be of interest in most differential expression studies. A brief annotation

of the probesets in these smaller groups is provided in Appendix C.

174

Model fitting was performed using the gls function from version 3.1-83 of the nlme package,

available from the Comprehensive R Archive Network (CRAN; http://cran.r-project.org). Maxi-

mum likelihood, rather than restricted maximum likelihood, was used to permit likelihood ratio

tests of the fixed treatment effects (see Pinheiro and Bates, 2000, p. 83). As the gls function

does not allow for multivariate response variables, the model in Equation (5.1) was modified

slightly by “stacking” the responses for each probeset s into a single
(
Nc · Nm · Np

)
× 1 vector

and introducing additional indicator variables denoting membership in each array and treatment

(see http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf for a gen-

eral discussion of this issue in R). Using a reference cell model with the first level of treatment and

probe effects as the reference level (which is the default in R), the fixed terms in Equation (5.1)

may be combined as

β =

[
µ β2 β3 . . . βNc b2 b3 . . . bNp

]′
.

Equation (5.1) then may formulated as the multivariate model

Ys = Xβ + εs (5.2)

where X is an
(
Np + Nc − 1

)
× 1 matrix of indicator variables for the fixed effects, and Y is the

matrix of intensity values formed by concatenating the intensity vectors Ycms as

Ys =

[
Y11s Y21s . . . Yc1s . . . Ycms

]
.

The random error matrix εs may be similarly formed as

εs =

[
ε11s ε21s . . . εc1s . . . εcms

]
. (5.3)

Then E (εs) = 0, where in this case the matrix 0 is an Np × NmNc matrix.

The multivariate model in Equation (5.2) is converted to a “univariate” model using the vec

http://cran.r-project.org
http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf

175

operator and Kronecker products, as described in Searle (1978) and Henderson and Searle (1979).

The stacked “univariate” model is then

vec (Ys) = vec (Xβ + εs)

= vec (Xβ) + vec (εs) .

Applying Equation (4.7), this becomes

vec (Ys) = (I ⊗ X) vec (β) + vec (εs) . (5.4)

Since E (vec (εs)) = vec (E (εs)),

E (vec (εs)) = 0

and

E (vec (Ys)) = (I ⊗ X) vec (β) ,

where 0 is an NpNmNc × 1 column vector. The term vec (εs) may be partitioned as

vec (εs) =

ε11s

ε21s

ε31s

...

εc1s

...

εcms

. (5.5)

176

With the partitioning given in Equation (5.5), the formula for var (vec (εs)) is

var (vec (εs)) =

var (ε11s) cov (ε11s, ε21s) cov (ε11s, ε31s) . . . cov (ε11s, εcms)

cov (ε21s, ε11s) var (ε21s) cov (ε21s, ε31s) . . . cov (ε21s, εcms)

cov (ε31s, ε11s) cov (ε31s, ε21s) var (ε31s) . . . cov (ε31s, εcms)
...

...
...

. . .
...

cov (εcms, ε11s) cov (εcms, ε21s) cov (εcms, ε31s) . . . var (εcms)

=

Σ 0 0 . . . 0

0 Σ 0 . . . 0

0 0 Σ . . . 0
...

...
...

. . .
...

0 0 0 . . . Σ

, (5.6)

or, more compactly, var (vec (εs)) = Σ ⊗ Imc = var (vec (Ys)). The variable Ys is said to have a

matrix variate normal distribution (Dawid, 1981), denoted in this case as Y ∼ NNp,mc (Xβ,Σ ⊗ Imc).

After fitting the model in Equation (5.4) using the nlme package, the residuals from this anal-

ysis were then used to estimate the parameters a and B of the Wishart prior, as given in Equa-

tion (4.62). Parameter estimates were found using numerical optimization as implemented in the

optim function in the stats package. The optim function minimizes a specified function using an

implementation of the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), which is rela-

tively robust to discontinuities compared to the Newton-Raphson algorithm and does not require

a gradient for the function being optimized. After obtaining estimates for a and B, revised like-

lihood ratio test statistics were computed on a probeset-by-probeset basis using Equation (4.48).

The p-values were obtained from the χ2 distribution with 1 degree of freedom using -2 times the

logarithm of the likelihood ratio test statistic.

The analyses differed between the GeneLogic Dilution dataset and the remaining datasets be-

cause of the differing nature of the experiments. For the GeneLogic Dilution dataset, all probesets

on a chip were spiked in at the same concentration, so that the effects of concentration on the de-

177

tection of differential expression could only be examined across chips. The primary measure of

performance was the sensitivity and specificity of each of the five algorithms. Higher values of

sensitivity and specificity would indicate better performance of a particular method. To calculate

these two quantities, it was necessary to establish cutoffs for declaring probesets differentially

expressed. For multivariate RVM, RMA, and mmgMOS, a cutoff value of p < 0.001 was used,

as suggested by Simon et al. (2002). A cutoff value of 3.29 was used for the absolute values

of the S-Score, corresponding to greater than 3.29 standard deviations of change in intensity or

p < 0.001. This is slightly higher than the previously recommended cutoff of 3, which corre-

sponds to p < 0.003. For Logit-t, the t-test value corresponding to p < 0.001 was used as the

cutoff value. This is slightly lower than the cutoff of p < 0.01 recommended by the authors

(Lemon et al., 2003). The use of these cutoff values for the S-Score and Logit-t is intended to

provide uniformity across methods, so that differences in performance are not due to differences

in cutoff values. Sensitivity and specificity were tabulated for each method based on the appro-

priate cutoff values. This was supplemented with plots of the S-scores and of multivariate RVM

versus each of the three remaining algorithms to assess the comparative ability of each algorithm

to clearly separate the spike-in clones from the remaining probe sets.

A different approach was used for the Latin Square and Golden Spike datasets, which con-

tained varying concentrations of spike-in transcripts on each chip. Probe sets were rank ordered

based on p-values obtained from each algorithm, using the rank function in R. Rankings from

each algorithm were compared to the true underlying fold-change values of the spike-in clones.

The true underlying fold-change ranks were determined using the concentration of the spike-in

clones (Tables 2.2, 5.2, 5.4, 5.5, and 5.6) for the two conditions being compared. The proportion

of spike-ins ranked less than or equal to the total number of spike-ins for the dataset was calcu-

lated, and the Cochran-Mantel-Hanzel test used to compare these proportions across all chips.

This validation procedure is similar to the procedure for validation of the original S-Score using

spike-in data (Kennedy et al., 2006a).

178

5.4 Results

5.4.1 Quality Assessment

A subset of the quantile-quantile plots of the MAS5 intensity values for the GeneLogic Dilution

dataset are depicted in Figure 5.1, with the full set of 26 plots in Appendix B. These plots

generally show the assumption of linearity is reasonable; that is, the intensities of the spike-in

probes are from a single underlying distribution. Two chips have a single probe falling outside

of the 95% confidence bands of the quantile-quantile plot. With only two outliers among 26

hybridizations of 10 probes each, the quality of the Dilution dataset was deemed adequate, and

this dataset was used in subsequent analyses.

Subsets of the linearity plots of the MAS5 intensity values for the Genelogic AML and Tonsil

Latin Square datasets are shown in Figures 5.2 and 5.3, respectively, with the full set of plots

in Appendix B. As evident from these plots, there are some problems with the assumption of

linearity for almost all chips in the two datasets; that is, the intensities of the spike-in probes do

not increase linearly with increases in concentration, as would be expected. The visual results

are confirmed by the linear regression of intensity on concentration. The R2 values range from

0.01 to 0.98 (mean = 0.61, median = 0.74) for the AML dataset and from 0.31 to 0.99 (mean =

0.79, median = 0.92) for the Tonsil dataset. The large number of chips violating the assumption

of linearity may indicate potential problems with the quality of these datasets, and both were

excluded from further analyses.

Subsets of the linearity plots for the Affymetrix U95 and U133 Latin Square datasets are show

in Figures 5.4 and 5.5, respectively, with the full set of plots in Appendix B. As evident from these

plots, the assumption of linearity is reasonable for almost all chips in the two datasets. The results

of the linear regression showed similar results. The R2 values range from 0.33 to 0.91 (mean =

0.74, median = 0.77) for the U95 Latin Square dataset. The R2 values for the U133 Latin Square

dataset ranged from 0.79 to 0.96 (mean = 0.88, median = 0.88). The lack of fit test for the U133

dataset was significant, p < 0.01. This indicates that intensities at the same concentration level

179

● ● ● ● ●

●
●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
10

30
50

70

Chip 92466hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(a)

● ●
●

● ●
●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5
0

20
60

10
0

14
0

Chip 92491hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(b)

●

●
●

●
●

●

●
●

●
●

−1.5 −0.5 0.5 1.0 1.5

50
10

0
15

0

Chip 92492hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(c)

●

●

●

●
● ●

●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
20

40
60

80
12

0

Chip 92493hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(d)

Figure 5.1: GeneLogic Dilution Quality. Plots of the computed MAS5 intensity values versus
theoretical normal quantiles for a subset of chips. All intensity values are scaled to give a median
intensity value of 100 for each chip.

180

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●●
●
●●●

●

●

●

●●

●●
●

●●

0 20 40 60 80 100

0
40

00
80

00

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●

●

●

●● ●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 2

Concentration

In
te

ns
ity

●

●

Replicate 1
Replicate 2

(b)

●

●

●

●

●
●

●●
●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 3

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(c)

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●●

●
●

●

●

●●

●

●

● ●●

●
●

●

●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure 5.2: GeneLogic AML Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.

181

●●●
● ●●

●●

●

●
●

●●●
● ●●

●●

●

●
●

● ●●
● ●●

●●

●

●
●

0 20 40 60 80

0
40

00
80

00
12

00
0

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●
●●

●
●

●

●●

●

●

●

● ●●

●
●

●

●●

●

●
●

● ●●

●
●

●

●●

●

●
●

0 20 40 60 80 100

0
40

00
80

00
12

00
0

Experiment 2

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(b)

●
●

●

●

●●

●●

●

●●●
●

●

●

●●

●●

●

●●●
●

●

●

●●

●●

●

●●

0 20 40 60 80 100

0
40

00
80

00
12

00
0

Experiment 3

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(c)

●

●

●

●

●
●

●●● ●●●

●

●

●

●

●

●●● ●●●

●

●

●

●
●

●●● ●●

0 20 40 60 80 100

0
40

00
80

00
12

00
0

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure 5.3: GeneLogic Tonsil Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.

182

do not appear to come from a single underlying distribution, as would be expected. Although the

lack of fit test may suggest potential problems with the U133 dataset, it was retained for further

analyses based on the excellent results from the linearity plots. The U95 dataset was also retained,

due to its inclusion in other benchmark studies (Irizarry et al., 2006).

Quantile-quantile plots for the Golden Spike constant arrays and a linearity plot for the spike

arrays are shown in Figure 5.6. As evident from these plots, there are significant deviations from

the expected values, indicating that the intensities for the control chips are not from a single dis-

tribution. Similarly, the linearity plot shows that the probe intensities in the spike arrays do not

increase linearly as a function of concentration, with the R2 values ranging from 0.07 to 0.08. The

lack of fit statistic for the spike arrays was highly significant, p < 0.001, suggesting that inten-

sities at the same concentration level are not from a single underlying distribution as expected.

Finally, results of the data integrity check using indirect mapping of probesets to pool numbers to

concentrations is depicted in Table 5.7. The indirect mapping shows several discrepancies com-

pared to the direct mapping in Table 5.6. One clone in the probeset file (SD01117) did not map

to any pool assignment. There were also several pools (numbers 6, 13, and 14) for which the

number of assigned clones and/or probesets differed between the direct and indirect mappings.

These differences would affect the concentration value of only one probeset (152452 at), but do

indicate potential problems with the quality of the Golden Spike dataset. Based on the results

of the data integrity check, as well as the quantile-quantile and linearity plots, this dataset was

excluded from further analyses.

5.4.2 Statistical Analysis

The results of the analysis of the GeneLogic Dilution dataset are shown in Tables 5.8 through 5.11.

The statistical significance of the comparisons between different algorithms is given in Table 5.12.

Both the multichip S-Score and Logit-T did well in detecting the spike-in probes for all but the

lowest fold change. There were no significant differences in the performance of the two. RMA

fared worse, failing to detect most of the spike-in probes except at the highest fold change. The

183

●●●●●●●
●●

●

●

●

●
●

●●●●●●●
●●

●

●

●

●

●

●●●●●●●
●●

●

●

●

●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●●●●●
●●

●●

●

●

●

●

●●●●●●
●●
●●

●

●

●

●

●●●●●●
●●

●
●

●

●

●

●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 2

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(b)

●●●●●
●

●

●
●

● ●

●●●●●●●●
●

●

●
●

●
●

●●●

0 100 200 300 400 500

0
10

00
0

25
00

0

Experiment 3

Concentration

In
te

ns
ity

●

●

Replicate 1
Replicate 2

(c)

●●●●
●

●

●

●

●

● ●

●●●●●●
●●
●

●

●

●

●
●

●●●●●●
●●

●

●

●

●

●

●

●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure 5.4: Affymetrix U95 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.

184

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●
●●●

●

●
●

●●●

●

●
●

●●●
●
●

●

●●

● ●●
●

●
●

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●●

●●

●

●
●

●
●
●

●

●
●

●●
●

●●

●

●●

● ●●

●

●
●

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●●
●

●

●

●

●●

● ●●
●

●
●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●

●

●●●
●

●●●●

●

●●●
●●●●●●

●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●
●●

●●●●●●●●●

●
●

● ●●
●

●●

●

●

●●●
●

●●●●

●

●●●●●●●●●
●
●●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●
●
●

●●●●●●●●●

●
●

● ●●●

●●

●

●

●●●
●

●●●●

●

●●●
●●●●●●

●●●●
●

●●●●●●●

●

●

●

●●●●●●●●●

●

●
●

●●●●●●●●●

●
●

● ●●●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 2

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(b)

●

●

●●●

●

●●●●

●

●●●
●

●●
●●

●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●
●

●

●●●

●

●●●●

●

●●●●●●
●●

●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●
●

●

●●●

●

●●●●

●

●●●●
●●

●●
●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●●●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 3

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(c)

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure 5.5: Affymetrix U133 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.

185

● ●●●
●●

●●
●●●

●●●
●●●

●●●
●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●
●●
●●●●●●

●
●
●●

●
●

−3 −2 −1 0 1 2 3

0
50

0
15

00

chipC−rep1.CEL

norm quantiles

In
te

ns
ity

(a)

● ●●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●●
●●
●●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●
●●●
●●
●●●

●●
● ●

−3 −2 −1 0 1 2 3
0

50
0

15
00

chipC−rep2.CEL

norm quantiles

In
te

ns
ity

(b)

● ●●●
●●

●●●
●●●

●●●
●●
●●●

●●
●●
●●●
●●●
●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●
●●●●

●●
●●

● ●

−3 −2 −1 0 1 2 3

0
50

0
10

00

chipC−rep3.CEL

norm quantiles

In
te

ns
ity

(c)

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●

●

●
●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●

●
●
●
●

●
● ●

●

●
●

●

●
●
●

●

●● ●

●●

●

●
● ●

●

●

●
●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●● ●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●●● ●

●

●●
●

●

●
●●●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
● ●

●

● ●
●

●

●

●

●
● ●

●

● ●

●

●

●●●●

●

●
●

●●●

●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●

●●
●

●

●

●●

●

●
●

●●
●

●
●

●●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●
● ●●

●
●●

● ●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●
●
●
●

●

●● ●
●

●

●

●

●
●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●
●

●
●

●●

●

●

●

●
● ●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●●
●

●

●
●
●

●●●●

●

●●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●●
●

●

●●
●

●●

●

●

●

● ●

●

●

●

●●

●●
●●

●●

●

●●

●

●
●
●

●

●
●
●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●●

●●

● ●●

●

●

●
●

●

●

●●

●
●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●●●

●●

●
●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●●
●●

● ●

●

●●
●
●
●

●

●

●

●●●

●

●
●

●

●

●

●●
●
●

●
●

●●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●●● ●●

●

●

●

●

●●

●
●

●

●

●●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●●
●
●
●
●

●●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●●
●●

●● ●●●
●●
●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●

●● ●

●●

●

●
● ●

●

●

●●

●

●●
●●

●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●● ●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●●● ●

●

●● ●

●

●
●●●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●
●●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
● ●

●

● ●
●

●

●

●

●

● ●
●

● ●

●

●

●●●●

●

●
●

●●●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●●

●

●
●

●●
●

●

●

●●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
● ●●

●
●●

● ●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●●

●
●

●

●

●

●●

●●

●

● ●
●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●●
●

●

●
●
●

●●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●●

●

●
●
●
●

●●

●

●

●

● ●

●

●

●

●●

●●
●●

●●

●

●●

●
●
●
●
●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●
●●

●●

●
●

● ●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●●

●●

●

●

●●

●

●●

●
●

●

●
●

●
●
●

●

●
●

●

●●

●

●

●●
●

●●

●●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●
●●

● ●

●

●
●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●●
●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●

●●

●●
●

●●● ●
●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●
●
●
●
●
●

●●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●●

●●

●
●

●●●

●●●
●

●

●

●●

●
●

●

●●

●

●

●●

●

● ●

●

●
●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●
●
●
●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
● ●

●

●

●
●

●
●
●

●

●●
●

●
●

●

●● ●

●

●

●
●

●

●
●●●

●

●

●
●

●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●●
●

●

●
●●●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●

●

●

●
● ●

●
●

●

●

●
●

●
●

●

●● ●

●

● ●
●

●

●

●

●
● ●

●

● ●

●

●

●●●●
●

●
●

●●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●●
●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
● ●
●

●
●●

●
●

●
● ●

● ●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●●●

●

●
●●
●

●

●
● ●●

●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
● ●

●

●

●

●
●

●●

●
●

●

●●
●

●

●

●

●

●●

●

●●●

●
●
●
●

●
●●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●●

●●
●

●

●

●

●●
●
●●

●
●●

●

●

●

●
●

●

●

●

●●

●●
●●

●●

●

●●

●

●●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●●

●
●●
●

●

● ●

●
●

●

●

●

●
●

●

●
●

●
●●●●

●●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●
●●●

●●

●
●

●

● ●
●

●

●

●

● ●
●
●●

●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●

●

●●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●●
●
●

● ●
●

●
● ●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●
●
●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●

● ●
●●● ●●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●
●
●
●
●
●

●

●
●
●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●
●●
●●

●
● ●

●
●●●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●
●●

●●●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●
●● ●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●
●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
10

00
20

00
30

00

Experiment 2

Concentration

In
te

ns
ity

●

●

●

chipS−rep1.CEL
chipS−rep2.CEL
chipS−rep3.CEL

(d)

Figure 5.6: Choe Golden Spike Quality. All intensity values are scaled to give a median intensity
value of 100 for each chip.

186

Pool Number Number of assigned
number of clones Affymetrix probe sets

1 87 84
2 141 143
3 85 83
4 180 185
5 90 89
6 88 95
7 186 188
8 90 95
9 180 190

10 183 191
13 392 376
14 368 354
15 394 404
16 452 453
17 419 434
18 372 407
19 163 191

Table 5.7: Clone and Pool Assignments for the Choe et al. Golden Spike Dataset Using Indirect
Mappings

results of the multichip S-Score and Logit-T analyses were significantly better than RMA. The

mmgMOS, pooled S-Score, and RVM methods all performed quite poorly, often failing to detect

any of the spike-ins. It should be noted that the analyses of Experiments 10, 13, and 14 using the

RVM method failed to converge in the estimation of the matrix hyperparameter. Implications of

nonconvergence on these results are discussed in the next chapter.

The results of the analysis for the Affymetrix U95 Latin Square dataset are shown in Ta-

ble 5.13. The statistical significance of the comparisons between different algorithms is given in

Table 5.14. The performance of the multichip S-Score was quite favorable, being significantly

better than mmgMOS and RMA and comparable to Logit-T. For four experiments (numbers 1, 2,

3, and 11), the Logit-T detected a slightly higher number of spike-in probes than the multichip

S-Score. For four other experiments (numbers 9, 16, 17, and 18) the multichip S-Score detected

a slightly higher number of spike-in probes than the Logit-T. The pooled S-Score also showed

significantly better results than mmgMOS and RMA. However, both the multichip S-Score and

187

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 0 0 5 0 0 0
11 9 2 10 0 1 0
12 10 0 10 0 0 0
13 10 0 9 0 3 0
14 10 0 10 0 9 2

Table 5.8: Number of True Positives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true positives,
i.e. the number of spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of spike-in probes that could be detected is 10. Note
that analyses of Experiments 10, 13, and 14 using RVM had lack of convergence in estimating
the matrix hyperparameter.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 410 24 1 1 54 0
11 0 2 2 1 3 0
12 2 3 5 1 1 0
13 82 22 1 1 12 0
14 4 3 5 1 6 0

Table 5.9: Number of False Positives in Analysis of the GeneLogic Dilution Dataset. All compar-
isons are made using Experiment 9 as the baseline chip. Values are the number false positives, i.e.
the number of non-spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of false positives is 12580 for the RVM method and
12616 for all other methods.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 12206 12592 12615 12615 12562 12580
11 12616 12614 12614 12615 12613 12580
12 12614 12613 12611 12615 12615 12580
13 12534 12594 12615 12615 12604 12580
14 12612 12613 12611 12615 12610 12580

Table 5.10: Number of True Negatives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true negatives,
i.e. the number of non-spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of true negatives is is 12580 for the RVM
method and 12616 for all other methods.

188

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 10 10 5 10 10 10
11 1 8 0 10 9 10
12 0 10 0 10 10 10
13 0 10 1 10 7 10
14 0 10 0 10 1 8

Table 5.11: Number of False Negatives in Analysis of the GeneLogic Dilution Dataset. All
comparisons are made using Experiment 9 as the baseline chip. Values are the number false
negatives, i.e. the number of spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of false negatives is 10.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 2.690 67.955 — 74.116 43.959 67.955

S-Score 0 .101 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 68.762 0.527 — — 16.189 0.528

S-Score < 0.001 0.468 — — < 0.001 0.468
RVM 62.339 0.260 — — 11.243 —

< 0.001 0.610 — — < 0.001 —

Table 5.12: Statistical Significance for True Positives the GeneLogic Dilution Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.

189

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 9 2 8 7 4 0
3 10 0 9 7 3 0
4 12 6 11 10 11 0
5 12 10 12 9 10 0
6 12 10 12 12 10 0
7 13 11 13 12 10 4
8 13 9 13 12 12 1
9 13 9 13 12 10 0

10 12 8 13 9 11 0
11 12 8 12 12 11 1
12 11 7 10 7 6 0
13 10 5 10 10 7 0
13 10 6 10 8 6 0
13 10 4 10 8 7 0
13 10 5 10 8 8 0
14 5 2 9 6 1 0
14 7 2 9 7 1 0
14 7 2 9 6 4 2
14 8 4 8 8 5 1

Table 5.13: Statistical Analysis of the Affymetrix U95 Latin Square Dataset. All comparisons are
made using Experiment 1 as the baseline chip, and Experiments 13 and 14 contain four technical
replicates each. Values are the number of spike-in probes ranked in the top 14 according to the
test statistic generated by each algorithm. The maximum number of spike-in probes that could be
detected is 14. Note that all analyses conducted using RVM had lack of convergence in estimating
the matrix hyperparameter.

Logit-T outperformed the pooled S-Score. Finally, the results obtained using the RVM method

were significantly worse than the other five algorithms. For most of the experiments, the RVM

method failed to detect any of the spike-in probes. However, it must also be noted that there was

a lack of convergence in estimating the matrix hyperparameter for the RVM method with all 18

experiments as well. Implications of nonconvergence on these results are discussed in the next

chapter.

The results of the analysis for the Affymetrix U133 Latin Square dataset are shown in Ta-

ble 5.15. The statistical significance of the comparisons between the different algorithms is given

in Table 5.16. As with the U95 Latin Square analysis, the multichip S-Score and Logit-T were

190

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.169 68.623 — 8.405 35.913 283.857

S-Score 0.681 < 0.001 — 0.004 < 0.001 < 0.001
Pooled 5.876 29.134 — — 8.922 216.067

S-Score < 0.015 < 0.001 — — 0.003 < 0.001
RVM 274.490 115.355 — — 161.051 —

< 0.001 < 0.001 — — < 0.001 —

Table 5.14: Statistical Significance for the Affymetrix U95 Latin Square Analysis. The first row of
each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value obtained
using the χ2

1 distribution to determine significance.

comparable and outperformed the remaining algorithms. The pooled S-Score performed more

poorly than the multichip S-Score and Logit-T. For this analysis, the pooled S-Score was also

inferior to RMA, although it did outperform mmgMOS. The RVM method detected a number of

spike-in probes and was superior to mmgMOS, but still fared poorly compared to the other four

algorithms. However, in several instances, the estimation of the matrix hyperparameter for the

RVM method failed to converge.

191

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 52 22 49 41 40 37
3 53 35 55 45 44 44
4 59 39 59 49 54 29
5 61 40 61 55 56 27
6 63 47 63 49 55 42
7 64 52 63 56 55 39
8 64 50 64 57 57 45
9 64 51 64 41 55 45

10 64 48 63 40 51 27
11 60 49 60 38 49 42
12 60 48 58 42 48 46
13 57 38 57 40 45 38
14 52 17 48 34 37 22

Table 5.15: Statistical Analysis of the Affymetrix U133 Latin Square Dataset. All comparisons
are made using Experiment 1 as the baseline chip. Values are the number of spike-in probes
ranked in the top 64 according to the test statistic generated by each algorithm. The maximum
number of spike-in probes that could be detected is 64.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.587 197.000 — 126.938 67.103 258.651

S-Score 0.443 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 142.660 7.263 — — 10.998 28.553

S-Score < 0.001 0.007 — — < 0.001 < 0.001
RVM 278.170 7.289 — — 74.329 —

< 0.001 0.007 — — < 0.001 —

Table 5.16: Statistical Significance for the Affymetrix U133 Latin Square Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.

Chapter 6

Discussion

6.1 Overview

This study represents the first analysis of probe-level algorithms using a comprehensive set of

spike-in datasets. Although probe-level analysis has several potential advantages over probeset-

level expression summary algorithms, claims of superiority for probe-level methods must be eval-

uated critically prior to acceptance. Previous studies of probe-level algorithms have several short-

comings that this study attempts to address. First, most studies have relied on datasets for which

the true status of differential expression for each probeset is unknown, so that separation of true

positives from false positives is difficult. Second, the studies that have utilized spike-in datasets

were conducted prior to the development of some of the spike-in datasets available for this study.

These newer datasets incorporate recent advances in microarray design that would be expected

to lead to more accurate results, and would be more comparable to current microarray studies

than analyses conducted a few years ago. Third, previous probe-level studies have not examined

the quality of the datasets that are utilized, which may have a significant effect on the results

obtained. Fourth, few comparisons between probe-level methods have been made, so that the

relative advantages and disadvantages of different methods are not readily apparent.

192

193

6.2 Quality of Spike-In Datasets

The first set of significant results from this study concerns the quality of the available spike-in

datasets, which was sufficiently poor to exclude many of the datasets from analyses. The na-

ture of the spike-in experiments precludes the use of many standard tests for quality control for

microarray data. For example, checks for the presence of ribosomal RNA degradation products

are not useful, as these sequences would not be present in the spike-in studies even if significant

RNA degradation had occurred. Similarly, assessment of the signal intensities for “housekeeping”

genes would not be helpful as these sequences were not included in the spike-in sequences. Thus,

while the available spike-in datasets are generally believed to be of good quality, this can be dif-

ficult to verify. Assessment of linearity is possible with spike-in datasets and provide indications

of the quality of the experiments. The GeneLogic AML and Tonsil Latin Square datasets show

significant deviations from the expected linear increase in intensity with increasing concentration,

which is apparent from visual plots and from the low R2 values. Similarly, the spike arrays of the

Golden Spike dataset show significant departures from linearity, both visually and quantitatively.

Such findings might be interpreted as evidence that the assumption of linearity may not hold for

microarray data, particularly at low concentrations. Another interpretation would be that a linear

increase in signal occurs for microarray data, but the slope of the line differs among probesets. If

so, the increase in signal intensity for a given change in concentration that occurs with one probe-

set would not necessarily be the same as the increase in signal intensity that occurs with another

probeset for the same change in concentration, and data for the individual probesets could not be

combined. However, both the Affymetrix U95 and U133 Latin Square datasets show good results

for linearity, which raises concerns that the results for the GeneLogic Latin Square and Golden

Spike datasets represent poor quality in these experiments. The quantile-quantile plots for the

constant arrays of the Golden Spike dataset would represent a check for linearity when all spikes

are present at the same concentration. These plots show that the intensities are not from a single

distribution, which is also a significant violation of the assumption of linearity. Quantile-quantile

plots show that the assumption of linearity is reasonable for the GeneLogic Dilution dataset, al-

194

though there are a small number of probes that fall outside of the 95% confidence bands. Finally,

it is concerning that the mappings of probesets to pool numbers could not be reproduced for the

Golden Spike dataset using the published online data, as this may also be an indicator of poor

quality for the experiment. Attempts to clarify these discrepancies with the authors were unsuc-

cessful, so it cannot be established with certainty whether these findings represent errors in the

original experiment or in the analyses from this study.

Taken collectively, the results of the quality assessment and data integrity checks for the spike-

in datasets indicate that significant problems may exist with these datasets. This is of particular

concern as these datasets are often used for establishing the accuracy of algorithms for detecting

differential expression, which is in turn used for making judgments regarding the algorithms to

pursue further. This study demonstrates that although spike-in experiments have shown improve-

ments over time, current datasets may not be adequate for the purpose of algorithm development.

Additional work is clearly needed regarding the design and creation of spike-in datasets to ensure

that the validation of existing and future algorithms is performed properly.

6.3 The S-Score Algorithm

The second set of significant results from this study concerns the nature of probe-level analyses

and how they are conducted. By extending the S-Score algorithm to multichip comparisons and

the RVM algorithm to a multivariate model, this study advances both the theoretical underpin-

nings of probe-level methodology and the practical implementation of suitable analytic methods.

For the S-Score algorithm, one of the chief concerns was that its development was based on

empiric models that were intuitively appealing but not mathematically rigorous. The results of

the current study provide initial results necessary for a more formal derivation of the S-Score

method. The S-Score statistic closely resembles the sum in the Lindeberg-Feller generalization

of the CLT. This would, in turn, predict that the S-Score statistic would approximately follow

a standard normal distribution after appropriate scaling, which was observed by the original au-

thors (Zhang et al., 2002). The convergence of the S-Score statistic would occur regardless of the

195

underlying distribution of the signal intensities. This is a potential advantage over other meth-

ods that impose specific distributional assumptions, as the accuracy of the latter statistics may

not hold if the assumptions are violated. If the underlying distribution of the signal intensities is

approximately normal, the convergence of the S-Score statistic would be quite rapid. This would

allow accurate results to be obtained even with small sample sizes, such as comparisons between

two chips, which has also been observed (Kennedy et al., 2006a). The CLT would also predict

that the accuracy of the S-Score would increase as replicate chips were included in the statistic.

This study extends the original R implementation of the S-Score algorithm to include replicate

chips in the two conditions being compared and provides initial results on the performance of the

extended version using spike-in datasets. Overall, the multichip S-Score did quite well, showing

significantly better results than the standard probeset-level method RMA in the analysis of the

Affymetrix Latin Square datasets. The multichip S-Score also did significantly better than the

mmgMOS algorithm, which is a probe-level analysis method that assumes the signal intensities

follow a gamma distribution. As the complex physical properties governing the binding of sam-

ples to probe sequences on oligonucleotide microarrays may not be fully appreciated at present,

it would be quite understandable that a method that does not rely on underlying distributional

assumptions may show superior performance to a method that does, as shown in this study.

However, a critical requirement for the applicability of the CLT to the S-Score statistic is

that the denominator of the S-Score represent a consistent estimator of the variance of the signal

intensities. This has not been established for the original S-Score or, by extension, to the multichip

S-Score. Although the accuracy of the results obtained with these algorithms is encouraging,

it does not constitute a proof. Thus, this study also sought to improve the variance estimate

contained in the S-Score using an adaptation of the LPE algorithm, which was selected as its

assumptions are similar to those of the S-Score. Surprisingly, use of the variance estimator based

on the LPE algorithm led to a degradation in accuracy. The pooled S-Score did outperform RMA

in the analysis of the Affymetrix U95 Latin Square dataset, but its performance was inferior to

RMA for the Affymetrix U133 dataset. The pooled S-Score did not give comparable results to

the multichip S-Score for any of the datasets examined. The poorer performance may be due

196

to limitations of the LPE method itself, particularly as applied to probe-level data. The variance

estimate produced by the LPE method is the variance of a group of probes having a similar average

intensity across chips. The upper tail of the distribution of signal intensities, which are often the

signals of interest for differential gene expression studies, tend to be sparsely populated. This

could lead to groups of probes having only a small number of members and in turn to a potentially

inaccurate estimate of the true variance for the groups of probes, especially if outliers are present.

The LPE algorithm attempts to correct the problem by requiring a minimum number of probes

within each group. However, with the sparseness of the upper tails, this requirement could lead to

probes with very different average intensities begin placed in the same group, which could inflate

the variance estimate. Thus, the LPE method may produce inflated variance estimates for the

probes with high intensity values. If such probes are likely to represent genes showing differential

expression, the inaccuracies in the variance estimates would lead to excessively small S-Scores,

making the detection of differential expression more difficult. Exploration of other methods for

estimating the probe-level variances are warranted to determine if the inflated variance estimates

can be eliminated and the performance of the pooled S-Score improved.

Taken together, these results provide a stronger theoretical background for the S-Score by

demonstrating the similarity of the S-Score formula to the CLT. These results do remain limited

by the fact that the variance estimate used in the calculation of the S-Score has not been estab-

lished as a proper variance. Application of the multichip S-Score to spike-in dataset standards

show excellent results, which is encouraging. The use of the LPE method to derive a more math-

ematically plausible variance estimate actually leads to poorer performance. This may be due to

problems with the implementation of the LPE method or may reflect the accuracy of the S-Score

variance estimator over other estimators.

6.4 The Random Variance Model

In contrast to the S-Score, the RVM method has a firm mathematical foundation by utilizing

a general linear model framework for comparing conditions and assuming an inverse gamma

197

distribution for the error terms to achieve greater accuracy of the test statistics. However, it has

only been developed as a probeset-level model, which may not have the same level of accuracy

achieved by a probe-level model such as the S-Score. This study extends the RVM method to

probe-level data by adopting a multivariate model with an inverse Wishart distribution for the

error terms. The inverse Wishart is frequently viewed as a multivariate analogue of the gamma

distribution. The inverse Wishart is also the prior of choice for multivariate Bayesian analysis,

similar to the gamma for the univariate Bayesian model. This study provides two new proofs that

give the distribution of the modified likelihood ratio test under the multivariate RVM assumptions

and provide a method for estimating the hyperparameters used in the multivariate RVM method.

As originally formulated in this study, the multivariate RVM method requires that the sam-

ple variance-covariance matrix be a full rank, positive definite matrix. In the RVM method, this

would occur with probability 1 if and only if the number of chips minus the number of condi-

tions exceeds the number of probes in a probeset for a given Affymetrix chip type. Although

studies using Affymetrix GeneChips are increasing in size, the large number of chips required

by multivariate RVM with a nonsingular variance-covariance matrix remains unattainable for a

large number of experiments. Accordingly, this study incorporates recent developments in singu-

lar multivariate distribution theory to derive the RVM method for the case of a singular sample

variance-covariance matrix, although the matrix hyperparameter is still assumed to be of full

rank. Two new proofs are given for the distribution of the modified likelihood ratio test under the

singular multivariate RVM method as well as a method for estimating the hyperparameters. The

relationship between the singular and nonsingular RVM formulae is also formally established, so

that sets of computational routines specific for the singular and nonsingular cases can be devel-

oped for software implementations.

The assumption that the matrix hyperparameter B for the RVM method is of full rank, which

implies that the scalar hyperparameter a is greater than or equal to the number of probes in a

probeset, is required in the computation of the Jacobian of the transformations used in the multi-

variate F and beta distributions. The exact implications of this assumption on the RVM method

are not clear at this time. The matrix hyperparameter B, like the population covariance matrix Σ,

198

is an unknown parameter; thus, its rank is unknown as well. Furthermore, although a consistent

estimator of B may be obtained using the sample data in the singular case, the latter does not

necessarily provide information about the rank of the former (Srivastava and von Rosen, 2002).

Thus, it is difficult to determine if violations of the assumption that the matrix hyperparameter is

of full rank occur. It should be noted that the current software implementation does restrict the

hyperparameter a to be greater than or equal to the number of probes in a probeset, so that the pre-

conditions on B are fulfilled. The estimates of the hyperparameters will still have the maximum

likelihood given the sample data, subject to the constraint on a, and thus represent reasonable

values for use in the multivariate RVM algorithm. However, as the optimization routines consis-

tently find the value of a on this boundary, future studies deriving formulae for the RVM method

when the matrix hyperparameter B is less than full rank seem warranted. Much of the theoretical

research on singular multivariate distributions is quite recent, so that such applications of singular

multivariate distributions must await further development of theory.

Given its theoretical rigor, and the favorable performance of the univariate RVM, the practical

results of the multivariate RVM are disappointing. The multivariate RVM was consistently poorer

than the multichip S-Score and Logit-T, which were the best performers. The multivariate RVM

was also consistently poorer than the pooled S-Score and RVM, although the differences were

less dramatic. It did outperform mmgMOS, though only on certain chips. Thus, the use of the

multivariate RVM often led to the worst results of the six class comparison algorithms chosen. It

is of course possible that these data indicate the RVM methodology is inappropriate for modeling

the intensity data of Affymetrix GeneChips and making inferences from the constructed model.

However, several other possible errors must be considered, many of which may be amenable to

improvement in future research.

The first consideration must be whether the model for the probe-level intensities given in

Equation (5.4) is correct. The residuals from this model are used in the construction of the like-

lihood ratio test in Equation (4.48) for hypothesis testing. The residuals are also used in estimat-

ing the hyperparameters through the RVM equation given in Equation (4.68) for the nonsingu-

lar case or Equation (4.75) for the singular case. Thus, misspecification of the intensity model

199

in Equation (5.4) may have tremendous impact on which genes are declared differentially or

non-differentially expressed. The proposed intensity model, which incorporates fixed probe-level

and treatment-level effects, appears reasonable from both a biological and statistical perspective.

However, it might be argued that additional effects may be required for an adequate model, and

that some effects might be represented better by random rather than fixed effects. As an example,

there may be variation in the signal intensities due to the individual chip that is independent of

both the treatment and probe effects. This would lead to the inclusion of a chip-level effect in the

model of Equation (5.4). Such a chip-level effect would be appropriately modeled as a random

effect, as the chips used in an experiment constitute a random sample of chips drawn from the

population of chips that could have been selected. In the present work, consideration was given to

the inclusion of a chip-level effect as well as a probe-level effect, but this approach was ultimately

rejected due to limitations of the nlme package in fitting the model. As the probe effect is gener-

ally a greater source of variation than the chip effect in microarray experiments, the former was

retained in constructing the model. The inclusion of other effects, such as percent GC content,

may also be warranted but were not analyzed in the present work.

The hazards of underfitting and overfitting in general linear models are well-known in the

case of fixed effects (see, for example, Myers, 1990, pp. 112-114). The effects of model mis-

specification on the RVM method have not been investigated to date, but are conjectured to lead

to problems similar to those in the GLM. In underfitting, important predictor variables have been

omitted from the model, and the variation due to these omitted variables is incorporated into

the residual variance estimate. Depending on the nature of these predictors, the residuals could

become significantly biased compared to their true values, although their variance remains un-

changed. In the RVM method, the biased residuals would be expected to lead to inaccuracies in

the likelihood ratio test, as it does in the GLM. The biased residuals may have additional adverse

impact by affecting the estimate for the matrix hyperparameter B−1, which is also used in the

calculation of the likelihood ratio test. In overfitting, predictor variables of marginal importance

are included in the model. This leads to variance inflation, in which the estimates of the model

variance are excessively large compared to their true values. In the RVM method, this variance

200

inflation would be expected to lead to wider confidence intervals for significance tests, difficulty

in declaring genes to be differentially expressed, and larger numbers of false negatives.

A second consideration is the choice of the covariance structure used for the matrix hyper-

parameter B−1, which is in turn reflected in the structure of the covariance matrix Σ−1. Based

on the work of Le et al. (1998), it appears that some structuring of the matrix hyperparameter

is necessary to reduce the number of estimated variance components and avoid problems with

identifiability. The compound symmetric structure, in which each of the different probes are as-

sumed to have the same correlation, was chosen based on previous work of Archer et al. (2006)

with pixel-level intensity data. In their work, the use of an first-order autoregressive structure, in

which the correlation between different probes decreases with increasing distance, did not offer

any significant advantages over the compound symmetric structure; other structures were not in-

vestigated. However, they note that this may reflect problems with distance metrics rather than

the lack of advantage for more complex structures.

A third consideration is the choice of distribution for the variances in the RVM method; for

the present work, the variance-covariance matrices are assumed to be distributed according to an

inverted Wishart distribution. This is a logical choice as the inverted Wishart is the conjugate prior

for the Wishart in Bayesian analysis. Furthermore, the inverted Wishart is the multivariate ana-

logue of the inverted gamma distribution, which was used successfully in the development and

validation of the univariate RVM. The inverted Wishart also offers computational convenience

in the manipulation of the joint likelihood of the intensity measurements and their variance-

covariance matrices, which is essential for the derivation of the RVM. Nevertheless, the form

of the distribution for the variance-covariance matrices was chosen based on theoretical assump-

tions, and it is possible that other choices might result in a better fit. Further investigation of the

effects of different distributional assumptions may be pursued in future work.

A fourth consideration is the model fitting method used for obtaining the estimates of the

hyperparameters for the RVM method. In the present work, three parameters were varied to ob-

tain empirical maximum likelihood estimates: the degrees of freedom a, the variance σ2, and the

covariance σ2
c . The variance σ2 constitutes the diagonal elements of the matrix hyperparameter

201

B−1, while the covariance σ2
c constitutes the off-diagonal elements. These three parameters were

allowed to vary subject to the constraints a ≥ p and σ2, σ2
c > 0. However, this is method of

optimization is problematic, as many of the possible combinations of σ2 and σ2
c under these con-

straints lead to a matrix B−1 that is not positive definite and thus not valid for the inverted Wishart

distribution. The likelihood maximization routine does remove matrix hyperparameters that are

not positive definite from consideration, but this creates multiple discontinuities in the likelihood

function. The Nelder-Mead simplex algorithm used in the optim function is a derivative-free

search method and relatively more robust to such discontinuities than other algorithms such as

the Newton-Raphson. However, the number of discontinuities in the likelihood function still may

lead to nonconvergence or convergence to a nonoptimal solution, even with the Nelder-Mead al-

gorithm. Even if the optimization routine reports that convergence was achieved, the number of

discontinuities may lead to convergence to a nonoptimal solution.

A more proper maximum likelihood estimation for B−1 would factor the matrix hyperpa-

rameter using the Cholesky or similar decomposition to produce a matrix where the individual

elements may assume any values in a specified range with no discontinuities. These individual

elements would then be allowed to vary over their range to locate a maximum likelihood estimate

for B−1 using an optimization routine. Such an approach is more acceptable theoretically than

the method used in the present work, but in practicality much more difficult to implement. The

simple approach of allowing all of the individual elements within the decomposition matrix to

vary ignores the fact that these elements are not independent due to the imposition of structure on

the matrix B−1. Furthermore, the number of variables being optimized makes such an approach

infeasible with current software. For example, using the Cholesky decomposition would produce

a lower triangular matrix, so that p(p+1)
2 elements would need to be optimized individually. This

would quickly overwhelm the capabilities of the optim function, which can optimize up to 20

variables simultaneously; other software packages have similar or greater restrictions. The more

rigorous approach is to determine the dependencies among the individual elements of the decom-

position matrix. Since, under compound symmetry, only two variables are needed for complete

specification of B−1, only two variables (though in a different form) would be needed to specify

202

the elements of the decomposition matrix. The compound symmetry or similar structure would

be well within the capabilities of current optimization software. However, the computation of

the decomposition matrix based on the structure of B−1 is quite difficult to implement and has

not been addressed to date in the literature. Thus, improvements in the optimization methodol-

ogy, while promising, will require considerable time for the development of the relevant matrix

formulae and construction of dedicated software.

A fifth and final consideration is the singularity of the covariance matrix used in the RVM

for the spike-in datasets. This has the effect of restricting the subspace for the covariance matrix

compared to the nonsingular case and reducing the amount of information contained in the sam-

ple. Thus, it is possible that the sample does not contain sufficient information for estimation of

the population parameters, which may be accentuated in the singular case. If so, the performance

of the RVM in the nonsingular case may be superior to other methods, even though the RVM in

the singular case is not. Such a conjecture is interesting but cannot be properly evaluated with

available spike-in datasets. All of the current spike-in datasets, as reviewed in this work, do not

have an adequate number of chips to permit assessment of the nonsingular RVM. However, as

research on standards for evaluation of microarray data analysis methods continues, it is likely

that larger spike-in datasets will become available in the future. Verifying the performance of the

nonsingular RVM should be a high priority for future research, as this may clarify the reasons for

the singular RVM.

Taken collectively, these results demonstrate that the univariate RVM method can be success-

fully generalized to a multivariate one. Using multivariate distribution theory, new theorems are

proven for the likelihood ratio test under the RVM assumptions, as well as the distribution of

the modified sums of squares. Recent work on singular multivariate distributions are also in-

corporated to address small sample sizes, leading to theorems for a singular multivariate RVM.

Application of the singular multivariate RVM to spike-in dataset standards, unfortunately, leads

to poor results compared to other available class comparison methods. This may reflect problems

with the implementation of the RVM method rather than deficiencies in the underlying model.

Chapter 7

Future Research

This study represents an initial contribution to the rapidly growing field of multivariate statistics

and microarray data analysis. As such, part of the goal of this study is to develop lines of future

research that will be pursued in later studies, which will be detailed in this section. Future work

will focus on further refinements to the multivariate extensions of the S-Score and the RVM

method, both of which show promise. The unexpected collateral findings for the quality of spike-

in data will also be an important topic for future exploration.

7.1 Spike-In Datasets

Proper evaluation of algorithms for detecting differential expression in microarray experiments

requires assessment using standardized datasets. The development of spike-in datasets represents

a significant advancement in this assessment, as the differentially expressed genes are known and

can be compared to the output of different algorithms. However, this study demonstrates that

problems in quality occur with all of the presently available spike-in datasets. This is particularly

true for the first spike-in datasets created. The quality has improved with later datasets, yet none

could be considered entirely satisfactory. Additional work in the development of spike-in data

will be essential for the development of microarray data analysis, as accurate comparisons among

algorithms is not possible without a known standard for measuring differential expression.

An obvious avenue for future research is the creation of additional spike-in datasets. Such

datasets would be expected to show improved quality due to refinements in chip design, hybridiza-

203

204

tion techniques, and analytical methods that have occurred since earlier spike-in experiments were

performed. Newer datasets might also be larger than current ones, allowing the evaluation of mul-

tivariate analytic techniques without resorting to singular distributions. The creation of additional

datasets is very feasible from a technical perspective, requiring that known RNA samples be

titrated to specific concentrations, hybridized under strictly controlled conditions, and analyzed

to produce the corresponding electronic data. Yet such experiments can be difficult to justify,

as they represent a considerable investment of time and resources that may offer little immedi-

ate reward to the individuals and laboratories who undertake them. The promulgation of results

such as those of this study, which demonstrate the deficiencies of current datasets, will likely be

necessary to ensure that the creation of more spike-in datasets will be undertaken.

A promising alternative to spike-in datasets is the creation of RNA titration series for vali-

dating algorithms to detect differential gene expression. The development of titration series is

newer than the development of spike-ins, but some datasets have begun to appear in the liter-

ature (Thompson et al., 2005) and as part of the MicroArray Quality Control (MAQC) project

(Shi et al., 2006). Under this approach, two or more samples from different tissues are mixed

together in a series of fixed ratios. In contrast to the spike-in datasets, the absolute levels of gene

expression in the samples are not known, but the relative gene expression changes can still be

determined based on the mixing ratios. Knowledge of these relative differences would be suf-

ficient for assessing the performance of algorithms. Such experiments would be advantageous,

as the number of differentially expressed genes would be larger than current spike-in datasets

Such experiments may also be simpler to execute from a technical perspective, as the synthesis of

spike-in clones is not necessary, but the requirements of time and resources may still make them

difficult to justify.

Yet another alternative to spike-in datasets is the creation of RNA titration series in silico

rather than in vitro. Under this approach, two or more samples from different tissues would still

be combined in a series of fixed ratios, but mixing would be done at the level of the intensities

from *.CEL files rather than at the level of extracted RNA solutions. An in silico titration would

be quite promising, as the time and resource requirements for the creation of datasets would be

205

greatly reduced. It would also allow datasets to be expanded at a later date, which is not possible

with current spike-in data. However, a greater technical investment would be needed for in silico

than in vitro titration. The latter type of dataset would still need to be created to validate the

results of the former, demonstrating that the two methods of titration lead to similar results. Such

comparisons would necessitate new developments in equivalence testing, which has traditionally

been applied to univariate data. Research in multivariate equivalence testing has only recently

begun, and appropriate methods of equivalence testing for high-dimensional data have not been

investigated to date.

A final avenue for research involving spike-in datasets is the development of quality control

assessments. Research on this topic is growing rapidly, with a number of techniques being pro-

posed to address this issue. However, as seen in the current study, spike-in datasets present unique

challenges for quality control. The typical microarray experiment has a relatively large proportion

of genes showing expression changes – approximately 10% – with the fold-changes varying over a

wide range. Also, the full complement of cellular mRNA is used in the hybridization. In contrast,

spike-in experiments may involve only a small number of genes, which are present with only

a fixed number of fold-changes. Spike-in experiments may also lack specific RNA sequences,

such as ribosomal RNA and messenger mRNA from “housekeeping” genes that are often used in

quality assessments. The present study uses alternative methods, such as testing the assumption

of linearity of hybridization signal with concentration, as quality measures. These analyses did

demonstrate problems with the quality of existing spike-in datasets, but additional methods may

be necessary. Assuming the continued development of spike-in datasets, these relatively simple

methods may be adequate to detect gross quality defects, but not more subtle indicators of poor

quality that may be present.

7.2 The S-Score Algorithm

The performance of the S-Score algorithm was excellent in the original studies utilizing two-chip

comparisons. The present work extends the S-Score algorithm to incorporate multiple chips by

206

averaging the intensity and background measurements of chips by condition. This multichip S-

Score compares quite favorably to other probe- and probeset-level models that are in current use.

Such improvements are to be expected, given the similarity of the S-Score error formulation to

the formulation of the Lindeberg-Feller generalization of the CLT. However, in order for the

S-Score to fulfill the requirements of the CLT, its proxy error variance must be shown to be a

consistent estimator of the true error variance. Demonstrating the consistency of the proxy error

variance, or finding a substitute that performs comparably, constitutes the primary direction for

future research on the S-Score.

The LPE algorithm represents a reasonable alternative to the proxy variance estimator of

the S-Score algorithm. It is mathematically justifiable and in keeping with the intensity-based

variance estimates used by the S-Score algorithm. The original and subsequent reports on the LPE

algorithm also showed favorable results (Jain et al., 2003; Park et al., 2007). The adapted version

of the LPE used in the current work, however, showed only modest ability to detect differentially

expressed genes that was inferior to most of the other algorithms tested. Development of a version

that more closely parallels the original LPE may result in improvements and will be explored

in further work. For example, use of all pairwise comparisons to guarantee that the expected

value of the intensity differences is 0 may offer benefits over the use of the mean intensity across

all chips. Another line of research would be to explore other methods of creating intervals of

adaptive widths in the high intensity region, so that more accurate estimates of the variance for

these probes can be obtained. The tradeoff between potentially high variance estimates due to

small numbers of probes versus potentially high variance estimates due to grouping disparate

high intensity measurements requires further investigation to determine optimal methods.

A second area of research on the S-Score algorithm would be to study alternatives to the LPE

method for obtaining a proxy variance estimate. Many of the intensity-based variance estimates

assume a specific distribution for the variances, as in Sartor et al. (2006), Weng et al. (2006), or Hu

and Wright (2007). Some distribution-free models do exist, but are probeset- rather than probe-

level models. Eaves et al. (2002) used a weighted average of the variance of a probeset across

chips and the mean of the variances for probesets with similar intensities. This includes aspects of

207

both the original LPE model and the adapted model used in the present work. Mansourian et al.

(2004) obtain a robust estimate of the variance by dividing the probeset intensities into equal-sized

bins, then computing the median of the variances for the probesets in each bin. Neuhäuser and

Jöckel (2006) use a modified bootstrap as another nonparametric approach. For each gene, the

probeset expression summaries are centered using the mean expression value of the gene across

all chips. These centered expression summaries constitute the sample for obtaining the bootstrap

estimate, with resampling performed at the gene level. Significance is determined with the t test

comparing the original and bootstrap samples. Features of these approaches may be developed

into probe-level implementations for the S-Score algorithm to determine if additional gains over

the pooled S-Score can be obtained.

Finally, several minor improvements in the S-Score algorithm may be pursued in future re-

search. Rewriting the code in a compiled language such as C would result in a significant gain

in speed, particularly in the computation of the SF and SDT parameters that are required by the

SScore function. This would also allow the open source Affymetrix routines for the computa-

tion of the SF and SDT to be incorporated into the code, assuring greater compatibility with the

Affymetrix software. Creation of software routines that compute the S-Scores directly from the

*.CEL files, rather than an object stored in memory, would reduce time and memory requirements

in a manner similar to the justRMA function in the affy package. Such improvements would be

included in future releases of the sscore package through the Bioconductor project.

7.3 The Random Variance Model

The RVM method is based on a sound theoretical foundation in multivariate statistical analysis.

The imposition of a prior distribution for the covariance matrix has long been used in Bayesian

analysis, and translates well to the frequentist approach. However, the practical results of the

multivariate RVM method applied to available spike-in datasets is disappointing. Additional work

is necessary to evaluate the RVM method and determine its usefulness in microarray data analysis.

One of the greatest concerns is that the nonsingular RVM method has not been evaluated,

208

due to limitations of current spike-in datasets. Thus it is difficult to ascertain the impact of the

singular multivariate distribution, with its associated data reduction, on the results of the RVM

method. The question of whether the nonsingular RVM method can achieve greater accuracy

than the singular RVM cannot be answered without the development of larger spike-in or other

standard datasets. Such datasets must have the number of chips minus the number of classes

exceed the number of probes per probeset for the sample covariance matrix to be nonsingular;

this would be 7 chips per class for a 2-class comparison involving the human U133 chip, but may

require greater numbers for other chip types. If larger standardized datasets become available

in the future, analysis using the nonsingular RVM method is straightforward, as existing code

will need only slight modification to incorporate the nonsingular rather than singular multivariate

distribution.

Another significant concern is the optimization routine for estimating the hyperparameters for

the prior distribution, subject to the constraint that the matrix hyperparameter B be positive defi-

nite. The accuracy of this estimate affects the value of the likelihood ratio test, used for declaring

genes differentially expressed, so that errors in the estimate can have a great impact on perfor-

mance. Estimation of a positive definite covariance matrix is seen as a difficult problem without

a standard solution (Schwallie, 1985). In many cases, the positive definite constraint is ignored

in the estimation process. This is often unsatisfactory as it frequently leads to negative variance

estimates that lack interpretability. Another option is to perform unconstrained estimation, then

adjust the estimate so that the matrix is positive definite, using algorithms dedicated to this pur-

pose (Hu and Olkin, 1991). This approach is usually unsatisfactory from a statistical perspective

as the estimate is no longer a maximum likelihood estimate, and no longer possesses the desir-

able properties of the MLE. The option used in the current study is to assign an infinite value

to the minus log likelihood (which corresponds to a negative infinite value for the likelihood) for

any estimate that is not positive definite. This guarantees that a positive definite matrix will be

selected for the maximum likelihood estimate, except in the improbable event that all calculated

likelihoods are negative infinite. However, it is possible that assigning infinite values to the minus

log likelihood may sufficiently distort the surface of the likelihood function that the optimization

209

routine cannot locate the correct solution. It is difficult to determine whether the optimization

routine converges to an incorrect solution, indicating a need for further research to address the

positive definite constraint.

The best option would be to transform the matrix hyperparameter and address the constraint

within the transformation. Two possibilities for the transformation are the Cholesky decompo-

sition and the matrix exponential function. For the Cholesky, the positive definite matrix B is

written as

B = B∗B∗′,

where B∗ is a lower triangular matrix. The individual elements of B∗ are unconstrained, while still

guaranteeing that B∗ is positive definite. Thus the individual elements of B∗ may be used as the

parameters for the optimization routine to determine the estimate of B. The matrix exponential

B = exp (B+) may be calculated as

exp
(
B+) =

∞∑
i=0

(B+)i

i!
,

where (B+)0 = Ip and

(
B+)i

=

i︷ ︸︸ ︷
B+ · B+ · . . . · B+ .

This is the matrix analogue to the Taylor series expansion for the exponential of the scalar b,

which is given by

exp (b) =

∞∑
i=0

bi

i!
.

If the matrix B+ is real and symmetric, then exp (B+) is positive definite (Chiu et al., 1996). Thus

the individual elements of the lower triangle of B+ may be used as parameters for the optimization

routine without constraint, with exponentiation of the corresponding symmetric matrix to com-

210

pute the estimate of B. Both the Cholesky and the matrix exponential would appear suitable for

the RVM method, though using a transformation would increase computational time and com-

plexity. It is also unclear how the pattern of the hyperparameter B would be maintained when

using a transformation.

A related area for further research would be the constraint that the matrix hyperparameter for

the prior distribution be nonsingular. This constraint is a consequence of deriving the Jacobian

of the transformation of Σ̂ to (a − p − 1) B1/2Σ̂B1/2, which is used to estimate the values of a

and B. Existing theorems for calculating this Jacobian require that the matrix B be nonsingular

(Dı́az-Garcı́a and Gutiérrez Jáimez, 1997). Since, under singular RVM, the matrix B serves as a

hyperparameter for the prior of the singular matrix Σ̂, there is no reason to assume that B would be

nonsingular; the constraint is merely a computational convenience. Extending current theorems

regarding the above transformation would require considerable theoretical work to incorporate the

generalized inverse of B into the Jacobian. The development of singular multivariate statistical

theory is currently a rapidly growing topic of research, and the derivation of the Jacobian with

a singular B matrix would be of great theoretical interest. If the accuracy of the singular RVM

method improves with the application of the previously mentioned modifications, the derivation

would be of practical importance as well.

Future work should also investigate the appropriateness of the large-sample χ2 approximation

for determining the significance of the likelihood ratio test statistic in the RVM method. Clearly,

the sample sizes used in the spike-in dataset analysis raise the possibility that the approximation

may not be adequate; a similar situation would arise in many microarray experiments. In the

present study, the implementation of the RVM method does not allow the effects of the large-

sample approximation to be disentangled from other potential sources of poor performance, but

the lines of research detailed above should clarify this issue. If the approximation for the likeli-

hood ratio test proves to be insufficient, potential remedial measures do exist. Ghosh and Sinha

(1980) note that the likelihood ratio test remains valid if a prior distribution is imposed on the

covariance matrix and subsequently integrated out of the likelihood. For the RVM method, this

would transform the likelihood ratio test from the ratio of the maxima of two multivariate normal

211

distributions to the ratio of the maxima of two multivariate t distributions. This transformation

may lead to a form of the likelihood ratio test for which an exact distribution is available. Alterna-

tively, Dempster (1958, 1960) suggests abandoning the likelihood ratio test for high-dimensional

data, instead choosing a suitable distance metric and then using the distribution of the data to

develop an associated test of significance. Assuming multivariate normality, the proposed test

statistic becomes the ratio of the trace of the hypothesis sums of squares to the trace of the error

sums of squares, which approximately follows a χ2 distribution. Under the RVM framework,

Dempster’s test would become

Tr
(
ŜS + B−1

)
Tr

(̂̂SS − ŜS
) .

Similar to the likelihood ratio test, Dempster’s test would require that the term Σ−1 be factored

from the term Σ−1
(
(n − k + a) Σ̂

)
to derive the test statistic, which cannot be done. However, the

general approach may still be useful if another suitable distance metric can be found in future

studies.

The final major concern regarding the RVM method is the selection of the multivariate model

for the intensities and their covariances. The current study uses a model for the intensities that

incorporates a treatment effect and a probe effect to explain the observed differences between

experimental groups. The covariance matrix for the intensity measurements is assumed to follow

a compound symmetric structure. These choices are based on previous work on mixed effects

models for intensities (Archer et al., 2006) and current limitations of model-fitting software in

the R programming environment. In future work, additional terms, such as a chip effect, would

be incorporated into the mixed model, and formal statistical tests used to evaluate the degree of

improvement in the model based on the new terms. Implementation of this will largely depend

on further improvements in the R packages for fitting mixed effects models, or the porting of the

RVM method to other statistical programming environments such as SAS IML or Stata. Future

work should also explore alternative covariance structures, such as first-order autoregressive and

212

Toeplitz, as choices for the mixed model. Such alternatives did not offer any advantage over

a compound symmetric structure in previous research Archer et al. (2006), but may be yield

different results with the RVM method, particularly if coupled with new distance measures. The

use of structured covariance matrices would appear to be necessary to reduce the number of

parameters sufficiently to allow the maximum likelihood estimate to be computed.

There are also several minor improvements in the RVM method to be pursued in future re-

search. Assuming that the investigations described above lead to improved accuracy of the RVM

test statistic, the p-values that are obtained should be adjusted to control the false discovery rate.

Such a modification would not be difficult to implement, but must account for the small sample

sizes in estimating the null distribution for the FDR. Jain et al. (2005) have proposed the rank

invariant resampling (RIR) method for estimating the null distribution that appears well suited to

such situations.

The computational efficiency of the RVM method may also be improved rather easily. Con-

siderable gains could be achieved by converting the code from the interpreted R language to the

compiled C language. Additional gains might be realized by development of specialized opti-

mization routines for estimating the hyperparameters under the RVM method, rather than using

the general-purpose nlme package. Finally, again assuming that the above research produces a

more accurate RVM test statistic, the method would be developed for release as an R package for

the Bioconductor project.

Chapter 8

Conclusions

The purpose of this project is to expand the knowledge and use of probe-level analysis methods

for Affymetrix GeneChip data by extending two promising models, the S-Score and the Ran-

dom Variance Model. The original S-Score implements probe-level analysis but is limited as it

performs only two-chip comparisons. This project extends S-Score algorithm by allowing com-

parisons among multiple chips. A simple averaging of the chip intensities and variances performs

quite well on spike-in datasets, and appears reasonable based on the Central Limit Theorem. The

difficulty with this approach is that the variance estimate is not well justified theoretically. The

use of alternative variance models, such as the local pooled error algorithm, result in degraded

performance, but other variance models are available and will be pursued in future work.

The RVM method is well justified theoretically, but the original formulation was limited to

probeset-level data. This project extends the RVM method to a multivariate probe-level model,

which is proven mathematically. The performance of the RVM implementation appears inferior to

probeset-level and other probe-level methods, but may well be due to deficiencies in the associated

software rather than the model itself. Several strategies for addressing this problem are proposed

and will be explored in future work.

In summary, this project contributes to the growing research on probe-level analysis by ad-

vancing two previously existing models. Neither is optimal, as one still has theoretical issues and

the other has practical issues that must be addressed. Still, this work shows the potential gains

of probe-level analysis over traditional probeset-level methods, and shows that such work has

a sound theoretical basis using recent developments in the theory of multivariate analysis. It is

213

214

hoped that this project will serve to stimulate further research into this rewarding topic.

Bibliography

Abadir, K. M. and Magnus, J. R. (2005). Matrix algebra, volume 1. Cambridge University Press,

Cambridge.

Affymetrix (1999). Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara, CA.

Affymetrix (2002a). GeneChip R© Expression Analysis Technical Manual. Affymetrix, Santa

Clara, CA.

Affymetrix (2002b). Statistical Algorithms Description Document. Affymetrix, Santa Clara, CA.

Affymetrix (2004). Affymetrix R© GeneChip R© Operating Software User’s Guide. Affymetrix,

Santa Clara, CA.

Alberts, R., Terpstra, P., Hardonk, M., Bystrykh, L. V., de Haan, G., Breitling, R., Nap, J. P., and

Jansen, R. C. (2007). A verification protocol for the probe sequences of Affymetrix genome

arrays reveals high probe accuracy for studies in mouse, human and rat. BMC Bioinformatics,

8, 132.

Allison, D. B., Cui, X., Page, G. P., and Sabripour, M. (2006). Microarray data analysis: from

disarray to consolidation and consensus. Nat Rev Genet, 7(1), 55–65.

Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N. H. T., Zhu, S. J., Qiu,

J. L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M. A., Nielsen, H. B., Hirt, H.,

Somssich, I., Mattsson, O., and Mundy, J. (2005). The MAP kinase substrate MKS1 is a

regulator of plant defense responses. EMBO J, 24(14), 2579–2589.

215

216

Archer, K. J., Dumur, C. I., Joel, S. E., and Ramakrishnan, V. (2006). Assessing quality of hy-

bridized RNA in Affymetrix GeneChip experiments using mixed-effects models. Biostatistics,

7(2), 198–212.

Ayroles, J. F. and Gibson, G. (2006). Analysis of variance of microarray data. Method Enzymol,

411, 214–33.

Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of

Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet, 2(7), 980–989.

Baldi, P. and Long, A. D. (2001). A Bayesian framework for the analysis of microarray expression

data: regularized t -test and statistical inferences of gene changes. Bioinformatics, 17(6), 509–

19.

Barrera, L., Benner, C., Tao, Y. C., Winzeler, E., and Zhou, Y. (2004). Leveraging two-way

probe-level block design for identifying differential gene expression with high-density oligo-

nucleotide arrays. BMC Bioinformatics, 5, 42.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. J Roy Stat Soc B, 57(1), 289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing

under dependency. Ann Stat, 29(4), 1165–88.

Billingsley, P. (1986). Probability and Measure. Wiley series in probability and mathematical

statistics. Wiley, New York.

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison of nor-

malization methods for high density oligonucleotide array data based on variance and bias.

Bioinformatics, 19(2), 185–93.

Bolstad, B. M., Collin, F., Simpson, K. M., Irizarry, R. A., and Speed, T. P. (2004). Experimental

design and low-level analysis of microarray data. Int Rev Neurobiol, 60, 25–58.

217

Bolstad, B. M., Irizarry, R. A., Gautier, L., and Wu, Z. (2005). Preprocessing high-density oligo-

nucleotide arrays. In R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors,

Bioinformatics and Computational Biology Solutions using R and Bioconductor, pages 13–32.

Springer, New York.

Brodersen, P., Petersen, M., Nielsen, H. B., Zhu, S. J., Newman, M. A., Shokat, K. M., Rietz,

S., Parker, J., and Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and

jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 47(4), 532–546.

Brown, H. and Prescott, R. (2006). Applied Mixed Models in Medicine. Wiley, Chichester, 2nd

edition.

Chiu, T. Y. M., Leonard, T., and Tsui, K.-W. (1996). The matrix-logarithmic covariance model.

J Amer Statist Assoc, 91(433), 198–210.

Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M., and Halfon, M. S. (2005). Preferred

analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset.

Genome Biol, 6(2), R16.

Chu, T. M., Weir, B., and Wolfinger, R. (2002). A systematic statistical linear modeling approach

to oligonucleotide array experiments. Math Biosci, 176(1), 35–51.

Chu, T. M., Weir, B. S., and Wolfinger, R. D. (2004). Comparison of Li-Wong and loglinear mixed

models for the statistical analysis of oligonucleotide arrays. Bioinformatics, 20(4), 500–6.

Chudin, E., Walker, R., Kosaka, A., Wu, S. X., Rabert, D., Chang, T. K., and Kreder, D. E.

(2002). Assessment of the relationship between signal intensities and transcript concentration

for Affymetrix GeneChip arrays. Genome Biol, 3(1), RESEARCH0005.

Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nat Genet,

32 Suppl, 490–5.

Cochran, W. G. (1934). The distribution of quadratic forms in a normal system, with applications

to the analysis of variance. Proc Camb Phil Soc, 30, 178–191.

218

Craig, A. T. (1943). Note on the independence of certain quadratic forms. Ann Math Stat, 14,

195–197.

Cui, X. and Churchill, G. A. (2003). Statistical tests for differential expression in cDNA microar-

ray experiments. Genome Biol, 4(4), 210.

Cui, X., Hwang, J. T., Qiu, J., Blades, N. J., and Churchill, G. A. (2005). Improved statistical

tests for differential gene expression by shrinking variance components estimates. Biostatistics,

6(1), 59–75.

Dalma-Weiszhausz, D. D., Warrington, J., Tanimoto, E. Y., and Miyada, C. G. (2006). The

Affymetrix GeneChip platform: an overview. Method Enzymol, 410, 3–28.

David, H., Hofmann, G., Oliveira, A. P., Jarmer, H., and Nielsen, J. (2006). Metabolic network

driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol,

7(11).

Dawid, A. P. (1981). Some matrix-variate distribution theory: notational considerations and a

Bayesian application. Biometrika, 68(1), 265–274.

Dempster, A. P. (1958). A high dimensional two sample significance test. Ann Math Stat, 29(4),

995–1010.

Dempster, A. P. (1960). A significance test for the separation of two highly multivariate small

samples. Biometrics, 16, 41–50.

Dı́az-Garcı́a, J. A. and González-Farı́as, G. (2005). Singular random matrix decompositions:

Jacobians. J Multivariate Anal, 93(2), 296–312.

Dı́az-Garcı́a, J. A. and Gutiérrez Jáimez, R. (1997). Proof of the conjectures of H. Uhlig on the

singular multivariate beta and the Jacobian of a certain matrix transformation. Ann Stat, 25(5),

2018–2023.

219

Dı́az-Garcı́a, J. A., Gutierrez Jáimez, R., and Mardia, K. V. (1997). Wishart and pseudo-Wishart

distributions and some applications to shape theory. J Multivariate Anal, 63(1), 73–87.

Dobbin, K., Shih, J. H., and Simon, R. (2003). Statistical design of reverse dye microarrays.

Bioinformatics, 19(7), 803–10.

Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002). Statistical methods for identifying

differentially expressed genes in replicated cDNA microarray experiments. Stat Sinica, 12,

111–39.

Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999). Expression profiling

using cDNA microarrays. Nat Genet, 21(1 Suppl), 10–4.

Dykstra, R. L. (1970). Establishing the positive definiteness of the sample covariance matrix. Ann

Math Stat, 41(6), 2153–2154.

Eaton, M. L. and Perlman, M. D. (1973). The non-singularity of generalized sample covariance

matrices. Ann Stat, 1, 710–717.

Eaves, I. A., Wicker, L. S., Ghandour, G., Lyons, P. A., Peterson, L. B., Todd, J. A., and Glynne,

R. J. (2002). Combining mouse congenic strains and microarray gene expression analyses to

study a complex trait: the NOD model of type 1 diabetes. Genome Res, 12(2), 232–43.

Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001). Empirical Bayes analysis of a

microarray experiment. J Am Stat Assoc, 96(456), 1151–1160.

Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Wickham Garcia, E., Le-

bruska, L. L., Laurent, M., Shen, R., and Barker, D. (2006). Illumina universal bead arrays.

Method Enzymol, 410, 57–73.

Firestein, G. S. and Pisetsky, D. S. (2002). DNA microarrays: boundless technology or bound

by technology? Guidelines for studies using microarray technology. Arthritis Rheum, 46(4),

859–61.

220

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. J Am Stat Assoc, 32(200), 675–701.

Gautier, L., Moller, M., Friis-Hansen, L., and Knudsen, S. (2004). Alternative mapping of probes

to genes for Affymetrix chips. BMC Bioinformatics, 5, 111.

Gebicke-Haerter, P. (2005). Expression profiling methods used in drug abuse research. Addict

Biol, 10(1), 37–46.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,

Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L.,

Yang, J. Y., and Zhang, J. (2004). Bioconductor: open software development for computational

biology and bioinformatics. Genome Biol, 5(10), R80.

Ghosh, M. and Sinha, B. K. (1980). On the robustness of least squares procedures in regression

models. J Multivariate Anal, 10(3), 332–342.

Giles, P. J. and Kipling, D. (2003). Normality of oligonucleotide microarray data and implications

for parametric statistical analyses. Bioinformatics, 19(17), 2254–62.

Graham, A. (1981). Kronecker products and matrix calculus: with applications. Ellis Horwood

Series in Mathematics and its Applications. Ellis Horwood Ltd., Chichester.

Graybill, F. A. (1983). Matrices with applications in statistics. Wadsworth Statistics/Probability

Series. Wadsworth Advanced Books and Software, Belmont, Calif., 2nd edition.

Gupta, A. K. and Nagar, D. K. (2000). Matrix variate distributions, volume 104 of Chapman &

Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC,

Boca Raton, FL.

Hager, J. (2006). Making and using spotted DNA microarrays in an academic core laboratory.

Method Enzymol, 410, 135–68.

221

Hardiman, G. (2004). Microarray platforms–comparisons and contrasts. Pharmacogenomics,

5(5), 487–502.

Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. Springer-Verlag, New

York.

Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Guster-

son, B., Esteller, M., Kallioniemi, O. P., Wilfond, B., Borg, A., Trent, J., Raffeld, M., Yakhini,

Z., Ben-Dor, A., Dougherty, E., Kononen, J., Bubendorf, L., Fehrle, W., Pittaluga, S., Gru-

vberger, S., Loman, N., Johannsson, O., Olsson, H., and Sauter, G. (2001). Gene-expression

profiles in hereditary breast cancer. New Engl J Med, 344(8), 539–48.

Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices, with some uses

in Jacobians and multivariate statistics. Can J Stat, 7(1), 65–81.

Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (2000). Understanding Robust and Exploratory

Data Analysis. Wiley, New York.

Hsu, P. L. (1939). On the distribution of roots of certain determinantal equations. Ann Eugenics,

9, 250–258.

Hu, H. and Olkin, I. (1991). A numerical procedure for finding the positive definite matrix closest

to a patterned matrix. Statist Probab Lett, 12(6), 511–515.

Hu, J. and Wright, F. A. (2007). Assessing differential gene expression with small sample sizes

in oligonucleotide arrays using a mean-variance model. Biometrics, 63(1), 41–9.

Hubbell, E., Liu, W. M., and Mei, R. (2002). Robust estimators for expression analysis. Bioin-

formatics, 18(12), 1585–92.

Hueber, S. D., Bezdan, D., Henz, S. R., Blank, M., Wu, H. J., and Lohmann, I. (2007). Compar-

ative analysis of Hox downstream genes in Drosophila. Development, 134(2), 381–392.

222

Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett,

H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum,

P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard,

M., and Friend, S. H. (2000). Functional discovery via a compendium of expression profiles.

Cell, 102(1), 109–26.

Irizarry, R., Wu, Z., and Jaffee, H. (2006). Comparison of Affymetrix GeneChip expression

measures. Bioinformatics, 22(7), 789–94.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and

Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide

array probe level data. Biostatistics, 4(2), 249–64.

Jafari, P. and Azuaje, F. (2006). An assessment of recently published gene expression data anal-

yses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak, 6,

27.

Jain, A. N., Tokuyasu, T. A., Snijders, A. M., Segraves, R., Albertson, D. G., and Pinkel, D.

(2002). Fully automatic quantification of microarray image data. Genome Res, 12(2), 325–32.

Jain, N., Thatte, J., Braciale, T., Ley, K., O’Connell, M., and Lee, J. K. (2003). Local-pooled-error

test for identifying differentially expressed genes with a small number of replicated microar-

rays. Bioinformatics, 19(15), 1945–51.

Jain, N., Cho, H., O’Connell, M., and Lee, J. K. (2005). Rank-invariant resampling based estima-

tion of false discovery rate for analysis of small sample microarray data. BMC Bioinformatics,

6(187), 187.

Johnson, R. A. and Wichern, D. W. (2002). Applied Multivariate Statistical Analysis. Prentice

Hall, Upper Saddle River, NJ, 5th edition.

Karsten, S. L., Kudo, L. C., and Geschwind, D. H. (2004). Microarray platforms: introduction

and application to neurobiology. Int Rev Neurobiol, 60, 1–23.

223

Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003). On parametric empirical

Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat

Med, 22(24), 3899–914.

Kennedy, R. E., Archer, K. J., and Miles, M. F. (2006a). Empirical validation of the S-Score

algorithm in the analysis of gene expression data. BMC Bioinformatics, 7, 154.

Kennedy, R. E., Kerns, R. T., Kong, X., Archer, K. J., and Miles, M. F. (2006b). SScore: an R

package for detecting differential gene expression without gene expression summaries. Bioin-

formatics, 22(10), 1272–4.

Kerns, R. T., Zhang, L., and Miles, M. F. (2003). Application of the S-score algorithm for analysis

of oligonucleotide microarrays. Methods, 31, 274–81.

Kerr, M. K. and Churchill, G. A. (2001). Statistical design and the analysis of gene expression

microarray data. Genet Res, 77(2), 123–8.

Kerr, M. K., Martin, M., and Churchill, G. A. (2000). Analysis of variance for gene expression

microarray data. J Comput Biol, 7(6), 819–37.

Khatri, C. G. (1959). On the mutual independence of certain statistics. Ann Math Stat, 30,

1258–1262.

Khatri, C. G. (1970). A note on Mitra’s paper “A density-free approach to the matrix variate beta

distribution”. Sankhyā Ser A, A32, 311–218.

Koning, R. H., Neudecker, H., and Wansbeek, T. (1991). Block Kronecker products and the vecb

operator. Linear Algebra Appl, 149, 165–184.

Konno, Y. (1991). A note on estimating eigenvalues of scale matrix of the multivariate F-

distribution. Ann Inst Stat Math, 43, 157–165.

Le, N., Sun, L., and Zidek, J. V. (1998). A note on the existence of maximum likelihood estimates

for Gaussian-inverted Wishart models. Stat Prob Lett, 40(2), 133–137.

224

Lee, J. K. (2001). Analysis issues for gene expression array data. Clin Chem, 47(8), 1350–1352.

Leibfried, A., To, J. P. C., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J. J., and

Lohmann, J. U. (2005). WUSCHEL controls meristem function by direct regulation of

cytokinin-inducible response regulators. Nature, 438(7071), 1172–1175.

Lemieux, S. (2006). Probe-level linear model fitting and mixture modeling results in high accu-

racy detection of differential gene expression. BMC Bioinformatics, 7, 391.

Lemon, W. J., Palatini, J. J., Krahe, R., and Wright, F. A. (2002). Theoretical and experimental

comparisons of gene expression indexes for oligonucleotide arrays. Bioinformatics, 18(11),

1470–6.

Lemon, W. J., Liyanarachchi, S., and You, M. (2003). A high performance test of differential

gene expression for oligonucleotide arrays. Genome Biol, 4(10), R67.

Li, C. and Hung Wong, W. (2001). Model-based analysis of oligonucleotide arrays: model vali-

dation, design issues and standard error application. Genome Biol, 2(8), RESEARCH0032.

Li, C. and Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: Expression

index computation and outlier detection. P Natl Acad Sci USA, 98, 31–36.

Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999). High density synthetic

oligonucleotide arrays. Nat Genet, 21(1 Suppl), 20–4.

Liu, W. M., Mei, R., Di, X., Ryder, T. B., Hubbell, E., Dee, S., Webster, T. A., Harrington,

C. A., Ho, M. H., Baid, J., and Smeekens, S. P. (2002). Analysis of high density expression

microarrays with signed-rank call algorithms. Bioinformatics, 18(12), 1593–9.

Liu, X., Milo, M., Lawrence, N. D., and Rattray, M. (2005). A tractable probabilistic model for

Affymetrix probe-level analysis across multiple chips. Bioinformatics, 21(18), 3637–44.

225

Liu, X. J., Milo, M., Lawrence, N. D., and Rattray, M. (2006). Probe-level measurement error

improves accuracy in detecting differential gene expression. Bioinformatics, 22(17), 2107–

2113.

Liu, X. J., Lin, K. K., Andersen, B., and Rattray, M. (2007). Including probe-level uncertainty in

model-based gene expression clustering. BMC Bioinformatics, 8.

Lonnstedt, I. and Speed, T. (2002). Replicated microarray data. Stat Sinica, 12, 31–46.

Mack, G. A. and Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor

ANOVA. J Am Stat Assoc, 75(372), 947–951.

Magnus, J. R. (1988). Linear structures, volume 42. Griffin, London.

Magnus, J. R. and Neudecker, H. (1979). The commutation matrix: some properties and applica-

tions. Ann Stat, 7(2), 381–394.

Magnus, J. R. and Neudecker, H. (1980). The elimination matrix: some lemmas and applications.

SIAM J Algebra Discrete Meth, 1(4), 422–449.

Magnus, J. R. and Neudecker, H. (1985). Matrix differential calculus with applications to simple,

Hadamard, and Kronecker products. J Math Psychol, 29(4), 474–492.

Magnus, J. R. and Neudecker, H. (1999). Matrix differential calculus with applications in statis-

tics and econometrics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd.,

Chichester.

Mansourian, R., Mutch, D. M., Antille, N., Aubert, J., Fogel, P., Goff, J.-M. L., Moulin, J., Petrov,

A., Rytz, A., Voegel, J. J., and Roberts, M.-A. (2004). The Global Error Assessment (GEA)

model for the selection of differentially expressed genes in microarray data. Bioinformatics,

20(16), 2726–37.

226

Master, S. R., Stoddard, A. J., Bailey, L. C., Pan, T. C., Dugan, K. D., and Chodosh, L. A.

(2005). Genomic analysis of early murine mammary gland development using novel probe-

level algorithms. Genome Biol, 6(2).

Mitra, S. K. (1970). A density-free approach to the matrix variate beta distribution. Sankhyā Ser

A, 32, 81–88.

Mogensen, J., Nielsen, H. B., Hofmann, G., and Nielsen, J. (2006). Transcription analysis using

high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on

glucose or ethanol. Fungal Genet Biol, 43(8), 593–603.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.

Muirhead, R. J. and Verathaworn, T. (1985). On estimating the latent roots of Σ1Σ
−1
2 . In P. R.

Krishnaiah, editor, Multivariate Analysis, volume VI, pages 431–447. North Holland, Amster-

dam.

Myers, R. H. (1990). Classical and modern regression with applications. PWS-KENT, Boston,

2nd edition.

Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Comput J, 7,

308–313.

Neudecker, H. (1968). The Kronecker matrix product and some of its applications in economet-

rics. Stat Neerl, 22, 69–82.

Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kro-

necker matrix products. J Am Stat Assoc, 64(327), 953–963.

Neuhäuser, M. and Jöckel, K.-H. (2006). A bootstrap test for the analysis of microarray experi-

ments with a very small number of replications. Appl Bioinformatics, 5(3), 173–9.

227

Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W. (2001). On

differential variability of expression ratios: improving statistical inference about gene expres-

sion changes from microarray data. J Comput Biol, 8(1), 37–52.

Nguyen, D. V., Arpat, A. B., Wang, N., and Carroll, R. J. (2002). DNA microarray experiments:

biological and technological aspects. Biometrics, 58(4), 701–17.

Nielsen, M. E., Lok, F., and Nielsen, H. B. (2006). Distinct developmental defense activations in

barley embryos identified by transcriptome profiling. Plant Mol Biol, 61(4-5), 589–601.

Olkin, I. and Rubin, H. (1964). Multivariate beta distributions and independence properties of the

Wishart distribution. Ann Math Stat, 35(1), 261–269.

Olkin, I. and Sampson, A. R. (1972). Jacobians of matrix transformations and induced functional

equations. Linear Algebra Appl, 5, 257–276.

Park, T., Kim, Y., Bekiranov, S., and Lee, J. K. (2007). Error-pooling-based statistical methods

for identifying novel temporal replication profiles of human chromosomes observed by DNA

tiling arrays. Nucleic Acids Res, 35(9), e69.

Patterson, T. A., Lobenhofer, E. K., Fulmer-Smentek, S. B., Collins, P. J., Chu, T. M., Bao,

W., Fang, H., Kawasaki, E. S., Hager, J., Tikhonova, I. R., Walker, S. J., Zhang, L., Hurban,

P., de Longueville, F., Fuscoe, J. C., Tong, W., Shi, L., and Wolfinger, R. D. (2006). Per-

formance comparison of one-color and two-color platforms within the MicroArray Quality

Control (MAQC) project. Nature Biotechnol, 24(9), 1140–50.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer, New

York.

Purutcuoglu, V. and Wit, E. (2007). FGX: a frequentist gene expression index for Affymetrix

arrays. Biostatistics, 8(2), 433–437.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

228

Rattray, M., Liu, X. J., Sanguinetti, G., Milo, M., and Lawrence, N. D. (2006). Propagating

uncertainty in microarray data analysis. Brief Bioinform, 7(1), 37–47.

Reimers, M. (2005). Statistical analysis of microarray data. Addict Biol, 10(1), 23–35.

Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes

using false discovery rate controlling procedures. Bioinformatics, 19(3), 368–75.

Rencher, A. C. (2000). Linear models in statistics. Wiley Series in Probability and Statistics.

John Wiley & Sons Inc., New York.

Rencher, A. C. (2002). Methods of multivariate analysis. Wiley Series in Probability and Statis-

tics. Wiley-Interscience [John Wiley & Sons], New York, 2nd edition.

Resnick, S. I. (1999). A Probability Path. Birkhäuser, Boston.

Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I., Gascoyne,

R. D., Muller-Hermelink, H. K., Smeland, E. B., Giltnane, J. M., Hurt, E. M., Zhao, H., Averett,

L., Yang, L., Wilson, W. H., Jaffe, E. S., Simon, R., Klausner, R. D., Powell, J., Duffey, P. L.,

Longo, D. L., Greiner, T. C., Weisenburger, D. D., Sanger, W. G., Dave, B. J., Lynch, J. C.,

Vose, J., Armitage, J. O., Montserrat, E., Lopez-Guillermo, A., Grogan, T. M., Miller, T. P.,

LeBlanc, M., Ott, G., Kvaloy, S., Delabie, J., Holte, H., Krajci, P., Stokke, T., and Staudt,

L. M. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse

large-B-cell lymphoma. New Engl J Med, 346(25), 1937–47.

Sanguinetti, G., Rattray, M., and Lawrence, N. D. (2006). A probabilistic dynamical model for

quantitative inference of the regulatory mechanism of transcription. Bioinformatics, 22(14),

1753–1759.

Sartor, M. A., Tomlinson, C. R., Wesselkamper, S. C., Sivaganesan, S., Leikauf, G. D., and

Medvedovic, M. (2006). Intensity-based hierarchical Bayes method improves testing for dif-

ferentially expressed genes in microarray experiments. BMC Bioinformatics, 7, 538.

229

Schadt, E. E., Li, C., Ellis, B., and Wong, W. H. (2001). Feature extraction and normalization

algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl,

37, 120–5.

Schena, M., Shalon, D., Davis, R., and Brown, P. (1995). Quantitative monitoring of gene ex-

pression patterns with a complementary DNA microarray. Science, 270, 467–70.

Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005).

Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8(4), 517–527.

Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly specific

gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18(5), 1121–1133.

Schwallie, D. P. (1985). Positive definite maximum likelihood covariance estimators. Econom

Lett, 17(1-2), 115–117.

Searle, S. R. (1978). A univariate formulation of the multivariate linear model. In Contributions

to survey sampling and applied statistics, pages 181–189. Academic Press, New York.

Searle, S. R. (1982). Matrix algebra useful for statistics. Wiley Series in Probability and Mathe-

matical Statistics: Applied Probability and Statistics. John Wiley & Sons Ltd., Chichester.

Shi, L., Shi, L., Reid, L. H., Jones, W. D., Shippy, R., Warrington, J. A., Baker, S. C., Collins, P. J.,

de Longueville, F., Kawasaki, E. S., Lee, K. Y., Luo, Y., Sun, Y. A., Willey, J. C., Setterquist,

R. A., Fischer, G. M., Tong, W., Dragan, Y. P., Dix, D. J., Frueh, F. W., Goodsaid, F. M.,

Herman, D., Jensen, R. V., Johnson, C. D., Lobenhofer, E. K., Puri, R. K., Scherf, U., Thierry-

Mieg, J., Wang, C., Wilson, M., Wolber, P. K., Zhang, L., Amur, S., Bao, W., Barbacioru,

C. C., Lucas, A. B., Bertholet, V., Boysen, C., Bromley, B., Brown, D., Brunner, A., Canales,

R., Cao, X. M., Cebula, T. A., Chen, J. J., Cheng, J., Chu, T. M., Chudin, E., Corson, J., Corton,

J. C., Croner, L. J., Davies, C., Davison, T. S., Delenstarr, G., Deng, X., Dorris, D., Eklund,

A. C., Fan, X. H., Fang, H., Fulmer-Smentek, S., Fuscoe, J. C., Gallagher, K., Ge, W., Guo, L.,

Guo, X., Hager, J., Haje, P. K., Han, J., Han, T., Harbottle, H. C., Harris, S. C., Hatchwell, E.,

230

Hauser, C. A., Hester, S., Hong, H., Hurban, P., Jackson, S. A., Ji, H., Knight, C. R., Kuo, W. P.,

Leclerc, J. E., Levy, S., Li, Q. Z., Liu, C., Liu, Y., Lombardi, M. J., Ma, Y., Magnuson, S. R.,

Maqsodi, B., McDaniel, T., Mei, N., Myklebost, O., Ning, B., Novoradovskaya, N., Orr, M. S.,

Osborn, T. W., Papallo, A., Patterson, T. A., Perkins, R. G., Peters, E. H., et al. (2006). The

MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of

gene expression measurements. Nature Biotechnol, 24(9), 1151–1161.

Simon, R., Radmacher, M. D., and Dobbin, K. (2002). Design of studies using DNA microarrays.

Genet Epidemiol, 23(1), 21–36.

Singh-Gasson, S., Green, R. D., Yue, Y., Nelson, C., Blattner, F., Sussman, M. R., and Cerrina,

F. (1999). Maskless fabrication of light-directed oligonucleotide microarrays using a digital

micromirror array. Nature Biotechnol, 17(10), 974–8.

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential

expression in microarray experiments. Stat Appl Genet Mol Biol, 3, Article3.

Smyth, G. K. (2005). Limma: linear models for microarray data. In R. Gentleman, V. Carey,

S. Dudoit, R. Irizarry, and W. Huber, editors, Bioinformatics and Computational Biology Solu-

tions using R and Bioconductor, pages 397–420. Springer, New York.

Srivastava, M. S. (2003). Singular Wishart and multivariate beta distributions. Ann Stat, 31(5),

1537–1560.

Srivastava, M. S. (2007). Multivariate theory for analyzing high dimensional data. J Japan Statist

Soc, 37(1), 53–86.

Srivastava, M. S. and Khatri, C. G. (1979). An Introduction to Multivariate Statistics. North-

Holland, New York.

Srivastava, M. S. and von Rosen, D. (2002). Regression models with unknown singular covari-

ance matrix. Linear Algebra Appl, 354, 255–273.

231

Stalteri, M. A. and Harrison, A. P. (2007). Interpretation of multiple probe sets mapping to the

same gene in Affymetrix GeneChips. BMC Bioinformatics, 8, 13.

Tan, W. Y. (1969). Note on the multivariate and the generalized multivariate beta distributions. J

Am Stat Assoc, 64, 230–241.

Thompson, K. L., Rosenzweig, B. A., Pine, P. S., Retief, J., Turpaz, Y., Afshari, C. A., Hamadeh,

H. K., Damore, M. A., Boedigheimer, M., Blomme, E., Ciurlionis, R., Waring, J. F., Fuscoe,

J. C., Paules, R., Tucker, C. J., Fare, T., Coffey, E. M., He, Y., Collins, P. J., Jarnagin, K.,

Fujimoto, S., Ganter, B., Kiser, G., Kaysser-Kranich, T., Sina, J., and Sistare, F. D. (2005). Use

of a mixed tissue RNA design for performance assessments on multiple microarray formats.

Nucleic Acids Res, 33(22), e187.

Tumor Analysis Best Practices Working Group (2004). Expression profiling–best practices for

data generation and interpretation in clinical trials. Nat Rev Genet, 5(3), 229–37.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to

the ionizing radiation response. Proc Natl Acad Sci U S A, 98, 5116–21.

Uhlig, H. (1994). On singular Wishart and singular multivariate beta distributions. Ann Stat,

22(1), 395–405.

Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine,

J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA.

Proc Natl Acad Sci U S A, 87(5), 1663–7.

Weng, L., Dai, H., Zhan, Y., He, Y., Stepaniants, S. B., and Bassett, D. E. (2006). Rosetta error

model for gene expression analysis. Bioinformatics, 22(9), 1111–21.

Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., and Weigel, D.

(2005). Integration of spatial and temporal information during floral induction in Arabidopsis.

Science, 309(5737), 1056–1059.

232

Wishart, J. (1928). The generalized product moment distribution in samples from a normal mul-

tivariate population. Biometrika, A20, 32–52.

Wolber, P. K., Collins, P. J., Lucas, A. B., De Witte, A., and Shannon, K. W. (2006). The Agilent

in situ-synthesized microarray platform. Method Enzymol, 410, 28–57.

Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C.,

and Paules, R. S. (2001). Assessing gene significance from cDNA microarray expression data

via mixed models. J Comput Biol, 8(6), 625–37.

Wright, G. W. and Simon, R. M. (2003). A random variance model for detection of differential

gene expression in small microarray experiments. Bioinformatics, 19(18), 2448–55.

Wu, Z. and Irizarry, R. A. (2005). Stochastic models inspired by hybridization theory for short

oligonucleotide arrays. J Comput Biol, 12(6), 882–93.

Wu, Z., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F., and Spencer, F. (2004). A model-

based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc, 99(468),

909–917.

Yang, I. V., Chen, E., Hasseman, J. P., Liang, W., Frank, B. C., Wang, S., Sharov, V., Saeed,

A. I., White, J., Li, J., Lee, N. H., Yeatman, T. J., and Quackenbush, J. (2002). Within the fold:

assessing differential expression measures and reproducibility in microarray assays. Genome

Biol, 3(11), research0062.

Yang, Y., Hoh, J., Broger, C., Neeb, M., Edington, J., Lindpaintner, K., and Ott, J. (2003). Sta-

tistical methods for analyzing microarray feature data with replications. J Comput Biol, 10(2),

157–69.

Yang, Y. H. and Speed, T. (2002). Design issues for cDNA microarray experiments. Nat Rev

Genet, 3(8), 579–88.

Yang, Y. H., Buckley, M. J., and Speed, T. P. (2001). Analysis of cDNA microarray images. Brief

Bioinform, 2(4), 341–9.

233

Yekutieli, D. (2002). Theoretical Results Needed for Appyling the False Discovery Rate in Sta-

tistical Problems. Ph.D. thesis, Tel-Aviv University.

Zakharkin, S. O., Kim, K., Mehta, T., Chen, L., Barnes, S., Scheirer, K. E., Parrish, R. S., Allison,

D. B., and Page, G. P. (2005). Sources of variation in Affymetrix microarray experiments. BMC

Bioinformatics, 6, 214.

Zhang, L., Wang, L., Ravindranathan, A., and Miles, M. F. (2002). A new algorithm for analysis

of oligonucleotide arrays: Application to expression profiling in mouse brain regions. J Mol

Biol, 317, 225–35.

Appendix A

Source Code Listings

234

235

A.1 Quality Control Assessment of the Choe et al. Spike-in
Dataset

##

#

Program Name: ChoeQuality.pl

Author: Richard Kennedy

Date: 12/14/2007

#

Purpose: This program performs quality assessments for

the Choe et al. Golden Spike dataset.

#

Description: This program performs quality assessments for

the Choe et al. Golden Spike dataset in two ways. First,

the number of clone IDs and probesets assigned to each

pool number are computed from the dataset provided on the

authors’ website, which are compared to the table in their

BMC Bioinformatics article. Second, the probesets are

mapped to pool numbers, then pool numbers to fold change,

to give the fold change data for each probeset. These

fold change data are compared to the fold change data

for each probeset provided on the authors’ website.

#

##

Define several hash tables for analyzing the data. The

hash data structure makes it particularly easy to track

the assignments using the key value, which corresponds to

the clone ID or the pool number.

Create a hash table for the number of clones assigned to

each pool. Note that, in addition to the numbered pools,

there are two additional pools (described in the Choe et

al. article): empty, which are not assigned to any pool

(these are probesets that were not spiked in); and mixed,

which are weakly assigned to multiple pools. These are

identified as such in the authors’ datafiles. The key

value for the hash table is the pool number, and the

associated data value is the number of clones, which

is initialized to 0. The actual number will be calculated

later.

%CloneCount = (empty => 0,

mixed => 0,

236

1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

Create another hash table for the fold change assigned to

each pool. These data are obtained from columns 1 and 4

of Table 1 in the Choe et al. article. The empty clones

are arbitrarily assigned a concentration of -1 and the

mixed clones a concentration -2 by the original authors

for identification. The key value for the hash is the

pool number, and the associated data value is the fold

change of the spike (S) relative to control (C).

%PoolFold = (empty => -1,

mixed => -2,

unassigned => -3,

1 => 1.2,

2 => 2,

3 => 1.5,

4 => 2.5,

5 => 1.2,

6 => 3,

7 => 3.5,

8 => 1.5,

9 => 4,

10 => 1.7,

13 => 1,

14 => 1,

15 => 1,

16 => 1,

17 => 1,

18 => 1,

237

19 => 1);

Create a third hash table for the number of probesets

assigned to each pool. These values are computed from the

data files at the authors’ website. The values of -1 and

-2 again represent the empty and mixed clones. The value

of -3 is used to record any probesets which were not

assigned to any pool. The key value for the hash table is

the pool number, and the associated data value is the

number of probesets.

%ProbesetCount = (empty => 0,

mixed => 0,

unassigned => 0,

1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

Create an empty hash structure for storing the pool number

assigned to each clone. This will be filled using the

data file from the authors’ website. The key value for

the hash table will be the clone ID, and the associated

data value will be the pool number.

%ClonePool = ();

Create an empty hash structure for storing the Flybase ID

number assigned to each clone. This is not used in the

analysis but is output in the data file for completeness.

The key value for the hash table will be the clone ID, and

the associated data value will be the Flybase ID.

%CloneFlybase = ();

238

Create an empty hash structure for storing the gene name

assigned to each clone. This is not used in the analysis

but is output in the data file for completeness. The key

value for the hash table will be the clone ID, and the

associated data value will be the gene name.

%CloneGene = ();

Create an empty two-way hash structure (a hash of hashes)

for identifying the probesets assigned to each pool. The

first key value of the hash table will be the pool number,

and the second key value of the hash table will be the

probeset ID. The associated data value is simply an

indicator variable set to 1 if the probeset is in the

specified pool.

%ProbesetPool = ();

Create a list containing the pool numbers and all possible

key assignments (pool numbers plus empty and mixed

categories). These will be used as indices for printing

the data in the appropriate order (since Perl sorts by the

ASCII collating sequence rather than numeric).

@PoolIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’);

@AllIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’,’empty’,’mixed’);

Open the data file (from the authors’ website) containing

the information about each clone. This is stored in

a .csv file with the rows being the clone and the columns

being the pool number, clone ID, Flybase ID, and gene

name in order.

open(CHOE,"<gb-2005-6-2-r16-s8.csv");

Loop to read the entire data file

while (<CHOE>) {

Parse each line into fields

chomp $_;
@fields = split(/,/,$_);
$Pool = $fields[0];

$CloneID = $fields[1];

$FlybaseID = $fields[2];

239

$Gene = $fields[3];

Increment the clone ID count for the specified pool number

$CloneCount{$Pool} = $CloneCount{$Pool} + 1;

Store each data item in the appropriate hash, indexed

by clone ID for access

$ClonePool{$CloneID} = $Pool;

$CloneFlybase{$CloneID} = $FlybaseID;

$CloneGene{$CloneID} = $Gene;

}

close(CHOE);

Note that the clone IDs for the empty and mixed categories

have only the pool and clone ID columns populated. The

concentration , Flybase ID, and gene data are set to

arbitrary values so they can be identified later.

$ClonePool{’empty’} = ’empty’;

$CloneFlybase{’empty’} = "";

$CloneGene{’empty’} = "";

$ClonePool{’mixed’} = ’mixed’;

$CloneFlybase{’mixed’} = "";

$CloneGene{’mixed’} = "";

Print a sorted list of the clone IDs showing the pool

assignments. This should reproduce column 2 of Table 1

in the Choe et al. article.

print "Clone assignments to pools\n";
print "--------------------------\n";
print "Pool Number\tNumber of Clones\n";

Loop through each of the key values, which are the pool

numbers, and locate the corresponding number of

clone IDs assigned to it

$TotalCount = 0;

foreach $key (@PoolIndex) {
print $key,"\t\t",$CloneCount{$key},"\n";
$TotalCount = $TotalCount + $CloneCount{$key};

}

print "--------------------------\n";
print "Total\t\t$TotalCount\n\n";

Open the data file (from the authors’ website) containing

information about the mapping of the clones to Affymetrix

240

ID numbers. This is a tab-delimited text file with the

rows being the probeset ID and the columns being the clone

ID (there can be more than one clone ID per probeset, in

which case the probeset is listed multiple times), the

number of probe pairs in the probeset that match the clone

ID, the fold change for the clone ID, and the fold change

for the probeset (which is the weighted average of the

clone ID fold change for probesets matching multiple clone

IDs).

Note that the original file on the website contains

a header which was manually removed prior to running this

analysis. Also, the original text file on the web does

not have the .txt extension and, depending on the Perl

implementation , the end-of-line character may need to be

changed to the Unix convention (line feed) for this code

to work.

open(PROBESETMAP ,"<mapping-affy2clones.txt");

Create an output file showing the fold changes obtained

in two different manners. This will be a .csv file

with rows being the probeset ID and the columns being

the fold change computed directly (as a weighted average

of the clone ID fold change in the file), the fold change

computed indirectly (as a weighted average of the fold

change of the pool to which the clone ID is assigned, which

is from the previous input file), and the difference between

the two.

open(OUTFILE,">ChoeMapping.csv");
print OUTFILE "Probe ID,Direct Fold Change,Indirect Fold
Change,Difference\n";

Initialize an accumulator variable for storing the total

counts across all pools

$TotalCount = 0;

Initialize the value of the previous probe read from the

file to a null value, so that the start can be identified.

This value is used to track the previous probe so that

probesets mapping to multiple clone IDs can be

appropriately processed

$PreviousProbeset = "";

Loop through the entire input file

while (<PROBESETMAP >) {

241

Increment the total count of the number of probesets

(which includes duplicates)

$TotalCount = $TotalCount + 1;

Split the input line into fields

chomp $_;
@fields = split(/\t/,$_);
$ProbesetID = $fields[0];

$CloneID = $fields[1];

$NumProbes = $fields[2];

$CloneFold = $fields[3];

$ProbesetFold = $fields[4];

If this clone ID does not exist in the previously

created pool hash, then there is no pool assignment

for the clone ID, so print an error message.

if (!defined($ClonePool{$CloneID})) {
print "Note: Probeset $ProbesetID is assigned to Clone
ID $CloneID ,\n";

print " but Clone ID $CloneID has no pool

assignment\n";

} else {

Otherwise , the clone ID does have a pool assignment.

Get the pool number and add the current probeset ID

to the list of probesets for this pool.

$Pool = $ClonePool{$CloneID};

$ProbesetPool{$Pool}{$ProbesetID} = 1;

Check to see if this probeset ID is the same as the

probeset ID from the previous line. If so, add the

weighted fold change and the total number of probes

to the running total.

if ($ProbesetID eq $PreviousProbeset) {
$DirectFold = $DirectFold + $NumProbes * $CloneFold;

$IndirectFold = $IndirectFold + $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $TotalProbes + $NumProbes;

If this probeset ID is not the same as the probeset ID

from the previous line, then all of the data for the

previous probeset has been read in. Compute the fold

change for the previous probeset and output it to the file

} else {

242

If the previous probeset is not a null string, then this

is not the start of the file. Compute the fold change for

the previous probeset by dividing the total by the number

of probes for both the direct and indirect methods, as

well as the difference between them.

if ($PreviousProbeset ne "") {
$DirectFold = $DirectFold / $TotalProbes;

$IndirectFold = $IndirectFold / $TotalProbes;

$Difference = abs($DirectFold - $IndirectFold);

If the difference between the direct and indirect

computations is not zero (within round-off error), then

the clone ID has not been assigned the same fold change as

the pool to which it belongs, so print an error message.

if ($Difference > 1e-3) {
print "Note: Probeset ID $PreviousProbeset
has different fold change\n";

print "for direct vs. indirect
calculations.\n";

print "Direct Fold Change =
$DirectFold\tIndirect Fold Change =

$IndirectFold\n";

}

Write the data to the output file for all probesets , so

that it may be reviewed later if desired.

print OUTFILE "$PreviousProbeset ,$DirectFold ,
$IndirectFold ,$Difference\n";

}

Save the data for the current probeset as the previous

probeset, in preparation for reading the next line of

data.

$DirectFold = $NumProbes * $CloneFold;

$IndirectFold = $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $NumProbes;

$PreviousProbeset = $ProbesetID;

}

}

Increment the count of the number of probesets for this

pool

$ProbesetCount{$Pool} = $ProbesetCount{$Pool} + 1;

}

243

Note that the last line of the mapping data file has not

been processed. This sends the last line to the output

file.

print OUTFILE "$PreviousProbeset ,",$DirectFold/$TotalProbes ,",",
$IndirectFold/$TotalProbes ,",","$Difference\n";

print "\n\n";

close(PROBESETMAP);
close(OUTFILE);

Print the list of pool numbers and the number of

Affymetrix probesets assigned to each pool.

print "Probeset assignments to pools\n";
print "-----------------------------\n";
print "Pool Number\tNumber of Probesets\n";

Loop through the key values, which are the pool numbers,

and locate the corresponding number of probesets assigned

to it

foreach $key (@AllIndex) {
print $key,"\t\t",$ProbesetCount{$key},"\n";

}

Show the total number of probesets across all pools

print "-----------------------------\n";
print "Total\t\t$TotalCount\n\n\n";

Note that it is possible for a probeset to be assigned to

a pool more than once if multiple clones in the same pool

map to the same probeset. This prints a listing of the

pool numbers and the number of probesets assigned to each

pool, counting each probeset only once per pool. This

should reproduce Table 1 in the Choe et al. article.

print "Unique probeset assignments to pools\n";
print "------------------------------------\n";
print "Pool Number\tNumber of Probesets\n";

Loop through the key values, which are the pool numbers,

and locate the corresponding data value, which is a hash

table.

$TotalCount = 0;

for $key (@AllIndex) {

The second hash table has key values that are the probeset

244

IDs for all probesets assigned to the current pool number.

These key values are unique, so the number of keys is the

number of unique probesets assigned to that pool.

@Probesetkeys = keys(%{$ProbesetPool{$key}});
$ProbesetCount = @Probesetkeys;

print $key,"\t\t",$ProbesetCount ,"\n";
$TotalCount = $TotalCount + $ProbesetCount;

}

print "------------------------------------\n";
print "Total\t\t$TotalCount\n\n";

245

A.2 Logit-T Analysis of Spike-In Datasets

##

#

Program Name: logitTAnalysis.R

Author: Richard Kennedy

Date: 12/20/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the Logit-T program function as

the primary analysis tool.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the logit-T scores

computed. One data file is created showing the logit-T

for all of the probesets on the chip, in increasing order

(or decreasing order of significance); one data file gives

the number of spike-in probes (from both the original

Affymetrix list and the expanded list of McGee et al.)

that are highly ranked; and one data file shows the actual

rank based on logit-T scores versus the expected rank

based on the concentration fold-change from the

spike-in data. Although similar, separate computation

routines are used for the Affymetrix U133 Latin Square,

Affymetrix U95 Latin Square, and GeneLogic Dilution

datasets due to slight differences in the analyses and for

better readability.

#

##

Load the affy library. This is a standard library

available through Bioconductor , which implements the

functions for reading CEL files

library(affy)

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

246

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

247

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

Create the groupfile for the logit-T program indicating

which data files to analyze. As per the documentation for

the logit-T program, the groupfile is a tab-delimited text

file, with the first column being the CEL file name, the

second column designating the group membership , and the

third column being a synonym (abbreviation) for the CEL

file. An example would be

1521a99hpp_av06.CEL A a1a06

1521b99hpp_av06.CEL B b1a06

The first CEL file is 1521a99hpp_av06.CEL , which is part
of group A. Its synonym, which is the name used in

printouts , is a1a06. The second CEL file, which is part

of group B, is 1521b99hpp_av06.CEL and has synonym b1a06.
The groups A and B will be compared to each other to

generate logit-T scores.

#

For this analysis, there are 14 groups, which will be

labeled A-N. Each group contains 3 CEL files, so group A

will have synonyms A1, A2, A3, group B synonyms B1, B2,

B3, and so on.

for (i in (1:13)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
group <- c(rep("A",3),rep(LETTERS[i+1],3))
synonym <- paste(rep(c("A",LETTERS[i+1]),each=3),rep(1:
3,2),sep="")

data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU133Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

248

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the datasets. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

249

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

250

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

Get the subset of the CEL files used in this analysis

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

Since the logit-T program is a compiled C program, the

command-line text must be generated and executed via the

system command. As per the documentation for the logit-T

program, the syntax for the command-line invocation is

logitT groupFile.txt celfiles cdffile outputprefix

where groupFile.txt is the groupfile that was previously

generated , celfiles is a list of the CEL files to be

analyzed, cdffile is the CDF file (Chip Definition File,

which contains information about the layout of the chip),

and outputprefix is the output prefix that will be

prepended to all data files generated by the logit-T

program.

prefix <- paste("LogitTFold",i,"U133",sep="")
fname <- paste("LogitTFoldRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "),"HG-U133A_tag.CDF",
prefix)

system(cmd)

Get the results of the logit-T analysis. As per the

documentation for the logit-T program, the following

output files are produced, with the output prefix

prepended to all filenames instead of xxxx:

xxxxT.txt is the main output file with the t-test

values for each probeset. Rows are

arranged by probeset and columns are

arranged by comparison.

xxxxCV.txt is the file containing the coefficients of

variation for each probeset. This file is

not used in the present analysis.

xxxxW.txt is the file containing the standardized

Wilcoxon W statistics for each probeset.

This file is not used in the present

analysis.

xxxx.theta is the file containing the LogitExp gene

expression index described in the Lemon et

al. article. This file is not used in the

present analysis.

251

All files are tab-delimited text files. For this

analysis, each xxxxT.txt file contains only one

comparison , so the files are two columns with the first

being the probeset name and the second being the logit-T

value for that comparison , along with a header in the

first line of the file.

fname <- paste("LogitTFold",i,"U133T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]

abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

ranking <- rank(abs.score ,ties.method="min")

reverse the rankings, as small logit-T scores indicate

higher probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

create a data frame with the probeset (gene) names, rank,

and score in order of increasing logit-T scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("LogitTFoldCountU133.csv",sep="")

252

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the logit-T values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U133 Analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set.

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",

253

"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

254

spike.group <- 1:14
names(spike.group) <- spike.names

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though

not originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in (1:length(cat.names))) {
rep1 <- sum(category==1)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

group <- c(rep("A",rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU95Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"U95",sep="")
fname <- paste("LogitTFoldU95Run",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

system(cmd)
fname <- paste("LogitTFold",i,"U95T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1

255

ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("LogitTFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("LogitTFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution data

set.

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

#

##

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

256

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data=c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

257

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
rep1 <- sum(category==9)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==9],fnames[category==
cat.names[i]])

group <- c(rep(LETTERS[1],rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldGDilutionRun",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"GDilution",sep="")
fname <- paste("LogitTFoldGDilutionRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

code <- system(cmd)
fname <- paste("LogitTFold",i,"GDilutionT.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallGDilution.csv", sep="")

258

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

t.score <- 1-pt(abs.score ,df=length(index)-2)
posindex <- (t.score <= 0.001)

small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("LogitTFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of GeneLogic Dilution Analysis

259

A.3 mmgMOS Analysis of Spike-In Datasets

##

#

Program Name: mmgmosAnalysis.R

Author: Richard Kennedy

Date: 12/21/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the RMA algorithm as the

expression summary measure.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the mmgmos expression

summary computed. The mmgmos values are then compared

using multiple t-tests to give measures of significance

for differential gene expression. One data file is

created showing the p-values of the t-tests for all of the

probesets on the chip, in increasing order (or decreasing

order of significance); one data file gives the number of

spike-in probes (from both the original Affymetrix list

and the expanded list of McGee et al.) that are highly

ranked; and one data file shows the actual rank based on

the p-values versus the expected rank based on the

concentration fold-change from the spike-in data.

Although similar, separate computation routines are used

for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

Square, and GeneLogic Dilution datasets due to slight

differences in the analyses and for better readability.

#

##

Load the affy library. This is a standard library

available through Bioconductor , which implements the

functions for reading CEL files

library(affy)

Load the puma library. This is a standard library

available through Bioconductor , which implements the

mmgmos function

library(puma)

260

Load the multtest library. This is a standard library

available through Bioconductor , which implements the

multiple t-test among other functions.

library(multtest)

This function implements a pooled degrees of freedom

function, which computes a composite degrees of freedom

for a two-sample comparison based on the relative size

of each of the two samples.

Input: exprs - a matrix containing the expression values

compare - a vector denoting the condition of each

column in the exprs matrix, with 0 denoting

the baseline condition and 1 denoting the

experimental condition

Output: a vector containing the pooled degrees of freedom

for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

End of declared functions

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

261

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the dataseta. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

262

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",

263

"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

This is a list of the filenames of the CEL files for this

analysis. A separate variable is used to facilitate

264

subanalyses if necessary. For mmgmos, the model

fitting is done over all chips.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- mmgmos.exprs[,index]

construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

ranking <- rank(abs.score ,ties.method="min")

reverse the rankings, as small p-values indicate higher

probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

create a data frame with the probeset (gene) names, rank,

and score in order of increasing S-Scores

results <- data.frame(name=gn[index],rank=ranking,score=
abs.score[index])

265

outfile <- paste("mmgmosFoldOverallU1133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("mmgmosFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U133 Analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

266

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

267

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though

not originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==1],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
gn <- geneNames(cel)

268

index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("mmgmosFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("mmgmosFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("mmgmosFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution data

set

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

269

#

##

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

270

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,
14,14,14)

cat.names <- unique(category[category > 9])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==9],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(cel)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("mmgmosFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)

271

small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("mmgmosFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

272

A.4 Multichip S-Score Analysis of Spike-In Datasets

##

#

Program Name: MultiSScoreAnalysis.R

Author: Richard Kennedy

Date: 12/14/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the multichip SScore function

as the primary analysis tool.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the multichip S-Scores

computed. One data file is created showing the S-Scores

for all of the probesets on the chip, in increasing order

(or decreasing order of significance); one data file gives

the number of spike-in probes (from both the original

Affymetrix list and the expanded list of McGee et al.)

that are highly ranked; and one data file shows the actual

rank based on S-Scores versus the expected rank based on

the concentration fold-change from the spike-in data.

Although similar, separate computation routines are

used for the Affymetrix U133 Latin Square, Affymetrix U95

Latin Square, and GeneLogic Dilution datasets due to

slight differences in the analyses and for better

readability.

#

##

Load the sscore library. This is a standard library

available through Bioconductor , which implements the

multichip sscore function

library(sscore)

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

273

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

274

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the SF and SDT data, which were previously

computed using the ComputeSFandSDT function in the sscore

package. By computing these beforehand , rather than on

the fly, greatly speeds up the code. These are stored in

the same order as the original filenames , i.e. using the

ASCII collating sequence from the directory listing

SF <- c(5.051527 ,6.725639 ,6.112969 ,5.55356 ,6.591798 ,5.515133,
5.038274 ,5.457424 ,5.210437 ,5.213532 ,4.773091 ,5.170842,

4.710175 ,5.675154 ,4.853165 ,4.231661 ,5.702423 ,4.860462,

5.298943 ,4.589679 ,4.433209 ,5.372881 ,4.820332 ,4.853754,

4.243081 ,4.640638 ,4.394098 ,4.354416 ,4.831838 ,4.471514,

5.230509 ,6.470383 ,4.486733 ,4.493152 ,5.053464 ,5.441683,

5.909456 ,5.4285 ,5.656854 ,5.397539 ,5.100904 ,5.460907)

Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716 ,23.33307 ,22.39198 ,20.10130 ,26.19655 ,21.01957,
18.94265 ,20.52486 ,18.65655 ,18.90886 ,17.14570 ,18.36193,

16.54648 ,20.35357 ,17.8932 ,16.53504 ,20.99434 ,18.89438,

20.23327 ,16.93843 ,16.72479 ,19.87543 ,17.24651 ,19.22224,

17.82088 ,18.08628 ,16.85401 ,19.35906 ,20.43274 ,20.28572,

19.90849 ,25.56167 ,17.58817 ,19.47506 ,22.84737 ,23.01953,

24.11946 ,20.12949 ,22.82104 ,21.20344 ,19.66584 ,20.07275)

SDT <- SDT[c(16:42,1:15)]

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the dataseta. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",

275

"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",

276

"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]

277

This is a list of the filenames of the CEL files for this

analysis. A separate variable is used to facilitate

subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

compute the S-Scores

score <- SScore(data,classlabel=compare,SF=small.SF,
SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

ranking <- rank(abs.score ,ties.method="min")

reverse the rankings, as small S-Scores indicate higher

probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

create a data frame with the probeset (gene) names, rank,

and score in order of increasing S-Scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)) ,rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

278

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("SScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U133 Analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",

279

"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389 ,16.90462 ,18.58895 ,17.57569 ,18.10556,
17.44596 ,19.05938 ,19.01886 ,15.19518 ,17.07320 ,17.70451,

15.51397 ,15.14165 ,15.71093 ,18.92873 ,17.59843 ,17.74718,

16.96576 ,19.88173 ,19.42636 ,14.22665 ,14.16075 ,11.39345,

10.92027 ,15.86836 ,13.19469 ,15.66899 ,14.32828 ,11.25717,

11.50788 ,13.16047 ,16.61321 ,13.50162 ,14.13247 ,12.45534,

13.73491 ,13.59590 ,13.24143 ,14.58290 ,13.75632 ,16.37373,

16.38092 ,13.26664 ,14.51221 ,15.94495 ,14.01617 ,13.29383,

17.34152 ,12.74790 ,13.66622 ,17.21439 ,12.42648 ,13.16133,

13.87641 ,18.97458 ,14.38793 ,14.25340 ,17.20059 ,15.56408)

SDT <- c(151.8202 ,164.8418 ,188.9549 ,179.0177 ,179.3972,
169.2196 ,188.5424 ,185.0203 ,152.1097 ,198.8227 ,176.3480,

210.3864 ,155.7234 ,163.5185 ,195.6335 ,187.2507 ,184.7659,

186.7471 ,214.4948 ,204.1949 ,207.5883 ,190.5452 ,163.2673,

158.7323 ,232.9045 ,188.8372 ,220.6606 ,205.0497 ,162.8883,

181.9430 ,185.1602 ,224.2842 ,192.2052 ,206.1543 ,179.4869,

202.1945 ,193.9658 ,196.5336 ,192.9138 ,136.5619 ,227.4531,

205.0031 ,172.1437 ,179.7536 ,220.7491 ,181.4627 ,164.0342,

203.9272 ,185.2207 ,168.6197 ,216.8669 ,164.1328 ,173.7930,

185.0183 ,254.3695 ,177.5792 ,181.8116 ,215.0447 ,199.3295)

280

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though not

originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

281

small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])
small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)

abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("SScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("SScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

282

}

End of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution

dataset.

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

#

##

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930 ,9.969553 ,10.633744 ,5.498765 ,5.835703,
7.732482 ,11.598326 ,10.133451 ,6.454634 ,5.355627 ,7.001940,

8.849713 ,7.280378 ,12.280841 ,7.331615 ,19.023698 ,7.380893,

18.712581 ,7.834392 ,6.895325 ,7.254859 ,21.076266 ,10.342030,

7.940419 ,15.479335 ,14.88527)

SDT <- c(133.89655 ,101.82649 ,114.87093 ,37.85469 ,48.64600,
86.43693 ,143.22880 ,111.54653 ,48.30689 ,31.88864 ,49.17773,

91.11646 ,43.77653 ,122.86836 ,52.00780 ,172.02050 ,50.62660,

169.93095 ,46.71437 ,48.85516 ,56.43905 ,191.73461 ,66.32453,

53.81287 ,146.23999 ,144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

283

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,14,
14,14)

cat.names <- unique(category[category > 9 & category != 13])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)

284

abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex],spike.names)))
truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("SScoreFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankGDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of GeneLogic Dilution Analysis

285

A.5 Pooled S-Score Analysis of Spike-In Datasets

##

#

Program Name: PooledSScoreAnalysis.R

Author: Richard Kennedy

Date: 12/21/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the pooled S-Score algorithm as

the expression summary measure.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the pooled S-Scores

are computed. One data file is created showing the pooled

S-Scores for all of the probesets on the chip, in

increasing order (or decreasing order of significance);

one data file gives the number of spike-in probes (from

both the original Affymetrix list and the expanded list of

McGee et al.) that are highly ranked; and one data file

shows the actual rank based on S-Scores versus the

expected rank based on the concentration fold-change from

the spike-in data. Although similar, separate computation

routines are used for the Affymetrix U133 Latin Square,

Affymetrix U95 Latin Square, and GeneLogic Dilution

datasets due to slight differences in the analyses and for

better readability.

#

##

Load the sscore library. This is a standard library

available through Bioconductor , which implements the

multichip sscore function

library(sscore)

Load the robust library. This is a standard library

available through CRAN, which implements the lmRob

function for robust regression

library(robust)

This function implements the pooled S-Score. The code

is similar to the Bioconductor package sscore, but the

286

error estimate is calculated using a modification of the

local pooled error (LPE) method of Jain et al. Code for

the error estimate is adapted from the LPE package, also

available through Bioconductor.

Input:

Output:

PooledSScore <- function(afbatch = stop("No CEL files
specified"),

conditions = stop("No list of comparisons given"), SF =
NULL,SDT =

NULL, rm.outliers = TRUE,rm.mask = TRUE, rm.extra = TRUE,

digits =

NULL,verbose = FALSE,celfile.path = NULL, celfile.names =

NULL,quant=0.001) {

fname <- sampleNames(afbatch)

Identify outliers using the computeOutlier function from

the sscore package. This returns a matrix with rows

corresponding to probe and columns to chip. The value

of an element in the matrix is set to TRUE if the probe

on that chip is an outlier, otherwise it is set to FALSE.

outlier <- computeOutlier(afbatch)

Initialize various variables used in the computations. l1

and l2 represent vectors of the variances for the

probesets in the baseline and experimental conditions ,

respectively. Variances are assumed to be the same for

each probeset across chips, so that only one variance

per probeset is computed. pnames is a vector of probe

names in the same order as l1 and l2.

l1 <- l2 <- NULL
pnames <- NULL

This is the gamma proportionality constant from the

original S-Score article.

m.gamma <- 0.1

Score is a vector of S-Scores, one for each probeset.

probenames stores the probeset names in the same order as

Score.

probenames <- geneNames(afbatch)
Score <- CorrDiff <- rep(0.0,length(probenames))
writeLines("Computing S-score values")

287

Get the indices for the the PM and MM probes for lookup

pmidx <- pmindex(afbatch)
mmidx <- mmindex(afbatch)

Get the intensity values for each condition , with intens1

being the baseline and intens2 being the experimental

condition

intens1 <- t(t(intensity(afbatch[,conditions==0]))*
SF[conditions==0])

intens2 <- t(t(intensity(afbatch[,conditions==1]))*
SF[conditions==1])

Find the maximum intensity for each condition

max1 <- apply(rbind(pm(afbatch[,conditions==0]),
mm(afbatch[,conditions==0])),2,max)*SF[conditions==0]

max2 <- apply(rbind(pm(afbatch[,conditions==1]),
mm(afbatch[,conditions==1])),2,max)*SF[conditions==1]

this loops through each of the probesets on a given pair

of chips

for (i in 1:length(probenames)) {

get the PM and MM values, as well as minimum intensity

values, for the given probeset on each chip of the pair

PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

adjust each of the PM and MM intensities relative to the

minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

find the index of the probe pairs of the probeset to use

in calculations. A probe pair is used if it is not

"saturated" (i.e., the intensity is less than the maximum

- minimum) and if it is not identified as an outlier /
masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))

288

index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]

index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

find the PM-MM differences for the probeset on each of the

two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

Append the PM-MM differences for this probeset to the

running list

l1 <- rbind(l1,diff1)
l2 <- rbind(l2,diff2)

}

Using the PM-MM differences for each condition , calculate

the variance using the LPE method.

First find the mean intensity for each row (probeset)

across chips for the baseline condition

l1.means <- rowMeans(l1)

Find the quantiles for the intensities. For each probeset

having a mean intensity within a quantile, assign all

intensity values for that probeset (across chips) to the

group for that quantile

quantile.l1 <- quantile(l1.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l1.means)-1)
for (i in 2:length(quantile.l1)) {

index[l1.means > quantile.l1[i-1] & l1.means <=
quantile.l1[i]] <- i-1

}

Find the mean and variance (using trimmed mean for the

289

former and the median absolute deviation for the latter)

for each quantile, if it exists. Note that it is possible

for consecutive quantiles to have the same threshold

points, which is particularly likely in the low intensity

region where many probesets have the same intensity value.

In this case, all of the probesets are assigned to the

group for the "first" quantile of the consecutive set,

leaving the "remaining" quantiles of the consecutive set

empty. Assign these "remaining" quantiles to have NA

mean and variance.

mean.l1 <- var.l1 <- rep(0,length(quantile.l1)-1)
for (i in 1:(length(quantile.l1)-1)) {

if (length(l1[index==i,]) != 0) {
mean.l1[i] <- mean(as.vector(l1[index==i,]),
na.rm=TRUE,trim=0.125)

var.l1[i] <- mad(as.vector(l1[index==i,]),
na.rm=TRUE)

} else {
mean.l1[i] <- NA
var.l1[i] <- NA

}

}

Now address the quantiles having NA mean and variance,

using an approach based on the original LPE method. If

the mean and variance of the "previous" quantile is not

NA, then the quantile having NA mean and variance is

assigned a mean and variance that is the average of the

"previous" and "next" quantiles. Otherwise the quantile

having NA mean and variance is assigned the mean and

variance of the "next" quantile, which should not be NA at

the uppermost intensities because these are sparsely

populated.

if (any(is.na(var.l1))) {
for (i in (length(var.l1)-1):1) {

if (is.na(var.l1[i])) {
var.l1[i] <- ifelse(!is.na(var.l1[i-1]),
mean(var.l1[i+1], var.l1[i-1]),
var.l1[i+1])

}

}

}

Perform a robust regression of variance on mean squared

290

intensity to estimate the fitting parameters

mean.squared <- as.vector(mean.l1)ˆ2
lm.l1 <- lmRob(as.vector(var.l1) ˜ mean.squared)

Compute the predicted variance for each probeset based on

the robust regression model, which will be used in the

calculation of the S-Score values

alpha <- lm.l1$coefficients[1]
gamma <- lm.l1$coefficients[2]
predict.var1 <- gamma*l1ˆ2+alpha

Perform a similar computation of variance for the

experimental condition

l2.means <- rowMeans(l2)
quantile.l2 <- quantile(l2.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l2.means)-1)
for (i in 2:length(quantile.l2)) {

index[l2.means > quantile.l2[i-1] & l2.means <=
quantile.l2[i]] <- i-1

}

mean.l2 <- var.l2 <- rep(0,length(quantile.l2)-1)
for (i in 1:(length(quantile.l2)-1)) {

if (length(l2[index==i,]) != 0) {
mean.l2[i] <- mean(as.vector(l2[index==i,]),
na.rm=TRUE,trim=0.125)

var.l2[i] <- mad(as.vector(l2[index==i,]),
na.rm=TRUE)

} else {
mean.l2[i] <- NA
var.l2[i] <- NA

}

}

if (any(is.na(var.l2))) {
for (i in (length(var.l2)-1):1) {

if (is.na(var.l2[i])) {
var.l2[i] <- ifelse(!is.na(var.l2[i-1]),

mean(var.l2[i+1], var.l2[i-1]),

var.l2[i+1])

}

}

}

291

mean.squared <- as.vector(mean.l2)ˆ2
lm.l2 <- lmRob(as.vector(var.l2) ˜ mean.squared)
alpha <- lm.l2$coefficients[1]
gamma <- lm.l2$coefficients[2]
predict.var2 <- gamma*l2ˆ2+alpha

Note that the PM-MM differences are not associated with

their respective probesets for calculation of the S-Score

values. Thus, some of the S-Score calculations must be

performed again, since the variance estimates were not

available previously. This inefficiency will be corrected

in later versions.

for (i in 1:length(probenames)) {
PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

adjust each of the PM and MM intensities relative to the

minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

find the index of the probe pairs of the probeset to use

in calculations. A probe pair is used if it is not

"saturated" (i.e., the intensity is less than the maximum

- minimum) and if it is not identified as an outlier /
masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))

index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]

292

index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

find the PM-MM differences for the probeset on each of the

two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

Compute the S-Score values. This follows the formula in

the original program (and the J Mol Biol article) except

the predicted variance based on the LPE method is

substituted for the variance based on the SDT value

f.err <- (apply(diff1,1,sum)-apply(diff2,1,sum))/
sqrt(sum(predict.var1[i,]) + sum(predict.var2[i,]))

threshold or impute outlying f.err values. The cutoff of

15 was arbitrarily decided in the original version; how it

was determined is unknown

f.err[f.err > 15.0] <- 15.0
f.err[f.err < -15.0] <- -15.0

Score[i] <- sum(f.err)

estimate the variance / covariance values, for calculating
the CorrDiff

Sxx <- sum(mean(diff1)ˆ2)
Syy <- sum(mean(diff2)ˆ2)
Sxy <- sum(mean(diff1)*mean(diff2))

Sx <- 0
Sy <- 0

transform the S-Score estimate by dividing by a function

of the number of probes in the probeset

if (N > 0)
Score[i] <- Score[i] / sqrt(N) else
Score[i] <- 0

calculate the CorrDiff. CorrDiffs below the threshold of

1e-3 are imputed to be 0, which was also arbitrarily

decided in the first version

if (N>2 && ((Sxx-Sx*Sx/N)*(Syy-Sy*Sy/N) > 1.e-3))

293

CorrDiff[i] <- (Sxy-Sx*Sy/N)/sqrt((Sxx-Sx*Sx/N)*
(Syy-Sy*Sy/N)) else

CorrDiff[i] <- 0.0

}

now renormalize the S-Score values, which gives alpha

writeLines("Renormalizing S-scores")

x <- Score
Sx <- sum(x)
Sxx <- sum(x*x)

calculate the mean and standard deviation of the entire

set of S-Scores

Sstdev <- sqrt((Sxx-Sx*Sx/length(Score))/length(Score))
meanSx <- Sx/length(Score)

find the trimmed S-score values, using a cutoff of those

S-Scores within 3 standard deviations of the mean

x <- Score-meanSx;
x <- x[abs(x) < 3*Sstdev]
Sx <- sum(x)
Sxx <- sum(x*x)
num <- length(x)

calculate the trimmed mean and standard deviation. Again,

the cutoff of 0.01 was arbitrarily decided in the first

version

Sstdev <- ((Sxx-Sx*Sx/num)/num)
if (Sstdev < 0.01)

Sstdev <- 1.0 else
Sstdev <- sqrt(Sstdev)

m.alpha <- Sstdev
meanSx <- Sx/num+meanSx

perform the renormalization , using the trimmed mean and

standard deviation values

Score <- (Score-meanSx)/Sstdev

fn1 <- (fname[conditions==0])[1]
fn2 <- (fname[conditions==1])[1]

output information on these parameters if desired by the

user

if (verbose) {

294

Chip <- cdfName(afbatch)
num.probesets <- length(Score)
writeLines("S-score data. Parameter section:")

writeLines(sprintf("Probearray type: %s", Chip))

writeLines(sprintf("sample1: %s", fn1))

writeLines(sprintf("sample2: %s", fn2))

writeLines(sprintf("Alpha--error coupling factor within

a probeset: %8.3f",m.alpha))

writeLines(sprintf("Gamma--weight of multiplicative

error: %8.3f",m.gamma))

writeLines(sprintf("Number of Probesets:

%i",num.probesets))

writeLines(" ")

writeLines("Scaling Factor:")

printSF <- formatC(SF[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSF,collapse=" ")))
printSF <- formatC(SF[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSF,collapse=" ")))
writeLines("SDT background noise:")

printSDT <- formatC(SDT[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSDT,collapse=" ")))
printSDT <- formatC(SDT[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSDT,collapse=" ")))
writeLines("Max Intensity:")

printMax <- formatC(max1,digits=3,width=8, format="f")
writeLines(sprintf(" sample1 (class label 0):

%s",paste(printMax,collapse=" ")))
printMax <- formatC(max2,digits=3,width=8, format="f")
writeLines(sprintf(" sample2 (class label 1):

%s",paste(printMax,collapse=" ")))
writeLines(" ")

}

round the S-Scores and CorrDiff to the number of digits

specified by the user. For the desktop version, this was

3

if (!is.null(digits)) {

295

Score <- round(Score,digits)
CorrDiff <- round(CorrDiff,digits)

}

Score <- as.matrix(Score)
CorrDiff <- as.matrix(CorrDiff)
rownames(Score) <- rownames(CorrDiff) <- geneNames(afbatch)
colnames(Score) <- colnames(CorrDiff) <- "Class 0 vs 1"
comparison <- 1
Score.pData <- data.frame(comparison ,row.names="Class 0 vs
1")

Score.Metadata <- data.frame(labelDescription = "arbitrary
numbering",

row.names = "comparison")
ScorePheno <- new("AnnotatedDataFrame", data=Score.pData ,
varMetadata =

Score.Metadata)

put the values into an ExprSet to return. The phenoData ,

annotation , and description are the same as the AffyBatch

object

eset <- new("ExpressionSet",
exprs=Score,

phenoData=ScorePheno ,

annotation=annotation(afbatch))

return(eset)
}

end of adapted code

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

296

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the SF and SDT data, which were previously

computed using the ComputeSFandSDT function in the sscore

package. By computing these beforehand , rather than on

the fly, greatly speeds up the code. These are stored in

the same order as the original filenames , i.e. using the

297

ASCII collating sequence from the directory listing

SF <- c(5.051527, 6.725639, 6.112969, 5.55356, 6.591798,
5.515133, 5.038274, 5.457424, 5.210437, 5.213532, 4.773091,

5.170842, 4.710175, 5.675154, 4.853165, 4.231661, 5.702423,

4.860462, 5.298943, 4.589679, 4.433209, 5.372881, 4.820332,

4.853754, 4.243081, 4.640638, 4.394098, 4.354416, 4.831838,

4.471514, 5.230509, 6.470383, 4.486733, 4.493152, 5.053464,

5.441683, 5.909456, 5.4285, 5.656854, 5.397539, 5.100904,

5.460907)

Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716, 23.33307, 22.39198, 20.10130, 26.19655,
21.01957, 18.94265, 20.52486, 18.65655, 18.90886, 17.14570,

18.36193, 16.54648, 20.35357, 17.8932, 16.53504, 20.99434,

18.89438, 20.23327, 16.93843, 16.72479, 19.87543, 17.24651,

19.22224, 17.82088, 18.08628, 16.85401, 19.35906, 20.43274,

20.28572, 19.90849, 25.56167, 17.58817, 19.47506, 22.84737,

23.01953, 24.11946, 20.12949, 22.82104, 21.20344, 19.66584,

20.07275)

SDT <- SDT[c(16:42,1:15)]

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the dataseta. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

298

group and across rows by experiment (or chip group).

spike.conc <- spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",

299

"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]

This is a list of the filenames of the CEL files for this

analysis. A separate variable is used to facilitate

subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]

300

small.SDT <- SDT[index]

construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

compute the S-Scores

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

ranking <- rank(abs.score ,ties.method="min")

reverse the rankings, as small S-Scores indicate higher

probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

create a data frame with the probeset (gene) names, rank,

and score in order of increasing S-Scores

results <- data.frame(name=gn[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large], expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("PooledSScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

301

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

end of Affymetrix U133A analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",

302

"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389, 16.90462, 18.58895, 17.57569, 18.10556,
17.44596, 19.05938, 19.01886, 15.19518, 17.07320, 17.70451,

15.51397, 15.14165, 15.71093, 18.92873, 17.59843, 17.74718,

16.96576, 19.88173, 19.42636, 14.22665, 14.16075, 11.39345,

10.92027, 15.86836, 13.19469, 15.66899, 14.32828, 11.25717,

11.50788, 13.16047, 16.61321, 13.50162, 14.13247, 12.45534,

13.73491, 13.59590, 13.24143, 14.58290, 13.75632, 16.37373,

16.38092, 13.26664, 14.51221, 15.94495, 14.01617, 13.29383,

17.34152, 12.74790, 13.66622, 17.21439, 12.42648, 13.16133,

13.87641, 18.97458, 14.38793, 14.25340, 17.20059, 15.56408)

SDT <- c(151.8202, 164.8418, 188.9549, 179.0177, 179.3972,
169.2196, 188.5424, 185.0203, 152.1097, 198.8227, 176.3480,

210.3864, 155.7234, 163.5185, 195.6335, 187.2507, 184.7659,

186.7471, 214.4948, 204.1949, 207.5883, 190.5452, 163.2673,

158.7323, 232.9045, 188.8372, 220.6606, 205.0497, 162.8883,

181.9430, 185.1602, 224.2842, 192.2052, 206.1543, 179.4869,

202.1945, 193.9658, 196.5336, 192.9138, 136.5619, 227.4531,

205.0031, 172.1437, 179.7536, 220.7491, 181.4627, 164.0342,

203.9272, 185.2207, 168.6197, 216.8669, 164.1328, 173.7930,

185.0183, 254.3695, 177.5792, 181.8116, 215.0447, 199.3295)

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,

303

0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though not

originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])

304

small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("PooledSScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("PooledSScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))

305

}

end of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution data

set

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

#

##

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930, 9.969553, 10.633744, 5.498765, 5.835703,
7.732482, 11.598326, 10.133451, 6.454634, 5.355627, 7.001940,

8.849713, 7.280378, 12.280841, 7.331615, 19.023698,

7.380893, 18.712581, 7.834392, 6.895325, 7.254859, 21.076266,

10.342030, 7.940419, 15.479335, 14.88527)

SDT <- c(133.89655, 101.82649, 114.87093, 37.85469, 48.64600,
86.43693, 143.22880, 111.54653, 48.30689, 31.88864, 49.17773,

91.11646, 43.77653, 122.86836, 52.00780, 172.02050,

50.62660, 169.93095, 46.71437, 48.85516, 56.43905, 191.73461,

66.32453, 53.81287, 146.23999, 144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

306

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

307

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("PooledSScoreFoldCountGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankGDilution.csv",
sep="")

308

results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of GeneLogic Dilution Analysis

309

A.6 RMA Analysis of Spike-In Datasets

##

#

Program Name: RMAAnalysis.R

Author: Richard Kennedy

Date: 12/21/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the RMA algorithm as the

expression summary measure.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the RMA expression

summary computed. The RMA values are then compared using

multiple t-tests to give measures of significance for

differential gene expression. One data file is created

showing the p-values of the t-tests for all of the

probesets on the chip, in increasing order (or decreasing

order of significance); one data file gives the number of

spike-in probes (from both the original Affymetrix list

and the expanded list of McGee et al.) that are highly

ranked; and one data file shows the actual rank based on

the p-values versus the expected rank based on the

concentration fold-change from the spike-in data.

Although similar, separate computation routines are used

for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

Square, and GeneLogic Dilution datasets due to slight

differences in the analyses and for better readability.

#

##

Load the affy library. This is a standard library

available through Bioconductor , which implements the

functions for reading CEL files

library(affy)

Load the multtest library. This is a standard library

available through Bioconductor , which implements the

multiple t-test among other functions.

library(multtest)

310

This function implements a pooled degrees of freedom

function, which computes a composite degrees of freedom

for a two-sample comparison based on the relative size

of each of the two samples.

Input: exprs - a matrix containing the expression values

compare - a vector denoting the condition of each

column in the exprs matrix, with 0 denoting

the baseline condition and 1 denoting the

experimental condition

Output: a vector containing the pooled degrees of freedom

for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

End of declared functions

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

311

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the dataseta. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",

312

"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",

313

"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

This is a list of the filenames of the CEL files for this

analysis. A separate variable is used to facilitate

subanalyses if necessary. For RMA, the normalization will

be done over all chips, as this seems to be the commonly

accepted practice.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)

314

rma.exprs <- exprs(eset)

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- rma.exprs[,index]

construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

ranking <- rank(abs.score ,ties.method="min")

reverse the rankings, as small p-values indicate higher

probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

create a data frame with the probeset (gene) names, rank,

and score in order of increasing S-Scores

results <- data.frame(name=geneNames(cel)[index],rank=
ranking, score=abs.score[index])

outfile <- paste("RMAFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

num.zero <- sum(abs.score==0)

315

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
max(num.small , num.zero)],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
max(num.large , num.zero)],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("RMAFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike , expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U133 Analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",

316

"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

317

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though

not originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==1],rma.exprs[, category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")

318

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- geneNames(cel)[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("RMAFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RMAFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)), expectedrank=
fold.rank[spike.group[spike.names]], actualrank=

ranking[spike.names])

outfile <- paste("RMAFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution data

set

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

#

##

319

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames

320

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==9],rma.exprs[,
category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("RMAFoldOverallGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))

321

large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("RMAFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of GeneLogic Dilution Analysis

322

A.7 RVM Analysis of Spike-In Datasets

##

#

Program Name: RMAAnalysis.R

Author: Richard Kennedy

Date: 12/21/2007
#

Purpose: This program performs an automated analysis on

several sets of data using the RMA algorithm as the

expression summary measure.

#

Description: This program analyzes three separate

datasets, the Affymetrix U95 and U133 Latin Square and the

GeneLogic Dilution data. For each dataset, the

appropriate data files are read and the RMA expression

summary computed. The RMA values are then compared using

multiple t-tests to give measures of significance for

differential gene expression. One data file is created

showing the p-values of the t-tests for all of the

probesets on the chip, in increasing order (or decreasing

order of significance); one data file gives the number of

spike-in probes (from both the original Affymetrix list

and the expanded list of McGee et al.) that are highly

ranked; and one data file shows the actual rank based on

the p-values versus the expected rank based on the

concentration fold-change from the spike-in data.

Although similar, separate computation routines are used

for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

Square, and GeneLogic Dilution datasets due to slight

differences in the analyses and for better readability.

#

##

Load the affy library. This is a standard library

available through Bioconductor , which implements the

functions for reading CEL files

library(affy)

Load the nlme library. This is a standard library

available through CRAN, which implements the glsfit

function for generalized least squares

library(nlme)

323

This function implements the matrix square root.

Input: x - a p x p dimensional matrix for which the

square root is desired.

Output: A p x p dimensional matrix representing

the matrix square root of the input.

msqrt <- function(x) {

Find the eigen decomposition of the matrix

eig <- eigen(x)
eigvec <- eig$vectors

The square root of the matrix is found by creating

a diagonal matrix of the square roots of the eigenvalues ,

then pre- and post- multiplying this by the eigenvectors

result <- eigvec %*% diag(sqrt(eig$values)) %*% t(eigvec)

return(result)
}

This function implements the logaritm of the multivariate

gamma function. The logarithm of the multivariate gamma

function, rather than the function value itself, is

returned due to the magnitude of the numbers involved.

Formulae for the multivariate gamma function are given in

a number of sources, e.g., Muirhead pp. 61-62.

Input: p - rank of the matrices over whose set the

multivariate gamma integral is being evaluated

a - degrees of freedom

Output: A scalar containing the value of the multivariate

gamma function for the specified matrix rank

mvlgamma <- function(p,a) {
result <- (p*(p-1)/4)*log(pi) + sum(lgamma(a-((1:p)-1)/2))
return(result)

}

This function implements the logarithm of the singular

generalized multivariate beta type II density for a

specified observation point. If the density cannot be

computed, an infinite value is returned so that this point

will be avoided in the minimization process. The

logarithm is used again due to the magnitude of the

numbers involved. The distribution function used is given

in a variety of sources, e.g., Srivastava (2003), p. 1553.

Input: x - a p x p matrix representing the observed value

from the multivariate beta distribution

324

pval - size of the observed value matrix, which is

assumed to be singular

n1, n2 - degrees of freedom (for the "numerator"

and "denominator" matrices respectively , if

considering the multivariate beta as a product

of two Wishart distributions)

omega - the scale parameter matrix

Output: A scalar containing the value of the generalized

multivariate beta type II density at the

observed value x

ldmvbeta <- function(x,pval,n1,n2,omega) {

Obtain the spectral decomposition of x

x.eigen <- eigen(x,only.values=TRUE)

Since the determinant of x does not exist, the singular

multivariate beta type II distribution uses the product

of the first n1 eigenvalues , assuming rank(x) = n1

determ <- prod(x.eigen$values[1:min(n1,pval)])

If the parameter values are not valid for calculating the

logarithms in the density - which occurs if the product of

the first n1 eigenvalues is negative or the determinant of

I + Omega * x is negative - then return infinity, the
largest possible value. This will keep the point from

being used in the minimization process

if ((determ < 0) | (det(diag(pval) + omega %*% x) < 0)) {
result <- Inf

} else {

Otherwise , return the value of the density at the

specified point

result <- ((n1*n1 - n1*pval)/2) * log(pi) +
mvlgamma(pval,(n1+n2)/2) - mvlgamma(n1,n1/2) -
mvlgamma(pval,n2/2) + (n1/2) * log(det(omega)) +
((n1-pval-1)/2)*log(determ) - ((n1+n2)/2) *
log(det(diag(pval) + omega %*% x))

}

return(result)
}

This function implements the logarithm of the multivariate

beta likelihood , which computes the likelihood of a series

of observations , with each observation having a common

multivariate beta distribution.

325

Input: x - a vector of the parameters to be optimized.

The first element is the degrees of freedom

for the inverse Wishart prior and the second

and third elements are used for constructing

the matrix parameter for the prior. The

second element is used for the diagonal

element of the compound symmetric matrix

parameter and the third is used for the off-

diagonal elements.

pval - the dimension p of a single p x p

observation matrix

mdf - the degrees of freedom for the comparison

being conducted , i.e. n-k

msigmahat - a matrix of observations for which the

likelihood is desired. Each row is a single

observation matrix, which has been vectorized

from a p x p matrix to a pˆ2 x 1 vector. Thus

the number of rows in x also equals the number

of observations.

const - a vector of constants passed to the

function. This is not used in the current

implementation , but may be used in future

versions to fix certain parameters to be

constants rather than optimized.

Output:

mvbetalik <- function(x,pval,mdf,msigmahat ,const) {

first make a copy of the scalar parameter of the prior,

since R uses a form of passing by reference

esta <- x[1]

Now create the compound symmetric matrix for the matrix

parameter of the prior. Copy the second element of the

parameter vector to the diagonal elements of the matrix,

and the third element to the off-diagonal elements.

estb <- diag(x[2],pval,pval)
estb[upper.tri(estb)] <- x[3]
estb[lower.tri(estb)] <- x[3]

Check whether the parameters are valid for the

multivariate beta density, with the prior being

full rank. The following three conditions must be met:

(1) the degrees of freedom esta for the prior must be

greater than or equal to the dimension of the matrix

parameter for the prior, which is equal to pval.

326

(2) The determinant of the matrix parameter must be

nonzero, signifying full rank.

(3) The eigenvalues of the matrix parameter must be

positive, signifying positive definiteness.

If the parameters are not valid, the likelihood is set

to infinity so that these parameters will not be

considered minimized.

if ((esta < pval) | (det(estb) == 0) |
any(eigen(estb,only.values=TRUE)$values <= 0)) {
result <- Inf

} else {

The parameters are valid. First, find the matrix square

root of the matrix parameter for use in later

calculations.

estbhalf <- msqrt(estb)

Iterate over all observations to find the likelihood with

the current values of the parameters being optimized.

Since the log likelihood is used, the total likelihood is

the sum of the likelihoods for the individual obserations.

estlik <- rep(0,nrow(msigmahat))
for (i in 1:nrow(msigmahat)) {

Get the value of the current observation and compute

the likelihood of this one observation using the current

value of the parameters

onesigma <- matrix(data=msigmahat[i,],ncol=pval,
nrow=pval)

estlik[i] <- ldmvbeta(x=(esta+pval-1)*estbhalf %*%
onesigma %*% t(estbhalf),m=pval,n1=mdf,n2=
esta+pval-1, omega=diag(mdf/(esta+pval-1),pval,
pval))

Note that it is (a+p-1) * sqrt(B) * Sn * sqrt(B) which
follows the multivariate F distribution , while the data

msigmahat are for Sn only. The likelihood for Sn can be

obtained by multiplying by the Jacobian

det((a+p-1) * B) ˆ ((p+1)/2)
or by adding ((p+1)/2) * log(det(a+p-1) * B) to the log
likelihood. This is _not_ described in the Wright and
Simon article but is contained in their code for the

univariate RVM method.

estlik[i] <- estlik[i] + (pval+1)/2 *
log(det((esta+pval-1)* estb))

327

}

If any of the individual likelihoods is infinite (i.e. not

valid), then return a result of infinity. Otherwise the

total likelihood is the sum of the individual likelihoods

if (all(is.finite(estlik))) {
result <- sum(-estlik)

} else {
result <- Inf

}

}

return(result)
}

End of declared functions

##

#

This performs an analysis of the Affymetrix U133 spike-in

data set

#

##

These are the filenames , which are stored in order of the

ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

328

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

These are the names of the spiked-in clones for the

original 42 probes reported by Affymetrix. These are in

the order given in the Affymetrix descriptor file included

with the dataseta. Note that there are 3 clones in each

group of clones spiked in at the same concentration for a

given experiment (see the Affymetrix descriptor file for

additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

329

These are the concentration data for the clones in each

experiment. These are ordered across columns by clone

group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

These are the group numbers for each of the spiked-in

clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

These are the names of the spiked-in clones for the

expanded set of 64 probes reported by McGee et al. These

are in the order given in their article and the

supplemental files. Note that there are no longer 3

clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",

330

"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

These are the group numbers for each of the spiked-in

clones given in the expanded.spike variable. Positive

numbers denote the original 42 clones reported by

Affymetrix , negative numbers the supplemental 22 clones

given by McGee et al., to facilitate separate analyses if

necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) to which

each of the chips belongs

category <- rep(1:14,each=3)

These are the categories (experiment numbers) for the

comparisons. By default, the baseline condition will be

experiment 1. All experiments in the list will be

compared to the baseline in turn

cat.names <- unique(category[category!=1])

This is a list of the filenames of the CEL files for this

analysis. A separate variable is used to facilitate

subanalyses if necessary.

small.fnames <- fnames

These are the number of probes in the expanded and

original list of spiked-in clones.

num.large <- 64
num.small <- 42

loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

This is a list of the filenames of the CEL files for this

331

analysis. A separate variable is used to facilitate

subanalyses if necessary.

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

get the expression summary data for the comparison

data <- ReadAffy(filenames=small.fnames)

construct the comparison vector, used in building the

design matrix for the glsfit function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

Initialize vectors that will be used for storing the RVM

chi-square and p values

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

For the Affymetrix U133 chip, the vast majority of the

probesets contain 11 probe pairs each. Obtain this list

of probesets and use it for the estimation of the

parameters of the prior.

p <- 11
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]

The list of probesets is a vector of lists, with each list

containing the probe IDs within the probeset. Convert

this into a vector of probe IDs for construction of the

linear model and model fitting.

upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)

Initialize matrices for storing the residual sums of

squares from the full (ss-hat) and reduced (ss-hat-hat)

models

ssfull <- matrix(data=0,nrow=length(pmidx), ncol= p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx), ncol= p*p)

Get the intensity data and log2 transform it

intens <- log2(intensity(data))

332

Loop through each probeset in the list of size 11

probesets

for (j in 1:length(pmidx)) {

Get the list of probe IDs for the current probeset

oneset <- pmidx[j]
uoneset <- unlist(oneset)

Get the corresponding intensities and vectorize them

for model fitting

oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)

Construct the design matrix with designations for

treatment group (0 for baseline, 1 for experimental ,

derived from the compare vector), chip (numbered 1

through the number of chips), probeset (which is set to 1

since the fitting is done separately for each probeset),

and probe (numbered 1 through 11).

treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare), each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))

Combine the intensity data and design matrix into a

single data frame for model fitting

affydata <- data.frame(y,treat,chip,probeset, probe)

Fit the full model with treatment and probe effects

glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

Calculate the residual sums of squares for the current

probeset, which is vectorized and stored as a row in the

ssfull matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

333

ssfull[j,] <- as.vector(ss)

Fit the reduced model with only probe effects

glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

Calculate the residual sums of squares, which is

vectorized and stored as a row in the ssreduced matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

Calculate the residual degrees of freedom

resdf <- (length(compare) - length(unique(compare)))

Estimate the error (sigma) matrix, which is the residual

sums of squares divided by the residual degrees of freedom

using the full model

sigmahat <- ssfull/resdf

Calculate the average of the estimates for sigma, which

will be used as the starting value for optimizing the

matrix parameter of the prior

meansigma <- colMeans(sigmahat)

Optimize using the optim function to obtain maximum

likelihood estimates of the parameters

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

Give warning messages if the optimization algorithm did

not converge, but proceed with the likelihood ratio test

if (optimresult$convergence !=0) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

334

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

Get the maximum likelihood estimates for the parameters of

the prior

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]

Compute the inverse of the matrix parameter , which will be

used to adjust the residual sums of squares in calculating

the value of the likelihood ratio test

bvec <- as.vector(solve(bmat))

Initialize the vectors for showing the the ratio of

determinants for the full and reduced models (lambda),

the chi-square value (testval), and the p-value (score)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0, -(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

Write out the results for this probeset for later use

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

335

names(score) <- gn

abs.score <- score
all.lambda <- lambda
all.testval <- testval

Repeat the calculations for the probesets with 20 probes

and the probeset with 16 probes. In these cases, there

are not enough probesets to obtain an accurate estimate of

the prior through fitting the multivariate beta

distribution. However, assuming the probesets with 11

probes are representative of the remaining probes, the

parameter estimates from the previous step can be used in

constructing the estimates of the prior for the probesets

with 20 and 16 probes

for (p in c(20,16)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol=p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,

336

method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")

337

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

rank the scores in decreasing order, with ties being

assigned rank equal to the smallest rank of the group of

ties

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)

create a data frame with the probeset (gene) names, rank,

and score in order of increasing p-values

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

count the number of spike-in probes ranked in the top 42

(for the original list) or top 64 (for the expanded list)

of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("RVMFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

create a data frame with the expected rank (based on fold

change of the spike-in concentration) of the expanded list

of spike-in probesets to compare to the actual rank (based

on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU133.csv",sep="")

338

results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U133 Analysis

##

#

This performs an analysis of the Affymetrix U95 spike-in

data set

#

As this analysis is similar to the U133 analysis, only

differences between the analyses will be highlighted.

#

##

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",

339

"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

These are the categories (experiment numbers) for the

comparisons. Note that one chip in Experiment 3 of the

U95 dataset did not hybridize properly, so that there are

only 2 chips in this comparison rather than 3. Though

not originally intended, this allows the assessment of the

algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

340

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

For the Affymetrix U95 chip, the vast majority of

probesets have 16 probes. Use the list of probesets

having 16 probes for fitting the multivariate beta

distribution and obtaining maximum likelihood estimates

of the parameters for the prior

p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,

341

method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull

342

sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda
all.testval <- testval

For the Affymetrix U95 chip, the number of probesets with

13, 14, 15, and 20 probes per probeset are generally

sufficient for model fitting of the intensities , though

not sufficiently large for estimating the values of the

prior. Use the values of the prior from the previous step

to obtain the likelihood ratio test statistics for these

probesets.

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)

343

ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset , probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

344

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU95.csv",sep="")

345

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of Affymetrix U95 analysis

##

#

This performs an analysis on the GeneLogic Dilution data

set

#

As this analysis is similar to the U133 and U95 analyses,

only differences between the analyses will be highlighted.

#

##

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

346

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

These are the categories (experiment numbers) for the

comparisons. Note that only experiments 9 through 12 and

experiment 14 have a sufficient number of chips for

comparisons using all algorithms. Thus, the baseline

condition will be experiment 9. All experiments in the

list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL
p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)

347

pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])

348

optimresult <- optim(par=startvals ,fn=mvbetalik ,
method="Nelder-Mead",pval=p,mdf=resdf,msigmahat=

sigmahat ,const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda

349

all.testval <- testval

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

350

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],

351

score=abs.score[index])
outfile <- paste("RVMFoldOverallGLDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountGLDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankGLDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

End of GeneLogic Dilution Analysis

Appendix B
Quality Assessment Plots for All Datasets

352

353

● ● ● ● ●

●
●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
10

30
50

70

Chip 92466hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(a)

● ●
●

● ●
●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5
0

20
60

10
0

14
0

Chip 92491hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(b)

●

●
●

●
●

●

●
●

●
●

−1.5 −0.5 0.5 1.0 1.5

50
10

0
15

0

Chip 92492hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(c)

●

●

●

●
● ●

●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
20

40
60

80
12

0

Chip 92493hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(d)

Figure B.1: GeneLogic Dilution Quality for Experiments 1–4. Plots of the computed MAS5
intensity values versus theoretical normal quantiles for a subset of chips. All intensity values are
scaled to give a median intensity value of 100 for each chip.

354

●

●
● ●

●
●

●
●

●

●

−1.5 −0.5 0.5 1.0 1.5

50
15

0
25

0

Chip 92494hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(e)

●

●
●

●

●
●

●

●

● ●

−1.5 −0.5 0.5 1.0 1.5
50

10
0

15
0

20
0

Chip 92495hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(f)

●

●

●
● ●

●

● ●

●
●

−1.5 −0.5 0.5 1.0 1.5

10
0

30
0

50
0

70
0

Chip 92496hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(g)

●

●
●

●
●

●

●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

50
0

10
00

15
00

20
00

Chip 92453hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(h)

Figure B.1: GeneLogic Dilution Quality for Experiments 5–8.

355

●
●

●

● ●

●

●

●
● ●

−1.5 −0.5 0.5 1.0 1.5

20
0

60
0

10
00

Chip 92497hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(i)

●
●

●

●
●

●

●

● ●
●

−1.5 −0.5 0.5 1.0 1.5
10

00
20

00
30

00

Chip 92454hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(j)

●
●

●

●

●

●
●

● ● ●

−1.5 −0.5 0.5 1.0 1.5

10
00

15
00

20
00

25
00

Chip 92455hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(k)

●

●

● ●

●
●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5

10
00

20
00

30
00

40
00

Chip 92498hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(l)

Figure B.1: GeneLogic Dilution Quality for Experiments 9–12.

356

● ● ●

●
● ●

●

●

●
●

−1.5 −0.5 0.5 1.0 1.5

10
00

20
00

30
00

40
00

Chip 92456hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(m)

● ●
●

●
● ●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5
50

0
15

00
25

00
35

00

Chip 92457hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(n)

●
● ●

●
●

●
●

● ●

●

−1.5 −0.5 0.5 1.0 1.5

10
00

30
00

50
00

Chip 92499hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(o)

●

●
●

●

● ●
●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

20
00

40
00

60
00

Chip 92458hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(p)

Figure B.1: GeneLogic Dilution Quality for Experiments 13–16.

357

●

● ●

●

● ● ●

●

● ●

−1.5 −0.5 0.5 1.0 1.5

20
00

40
00

60
00

Chip 92459hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(q)

●
●

●

●

● ●

●

● ●

●

−1.5 −0.5 0.5 1.0 1.5
20

00
40

00
60

00

Chip 92500hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(r)

●

●

●

●

● ● ●

● ●

●

−1.5 −0.5 0.5 1.0 1.5

40
00

60
00

80
00

Chip 92460hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(s)

● ●

●

●

●
●

●

● ●
●

−1.5 −0.5 0.5 1.0 1.5

20
00

40
00

60
00

Chip 92461hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(t)

Figure B.1: GeneLogic Dilution Quality for Experiments 17–20.

358

●
●

●

●
●

●
●

●

●

●

−1.5 −0.5 0.5 1.0 1.5

40
00

80
00

12
00

0

Chip 92501hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(u)

●
●

●

● ●

●

●

●

●
●

−1.5 −0.5 0.5 1.0 1.5
30

00
50

00
70

00
90

00

Chip 92462hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(v)

●
●

●

●

●
●

●
●

●
●

−1.5 −0.5 0.5 1.0 1.5

30
00

50
00

70
00

90
00

Chip 92463hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(w)

●

●

● ●

● ●

●
●

●

●

−1.5 −0.5 0.5 1.0 1.5

60
00

80
00

10
00

0

Chip 92464hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(x)

Figure B.1: GeneLogic Dilution Quality for Experiments 21–24.

359

●

●

● ●

● ●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5

60
00

80
00

10
00

0
13

00
0

Chip 92465hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(y)

●

●

●
●

●

●

● ●

●

●

−1.5 −0.5 0.5 1.0 1.5

10
00

0
14

00
0

18
00

0

Chip 92503hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(z)

Figure B.1: GeneLogic Dilution Quality for Experiments 25–26.

360

●●●●●●●
●●

●

●

●

●
●

●●●●●●●
●●

●

●

●

●

●

●●●●●●●
●●

●

●

●

●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●●●●●
●●

●●

●

●

●

●

●●●●●●
●●
●●

●

●

●

●

●●●●●●
●●

●
●

●

●

●

●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 2

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(b)

●●●●●
●

●

●
●

● ●

●●●●●●●●
●

●

●
●

●
●

●●●

0 100 200 300 400 500

0
10

00
0

25
00

0

Experiment 3

Concentration

In
te

ns
ity

●

●

Replicate 1
Replicate 2

(c)

●●●●
●

●

●

●

●

● ●

●●●●●●
●●
●

●

●

●

●
●

●●●●●●
●●

●

●

●

●

●

●

●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.

361

●●●
●●

●

●

●

●

●

●●●●●●●
●●

●

●

●

●

●

●●●●●●●
●●

●

●

●

●

●

●●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 5

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(e)

●●●
●

●

●

●

●

●

●●●●●●●
●
●

●

●

●

●

●

●●●●●●●
●
●

●

●

●

●

●

●●●●●

0 200 400 600 800 1000
0

10
00

0
25

00
0

Experiment 6

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(f)

●●
●

●

●

●

●

●

●●●●●●●
●
●

●

●

●

●

●

●●●●●●
●●

●
●

●

●

●

●

●●●●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 7

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(g)

●
●●

●

● ●

●

●●●●
●●●●
●●

●

●
●

●

●●●●
●●●
●
●●

●

●
●

●

●●●●
●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 8

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(h)

Figure B.2: Affymetrix U95 Latin Square Quality 5–8.

362

●
●

●
●

●

●

●●●●
●●●●

●
●

●
●

● ●

●●●●
●

●
●●

●

●

● ●

●

●

●●●●●
●●●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 9

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(i)

●

●
● ●

●

●●●●●
●

●
●●

●

●
●

●

●

●●●●●
●

●

●●

●

●
●

●

●

●●●●●
●

●

●●

0 200 400 600 800 1000
0

10
00

0
25

00
0

Experiment 10

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(j)

●

●

●

●

●●●●●●

●
●

●●

●

●

●

●

●●●●●●

●

●

●●

●

●
●

●

●●●●●●
●

●●
●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 11

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(k)

●

●

●

●●●●●●
●

●

●

● ●

●

●

●

●●●●●●
●

●

●

●
●

●

●

●

●●●●●●
●

●

●

●
●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 12

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(l)

Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 9-12.

363

●

●

●●●●●●●
●

●

●
●

●

●

●

●●●●●●●
●

●

●
●

●

●

●

●●●●●●●
●

●

●
●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 13

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(m)

●

●

●●●●●●●
●

●

●

● ●

●

●

●●●●●●●
●

●

●
●

●

●

●

●●●●●●●
●

●

●

●
●

0 200 400 600 800 1000
0

10
00

0
25

00
0

Experiment 14

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(n)

●

●

●●●●●●●
●

●

●

●
●

●

●

●●●●●●●
●

●

●
●

●

●

●

●●●●●●●
●

●

●
●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 15

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(o)

●

●

●●●●●●●
●

●

●
●

●

●

●

●●●●●●●
●

●

●●

●

●

●

●●●●●●●
●

●

●
●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 16

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(p)

Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 13–16.

364

●

●●●●●●●●

●

●

●
●

●

●

●●●●●●●●

●

●
●●

●

●

●●●●●●●●

●

●

●

●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 17

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(q)

●

●●●●●●●●

●

●

●●

●

●

●●●●●●●●

●

●

●
●

●

●

●●●●●●●●

●

●

●●

●

0 200 400 600 800 1000
0

10
00

0
25

00
0

Experiment 18

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(r)

●

●●●●●●●●

●

●

●
●

●

●

●●●●●●●●

●

●
●

●

●

●

●●●●●●●●

●

●

●●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 19

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(s)

●

●●●●●●●●

●

●
●●

●

●

●●●●●●●●

●

●

●
●

●

●

●●●●●●●●

●

●

●●

●

0 200 400 600 800 1000

0
10

00
0

25
00

0

Experiment 20

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(t)

Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 17–20.

365

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●
●●●

●

●
●

●●●

●

●
●

●●●
●
●

●

●●

● ●●
●

●
●

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●●

●●

●

●
●

●
●
●

●

●
●

●●
●

●●

●

●●

● ●●

●

●
●

●
●

●●●
●

●●●●
●

●●●●●●●●●
●●●●

●
●●●●●●●

●

●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●●
●

●

●

●

●●

● ●●
●

●
●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●

●

●●●
●

●●●●

●

●●●
●●●●●●

●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●
●●

●●●●●●●●●

●
●

● ●●
●

●●

●

●

●●●
●

●●●●

●

●●●●●●●●●
●
●●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●
●
●

●●●●●●●●●

●
●

● ●●●

●●

●

●

●●●
●

●●●●

●

●●●
●●●●●●

●●●●
●

●●●●●●●

●

●

●

●●●●●●●●●

●

●
●

●●●●●●●●●

●
●

● ●●●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 2

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(b)

●

●

●●●

●

●●●●

●

●●●
●

●●
●●

●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●
●

●

●●●

●

●●●●

●

●●●●●●
●●

●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●

●●
●

●

●●●

●

●●●●

●

●●●●
●●

●●
●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●●●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 3

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(c)

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●

●

●

●●
●

●

●●●●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.

366

●

●

●●
●

●

●●●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●●●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 5

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(e)

●

●●●

●

●

●●
●●●●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●
●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500
0

20
00

40
00

60
00

Experiment 6

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(f)

●

●●●

●

●●●
●●

●●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●
●●

●●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●
●●

●●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 7

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(g)

●●●●

●

●
●●

● ●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

● ●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 8

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(h)

Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 5–8.

367

●●●●

●

●
●●

● ●

●
●

●

●
●

●

●

●●

●

●●

●

●

●●●

● ●

●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●

●

●
●●

● ●

●
●

●

●
●

●

●

●●

●

●●

●

●

●●●

●
●

●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●●

● ●

●
●

●

●
●

●

●

●●

●

●●

●

●

●●●

●
●

●
●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 9

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(i)

●●
● ●

●●
●●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
● ●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●

● ●

●●
●●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●

0 100 200 300 400 500
0

20
00

40
00

60
00

Experiment 10

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(j)

●●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●
●●●

●
●●●●
●●●●●●●●●●
●●●●●●

●●
●●●●●
●

●●

● ●

●●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●
●●●

●
●●●●
●●●●●●●●●●
●●●●●●

●●
●●●●●
●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●●●●
●
●●●●
●●
●●●●●●●●
●●●●●●

●●
●●●●●

●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 11

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(k)

●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●
●
●
●

●
●
●●
●●●
●●

●●●
●●●
●●●
●
●
●

●●
●●●●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●

●
●
●

●
●●
●
●●●
●●

●●●
●●●

●●●
●
●
●

●●
●●●●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●
●
●
●

●
●●
●●
●●
●●

●●● ●●●

●●●
●
●
●

●●
●
●●
●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 12

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(l)

Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 9–12.

368

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●
●
●

●

●
●●
●●

●

●●

●●●

●
●
●
●●●
●
●
●

●●

●
●
●●

●●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●
●
●

●

●
●●
●●
●

●●

●●●

●
●
●
●
●●
●

●

●

●●

●●●
●

●●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●
●
●

●

●
●●●
●
●

●●

●●●

●
●
●
●
●●
●

●

●

●●

●●
●●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 13

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(m)

●●

●

●●●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●●

●

●●

●●●

●

●
●

●
●
●

●

●

●

●●

●
●
●
●

●
●

●●

●

●●●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●
●●

●

●●

●●●

●

●

●

●
●
●

●

●

●

●●

● ●
●
●

●●

●●

●

●●●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●
●●
●

●●

●●●

●

●
●

●●●

●

●

●

●●

● ●
●
●

●●

0 100 200 300 400 500

0
20

00
40

00
60

00

Experiment 14

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(n)

Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 13–14.

Appendix C
Annotation Data for Omitted Probesets

369

370

Pr
ob

es
et

N
um

be
r

G
en

e
N

am
e

of
Pr

ob
es

Sy
m

bo
l

G
en

B
an

k
ID

L
oc

us
L

in
k

ID
A

nn
ot

at
io

n
10

89
i

at
6

no
ne

M
64

93
6

no
ne

no
ne

11
52

i
at

6
C

G
B

J0
01

17
10

82
ch

or
io

ni
c

go
na

do
tr

op
in

,b
et

a
po

ly
pe

pt
id

e
14

04
r

at
6

C
C

L
5

M
21

12
1

63
52

ch
em

ok
in

e
(C

-C
m

ot
if

)l
ig

an
d

5
15

26
i

at
6

FG
F8

U
47

01
1

22
53

fib
ro

bl
as

tg
ro

w
th

fa
ct

or
8

(a
nd

ro
ge

n-
in

du
ce

d)
16

62
r

at
6

no
ne

H
G

22
61

-H
T

23
51

no
ne

no
ne

16
72

f
at

6
R

B
1

L
41

91
3

59
25

re
tin

ob
la

st
om

a
1

(i
nc

lu
di

ng
os

te
os

ar
co

m
a)

19
98

i
at

6
B

A
X

U
19

59
9

58
1

B
C

L
2-

as
so

ci
at

ed
X

pr
ot

ei
n

20
70

i
at

6
M

A
PK

8
L

26
31

8
55

99
m

ito
ge

n-
ac

tiv
at

ed
pr

ot
ei

n
ki

na
se

8
19

44
f

at
7

M
L

H
1

A
F0

01
35

9
42

92
m

ut
L

ho
m

ol
og

1,
co

lo
n

ca
nc

er
,

no
np

ol
yp

os
is

ty
pe

2
(E

.c
ol

i)
20

41
i

at
7

A
B

L
1

M
14

75
2

25
v-

ab
lA

be
ls

on
m

ur
in

e
le

uk
em

ia
vi

ra
l

on
co

ge
ne

ho
m

ol
og

1
79

6
i

at
7

C
D

K
L

1
X

66
35

8
88

14
cy

cl
in

-d
ep

en
de

nt
ki

na
se

-l
ik

e
1

(C
D

C
2-

re
la

te
d

ki
na

se
)

12
4

i
at

8
C

D
K

10
X

78
34

2
85

58
cy

cl
in

-d
ep

en
de

nt
ki

na
se

(C
D

C
2-

lik
e)

10
32

6
i

at
8

no
ne

H
G

18
00

-H
T

18
23

no
ne

no
ne

72
9

i
at

8
no

ne
H

G
21

47
-H

T
22

17
no

ne
no

ne
97

0
r

at
8

U
SP

9X
X

98
29

6
82

39
ub

iq
ui

tin
sp

ec
ifi

c
pe

pt
id

as
e

9,
X

-l
in

ke
d

11
4

r
at

9
M

A
PT

X
14

47
4

41
37

m
ic

ro
tu

bu
le

-a
ss

oc
ia

te
d

pr
ot

ei
n

ta
u

12
80

i
at

9
no

ne
H

G
27

02
-H

T
27

98
no

ne
no

ne
21

9
i

at
9

M
A

P2
S7

67
56

41
33

m
ic

ro
tu

bu
le

-a
ss

oc
ia

te
d

pr
ot

ei
n

2
85

0
r

at
9

IR
S1

S6
25

39
36

67
in

su
lin

re
ce

pt
or

su
bs

tr
at

e
1

41
1

i
at

10
IF

IT
M

2
X

57
35

1
10

58
1

in
te

rf
er

on
in

du
ce

d
tr

an
sm

em
br

an
e

pr
ot

ei
n

2
(1

-8
D

)

Table C.1: Probesets Omitted from the Affymetrix U95 Latin Square and GeneLogic Dilution
Analysis

371

Pr
ob

es
et

N
um

be
r

G
en

e
N

am
e

of
Pr

ob
es

Sy
m

bo
l

G
en

B
an

k
ID

L
oc

us
L

in
k

ID
A

nn
ot

at
io

n
15

53
r

at
11

C
Y

P2
A

13
U

22
02

8
15

53
cy

to
ch

ro
m

e
P4

50
,f

am
ily

2,
su

bf
am

ily
A

,p
ol

yp
ep

tid
e

13
15

69
r

at
11

IL
10

R
B

L
42

24
3

35
88

in
te

rl
eu

ki
n

10
re

ce
pt

or
,b

et
a

20
90

i
at

11
W

N
T

6
H

12
45

8
74

75
w

in
gl

es
s-

ty
pe

M
M

T
V

in
te

gr
at

io
n

si
te

fa
m

ily
,m

em
be

r6
39

6
f

at
11

E
PO

R
X

97
67

1
20

57
er

yt
hr

op
oi

et
in

re
ce

pt
or

12
45

i
at

12
PA

K
2

U
25

97
5

50
62

p2
1

(C
D

K
N

1A
)-

ac
tiv

at
ed

ki
na

se
2

12
61

i
at

12
G

ST
A

2
M

16
59

4
29

39
gl

ut
at

hi
on

e
S-

tr
an

sf
er

as
e

A
2

17
57

i
at

12
C

Y
P3

A
7

D
00

40
8

15
51

cy
to

ch
ro

m
e

P4
50

,f
am

ily
3,

su
bf

am
ily

A
,p

ol
yp

ep
tid

e
7

17
58

r
at

12
C

Y
P3

A
7

D
00

40
8

15
51

cy
to

ch
ro

m
e

P4
50

,f
am

ily
3,

su
bf

am
ily

A
,p

ol
yp

ep
tid

e
7

32
42

9
f

at
12

no
ne

X
68

68
8

75
58

no
ne

35
16

8
f

at
12

C
O

L
16

A
1

M
92

64
2

13
07

co
lla

ge
n,

ty
pe

X
V

I,
al

ph
a

1
35

17
5

f
at

12
E

E
F1

A
2

L
10

34
0

19
17

eu
ka

ry
ot

ic
tr

an
sl

at
io

n
el

on
ga

tio
n

fa
ct

or
1

al
ph

a
2

37
68

8
f

at
12

FC
G

R
2A

M
31

93
2

22
12

Fc
fr

ag
m

en
to

fI
gG

,l
ow

affi
ni

ty
II

a,
re

ce
pt

or
(C

D
32

)
38

83
1

f
at

12
G

N
B

2
A

F0
53

35
6

27
83

gu
an

in
e

nu
cl

eo
tid

e
bi

nd
in

g
pr

ot
ei

n
(G

pr
ot

ei
n)

,b
et

a
po

ly
pe

pt
id

e
2

39
36

1
f

at
12

T
SP

A
N

6
A

F0
43

90
6

71
05

te
tr

as
pa

ni
n

6
87

2
i

at
12

IR
S1

S6
25

39
36

67
in

su
lin

re
ce

pt
or

su
bs

tr
at

e
1

A
FF

X
-h

um
al

u
at

69
M

E
D

6
U

14
57

3
10

00
1

m
ed

ia
to

ro
fR

N
A

po
ly

m
er

as
e

II
tr

an
sc

ri
pt

io
n,

su
bu

ni
t6

ho
m

ol
og

(S
.c

er
ev

is
ia

e)

Table C.2: Probesets Omitted from the Affymetrix U95 Latin Square and GeneLogic Dilution
Analysis

372

Pr
ob

es
et

N
um

be
r

G
en

e
N

am
e

of
Pr

ob
es

Sy
m

bo
l

G
en

B
an

k
ID

L
oc

us
L

in
k

ID
A

nn
ot

at
io

n
20

59
14

s
at

8
G

R
IN

1
N

M
00

73
27

29
02

gl
ut

am
at

e
re

ce
pt

or
,i

on
ot

ro
pi

c,
N

-m
et

hy
lD

-a
sp

ar
ta

te
1

21
43

09
s

at
10

C
21

or
f2

A
I4

35
74

7
75

5
ch

ro
m

os
om

e
21

op
en

re
ad

in
g

fr
am

e
2

33
57

9
i

at
13

G
A

L
R

3
Z

97
63

0
84

84
ga

la
ni

n
re

ce
pt

or
3

34
03

1
i

at
13

K
R

IT
1

U
90

26
9

88
9

K
R

IT
1,

an
ky

ri
n

re
pe

at
co

nt
ai

ni
ng

37
46

2
i

at
13

SF
3A

2
L

21
99

0
81

75
sp

lic
in

g
fa

ct
or

3a
,s

ub
un

it
2,

66
kD

a
41

38
6

i
at

13
JM

JD
3

A
B

00
23

44
23

13
5

ju
m

on
ji

do
m

ai
n

co
nt

ai
ni

ng
3

14
05

i
at

14
C

C
L

5
M

21
12

1
63

52
ch

em
ok

in
e

(C
-C

m
ot

if
)l

ig
an

d
5

33
32

2
i

at
14

SF
N

X
57

34
8

28
10

st
ra

tifi
n

65
13

3
i

at
14

Z
N

H
IT

4
A

I8
62

45
4

83
44

4
zi

nc
fin

ge
r,H

IT
ty

pe
4

91
81

6
f

at
14

R
K

H
D

1
C

18
31

8
39

96
64

ri
ng

fin
ge

ra
nd

K
H

do
m

ai
n

co
nt

ai
ni

ng
1

48
03

0
i

at
15

C
5o

rf
4

H
93

07
7

10
82

6
ch

ro
m

os
om

e
5

op
en

re
ad

in
g

fr
am

e
4

50
31

4
i

at
15

C
20

or
f2

7
A

I7
61

50
6

54
97

6
ch

ro
m

os
om

e
20

op
en

re
ad

in
g

fr
am

e
27

A
FF

X
-h

um
al

u
at

69
no

ne
A

FF
X

-H
U

M
A

L
U

no
ne

no
ne

Table C.3: Probesets Omitted from the Affymetrix U133 Latin Square Analysis

