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Dynamic Spectrum Management: Complexity and Duality

Zhi-Quan Luo∗,† and Shuzhong Zhang‡

Abstract

Consider a communication system whereby multiple users share a common frequency band and must

choose their transmit power spectral densities dynamically in response to physical channel conditions.

Due to co-channel interference, the achievable data rate of each user depends on not only the power

spectral density of its own, but also those of others in the system. Given any channel condition and

assuming Gaussian signaling, we consider the problem to jointly determine all users’ power spectral

densities so as to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject

to individual power constraints. For the discretized version of this nonconvex problem, we characterize its

computational complexity by establishing the NP-hardness under various practical settings, and identify

subclasses of the problem that are solvable in polynomial time. Moreover, we consider the Lagrangian

dual relaxation of this nonconvex problem. Using the Lyapunov theorem in functional analysis, we

rigorously prove a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the

continuous (Lebesgue integral) formulation. Moreover, we show that the duality gap for the discrete

formulation vanishes asymptotically as the size of discretization decreases to zero.

Keywords: Spectrum management, sum-rate maximization, complexity, duality

I. I NTRODUCTION

In a multiuser communication system such as cognitive radio or Digital Subscribe Lines (DSL),

interference mitigation is a major design and management objective. A standard approach to eliminate

multiuser interference is to divide the available spectrum into multiple tones (or bands) and pre-assign

them to the users on a non-overlapping basis (FDMA). Although such ‘orthogonal channelization’

approach is well-suited for high speed structured communication in which quality of service is a major
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concern, it can lead to high system overhead and low bandwidth utilization. This is because for such a

system a frequency tone pre-assigned to a user can not be released to other users even if it is not needed

when the user is idle, or is unusable due to poor channel conditions.

With the proliferation of various radio devices and services, multiple wireless systems sharing a

common spectrum must coexist [9]. In such scenarios, a pre-engineered FDMA solution may no longer

be feasible or desirable, and we are naturally led to a situation whereby users can dynamically adjust

their transmit power spectral densities over the entire shared spectrum, potentially achieving significantly

higher overall throughput. For such a multiuser system, each user’s performance depends on not only the

power allocation (across spectrum) of its own, but also those of other users in the system. To mitigate

multiuser interference, proper spectrum management (i.e., power control) is needed for the maximization

of the overall system performance. Spectrum management problem of this type also arises in a DSL

system where multiple users communicate with a central office through separate telephone lines over a

common spectrum. Due to electro-magnetic coupling, signals transmitted over different telephone wires

bundled in close proximity may interfere with each other, resulting in significant signal distortion. In fact,

such crosstalk is known to be the major source of signal distortion in a high speed DSL system [21].

Hence, for both wireless and wireline (DSL) applications, judicious management of spectrum among

competing users can have a major impact on the overall system performance.

The dynamic spectrum management problem has recently become a topic of intensive research in the

signal processing and digital communication community. From the optimization perspective, the problem

can be formulated either as a noncooperative Nash game [5], [21] or as a cooperative utility maximization

problem [4], [22]. Several algorithms were proposed to compute a Nash equilibrium solution (Iterative

Waterfilling method (IWFA) [5], [21]) or globally optimal power allocations (Dual decomposition method

[3], [11], [20]) for the cooperative game. Due to the problem’s nonconvex nature, these algorithms either

lack global convergence or may converge to a poor spectrum sharing strategy. Significant effort has been

made to establish conditions which can ensure the existence and uniqueness of a Nash equilibrium solution

as well as the convergence of IWFA [12], [15], [18], [21]. In an attempt to analyze the performance of

the dual decomposition algorithms, Yu and Lui [20] studied the duality gap of the continuous sum-rate

maximization problem and showed it to be zero in the frequency flat case. For the general frequency

selective case, they used an intuitive but non-rigorous argument to suggest that the strong duality should

still hold. Despite the aforementioned progress, a complete understanding of the problem’s complexity

status and a thorough duality analysis has not yet emerged. For example, the zero-duality gap result for

the continuous formulation does not readily translate to asymptotic zero duality for the discrete spectrum
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management problem as the discretization becomes infinitely fine (see Section IV). The latter is key to

study the performance of dual decomposition algorithms for practical OFDM based multiuser systems.

In this paper, we present a systematic study of the dynamic spectrum management problem, covering

two key theoretical aspects: complexity and duality. Specifically, we determine the complexity status of

the spectrum management problem under various practical settings as well as different choices of system

utility functions, and identify subclasses which are polynomial time solvable. In so doing, we clearly

delineate the set of computationally tractable problems within the general class of NP-hard spectrum

management problems. Furthermore, we rigorously establish the zero-duality gap result of Yu and Lui

[20] for the continuous formulation when the interference channels are frequency selective. The key steps

in our analysis are to cast the continuous formulation under the Lebesgue integral framework and to use

the Lyapunov theorem [13] from functional analysis. The latter theorem says that the integral of any

set-valued function over a non-atomic measure space (in our case finite intervals) is convex, even if the

individual values of the function are not convex. Finally, we show that the duality gap for the discretized

spectrum management problem vanishes when the size of discretization approaches zero. This is the

case even if the system utility is nonlinear (but nonetheless concave). The asymptotic zero duality result

suggests that the Lagrangian dual decomposition approach [3], [11], [20] may be a viable way to reach

approximate optimality for finely discretized spectrum management problems.

II. PROBLEM FORMULATION

Consider a multi-user communication system consisting ofK transmitter-receiver pairs sharing a

common frequency bandf ∈ Ω. For simplicity, we will call each of such transmitter-receiver pair a

“user”. Upon normalization, we can assumeΩ to be the unit interval in<, namely,Ω = [0, 1]. Each user

k has a fixed transmit power budget which it can allocate acrossΩ so as to maximize its own utility.

Let sk(f) : Ω 7→ [0,∞) denote the power spectral density (or power allocation) function of userk. The

transmit power budget of userk can be represented as
∫

Ω
sk(f)df ≤ Pk,

wherePk > 0 is a given constant. Due to multi-user interference, userk’s utility depends on not only

its own allocation functionsk(f), but also those of others{s`(f) : ` 6= k}. Let userk’s utility function

be denoted by

uk(s1, s2, ..., sK) =
∫

Ω
Rk(s1(f), . . . , sK(f))df,

whereRk(·) : Ω 7→ [0, +∞) is a Lebesgue integrable, possibly non-concave function.
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Due to the complex coupling between users’ utility functions, it is generally impossible to maximize

the utility functionsu1, u2,..., uK simultaneously. Instead, we seek to maximize a system-wide utility

H(u1, ..., uK) which carefully balances the interests of all users in the system. This leads to the following

spectrum management problem:

max H(u1, · · · , uK)

s.t. u1 =
∫

Ω
R1(s1(f), . . . , sK(f))df

...

uK =
∫

Ω
RK(s1(f), . . . , sK(f))df

∫

Ω
sk(f)df ≤ Pk, sk(f) ≥ 0 and Lebesgue measurable, k = 1, ...,K.

(Pc)

The subscriptc in the notation “(Pc)” signifies the continuous domain of the formulation. The maximum

value of (Pc) is called thesocial optimum.

There are four commonly used choices for the system utility functionH(u1, · · · , uK):

i) Sum-rate utility: H1(u1, ..., uK) = 1
K

∑K
k=1 uk;

ii) Proportional fairness utility: H2(u1, ..., uK) =
(∏K

k=1 uk

)1/K
(equivalent to maximizing

∑K
k=1 ln uk);

iii) Harmonic-rate utility: H3(u1, ..., uK) = K
(∑K

k=1 u−1
k

)−1
(equivalent to maximizing− ln(

∑K
k=1 u−1

k ));

iv) Min-rate utility: H4(u1, ..., uK) = min1≤k≤K uk.

In general, these utility functions can be ordered

H1 ≥ H2 ≥ H3 ≥ H4.

In terms of user fairness, the order is reversed.

The spectrum management problem(Pc) is in general nonconvex due to the nonconcavity of utility

functionsu1, u2, ..., uK . Moreover, it is defined in continuous domain (infinite dimensional), with spectral

density functionss1(f), s2(f),..., sK(f) as decision variables. As such, the spectrum management

problem(Pc) is a difficult infinite dimensional nonlinear optimization problem.

To facilitate numerical solution, we typically discretize the frequency band so thatΩ = {0, 1
N , 2

N , ..., 1}.
In this way, the continuous formulation of the frequency management problem(Pc) can be discretized

by replacing Lebesque measure with a discrete uniform measure on[0, 1]. In particular, userk’s spectral

density becomes

sn
k ≥ 0,

1
N

N∑

n=1

sn
k ≤ Pk
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and the corresponding utility is

uk =
1
N

N∑

n=1

Rk(sn
1 , . . . , sn

K).

The corresponding social optimum is achieved by maximizing the total system utilityH(u1, ..., uK)

max H(u1, · · · , uK)

s.t. u1 =
1
N

N∑

n=1

R1(sn
1 , . . . , sn

K)

...

uK =
1
N

N∑

n=1

RK(sn
1 , . . . , sn

K)

1
N

N∑

n=1

sn
k ≤ Pk, sn

k ≥ 0, k = 1, ...,K,

(PN
d )

We use(PN
d ) to denote this discretized problem. Intuitively,(PN

d ) → (Pc) as N → ∞, namely, as

the discretization becomes infinitely fine, the discrete problem coincides with the continuous spectrum

management problem.However, as we see in Section IV, this “limiting” argument can be problematic

due to a mismatch between Riemann and Lebesgue integrals.

Rate maximization

Let xn
k denote the transmitted complex Gaussian signal from userk (consisting of a transmitter and

receiver pair) at tonen, and letsn
k := E|xn

k |2 denote its power. For an AWGN channel, the received

signalyn
k is given by

yn
k =

K∑

l=1

hn
l,kx

n
l + zn

k , n ∈ N , k ∈ K,

wherezn
k ∼ CN(0, N0) denotes the complex Gaussian channel noise with zero mean and varianceN0,

and the complex scalars{hn
l,k} represent channel gain coefficients. In practice,hn

l,k can be determined

by the distance between transmitterl and receiverk. The capacity region of this interference channel is

still unknown. So it is reasonable (and natural) to treat the interference as white noise, especially if users

do not have direct knowledge of the code/modulation schemes of other users in the system. In this way,

we can write transmitterk’s achievable data rateRn
k at tonen [6] as

Rn
k (sn

1 , . . . , sn
K) = ln

(
1 +

|hn
k,k|2sn

k

N0 +
∑

j 6=k |hn
j,k|2sn

j

)
,

Upon normalizing the channel coefficients, we obtain

Rn
k (sn

1 , . . . , sn
K) := ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
, (1)
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whereσn
k = N0/|hn

k,k|2 denotes the normalized background noise power, andαn
kj = |hn

j,k|2/|hn
k,k|2 is

the normalized crosstalk coefficient from transmitterj to receiverk at tonen. Due to normalization, we

haveαn
kk = 1 for all k.

Notice that unlike the frequency flat case considered in [7], the channel coefficientshn
j,k vary according

to tone indexn due to frequency selectivity, resulting in a non-constant normalized noise powerσn
k across

tones. As it turns out, this crucial difference greatly complicates the spectrum management problem in the

frequency selective case, making an otherwise convex optimization problem computationally intractable;

see Section III.

For the continuous formulation,Rk(·) can represent the data rate achievable by userk at frequencyf

(in the sense of Shannon [6]):

Rk(s1(f), . . . , sK(f)) = ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
, (2)

where σk(f) > 0 signifies the noise power at userk on frequencyf , and αkj(f) > 0 denotes the

normalized path loss coefficient for the channel between userj and userk on frequencyf . Clearly,

the rate functionRk(·) and the utility functionuk(·) are both nonconcave. The spectrum management

problem can be stated as

max H(u1, · · · , uK)

s.t. uk =
∫

Ω
ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
df,

∫

Ω
sk(f)df ≤ Pk, sk(f) ≥ 0 and Lebesgue measurable, k = 1, ..., K.

(Pf )

In practice (e.g., IEEE 802.11x standards), the available spectrumΩ is divided into multiple tones

(or bands) and shared by the users. In this way and assumingH(·) = H1(·), the spectrum management

problem(Pf ) is discretized and becomes

maximize
1

NK

K∑

k=1

N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)

subject to
1
N

N∑

n=1

sn
k ≤ Pk, sn

k ≥ 0 n = 1, 2, ..., N, k = 1, 2, ..., K.

(P1)

The main challenges of spectrum management are (i) nonconvexity, (ii) problem size (N ≥ 4000,

K ≥ 50) and (iii) distributed optimization. A popular spectrum management approach is Frequency

Division Multiple Access (FDMA) whereby the available tones (or bands) are shared by all the users on a

non-overlapping basis. Such ‘orthogonal channelization’ approach is well-suited for high speed structured
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communication in which quality of service is a major concern. Mathematically, FDMA solutions can be

described as

S =





{
s ≥ 0 | sn

ksn
j = 0, ∀ k 6= j, ∀ n

}
, discrete,

{s(f) ≥ 0 | sk(f)sj(f) = 0, ∀ k 6= j, ∀ f} , continuous.

FDMA solutions arenot necessarily vertex solutions.

III. D ISCRETEFREQUENCIES: COMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the spectrum management problem(Pf ) under

various practical settings as well as different choices of system utility functions. We provide a complete

analysis on when the problem is NP-hard and also identify subclasses of the problem that are solvable

in polynomial time. We will consider two separate cases: the case of many users and few tones (large

K and fixedN ), and the case of few users and many tones (fixedK and largeN ).

A. The case of many users and few tones

In this section, we fixN and analyze the complexity of the spectrum management problem(Pf ) for

largeK and for various choices of system utility functions.

1) Maximization of sum-rate:Let us first consider the problem of maximizing the total system

throughput or sum-rate. This corresponds to choosing a system utility functionH(u) = H1(u) =
1
K

∑K
k=1 uk. We show below that the resulting spectrum management problem is NP-hard for any fixed

N .

The discrete sum-rate maximization problem is given by(P1). We specialize(P1) to the caseN = 1:

maximize H(s) =
K∑

k=1

ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

)

subject to 0 ≤ sk ≤ Pk, k = 1, ..., K.

(P1)′

Notice that, for simplicity, we have dropped the constant factor1/K from the objective function and

removed the superscriptn in our notations sinceN = 1. The resulting problem corresponds to the

practical situation whereby multiple users share a single frequency band (say, a control channel), and

wish to cooperate in order to maximize the sum-rate of all users.

Theorem 1:For the sum-rate utility functionH(u1, ..., uK) = 1
K (u1 + · · · + uK), the spectrum

management problem(Pf ) is strongly NP-hard for any fixedN ≥ 1.

The proof is based on a polynomial time reduction from the maximum independent set problem. The

details are relegated to Appendix A. Intuitively, if all cross talk coefficients are either0 or ∞, then the
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optimal solution of(P1) will have eithersk = 0 or sk = Pk, for all usersk. In this way, maximizing the

sum-rate is equivalent to finding the largest subset of users which are mutually non-interfering, which is

further equivalent to the maximum independent set problem in combinatorial optimization. The complexity

analysis for(P1) has an interesting consequence. It is well known that the maximum independent set

problem is not only difficult to optimize, but also hard to approximate (cf. Trevisan [17]). In particular,

for a K-node graph, there is a constantc > 0 such that if there is a polynomial-timeK−c-approximation

algorithm1 for the maximum independent set problem then P=NP. This inapproximability result, coupled

with the polynomial transformation outlined in the preceding complexity analysis, implies that the sum-

rate maximization problem cannot be well approximated even to within a factor ofK−c when the number

of tones is 1.

2) Maximization of min-rate utility:We now study the complexity status of the spectrum management

problem(Pf ) when the system utility function is the minimum of all users’ rates:H(u) = mink uk. As

we see next, unlike the sum-rate case considered earlier, the spectrum management problem becomes a

convex optimization problem whenN = 1.

Let N = 1 and consider the min-rate utility functionH(u) = mink uk. The corresponding spectrum

management problem(Pf ) becomes (after dropping the superscriptn)

maximize min
1≤k≤K

ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

)

subject to 0 ≤ sk ≤ Pk, k = 1, ..., K,

which, by the monotonicity ofln(·) function, is equivalent to

maximize min
1≤k≤K

sk

σk +
∑

j 6=k

αkjsj

subject to 0 ≤ sk ≤ Pk, k = 1, ..., K.

This is known as a generalized fractional linear programming problem and can be solved by parametric

linear programming. In particular, introducing an auxiliary variableτ , we obtain the following equivalent

formulation
maximize τ

subject to sk ≥ τ(σk +
∑

j 6=k αkjsj)

τ ≥ 0, 0 ≤ sk ≤ Pk, k = 1, ..., K,

1For a maximization problemmaxf∈Ω H(f) with H(f) nonnegative, we saŷf is an δ-approximate solution ifH(f̂) ≥
δ maxf∈Ω H(f).
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which can be easily solved using a binary search onτ . This shows that the case ofN = 1 is polynomial

time solvable. However, ifN > 2 then the problem remains NP-hard.

Theorem 2:For the min-rate system utility functionH(u) = mink uk, the spectrum management

problem (Pf ) is polynomial time solvable (in fact equivalent to a parametric linear program) when

N = 1, and is strongly NP-hard whenN ≥ 3.

The proof of Theorem 2 consists of a polynomial time reduction from the 3-colorability problem, i.e.,

the problem to determine if the nodes of a given graph can be assigned one of the three colors so that no

two adjacent nodes are colored the same. The 3-colorability problem is known to be NP-hard. Intuitively,

for any given graph, we can think of nodes in the graph as users, and colors as frequency tones. If we

set the normalized crosstalk coefficientsαn
`k to be either a (sufficiently large) constant or zero, depending

on if nodes` andk are adjacent or not. In this way, the min-rate optimal solution for the corresponding

spectrum management problem will try to assign frequency tones to users so that each tone is utilized

by at least one user in a non-interfering manner. This then leads to a solution to the coloring problem.

We provide details of the analysis in Appendix B.

There is still a missing case ofN = 2 that is not covered by Theorem 2. While we have not been

able to characterize its complexity, we can reduce it to a simple optimization problem involving a single

variable.

Theorem 3:For the min-rate utility functionH(u) = mink uk andN = 2, the spectrum management

problem(Pf ) is equivalent to a single-variable optimization problem.

Proof. WhenN = 2, the maximization of min-rate utility becomes

maximize min
1≤k≤K

(
ln

(
1 +

s1
k

σ1
k +

∑
j 6=k α1

kjs
1
j

)
+ ln

(
1 +

s2
k

σ2
k +

∑
j 6=k α2

kjs
2
j

))

subject to s1
k + s2

k ≤ Pk, s1
k, s

2
k ≥ 0, k = 1, ...,K.

By a bisection search on the objective function, this maximization problem can always be broken down

to a series of feasibility problems:

(Fα)





ln

(
1 +

s1
k

σ1
k +

∑
j 6=k α1

kjs
1
j

)
+ ln

(
1 +

s1
k

σ1
k +

∑
j 6=k α1

kjs
1
j

)
≥ ln α

s1
k + s2

k ≤ Pk, s1
k, s2

k ≥ 0, k = 1, ...,K.

We claim that for a fixedα > 0, then it takes polynomial-time to check if(Fα) is feasible or not. In
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fact, (Fα) is equivalent to the existence ofβ > 0 such that





1 +
s1
k

σ1
k +

∑
j 6=k α1

kjs
1
j

≥ α

β

1 +
s2
k

σ2
k +

∑
j 6=k α2

kjs
1
j

≥ β

s1
k + s2

k ≤ Pk, s1
k, s

2
k ≥ 0, k = 1, ..., K,

which amounts to checking the feasibility of the system




min
1≤k≤K

σ2
k + s2

k +
∑

j 6=k α2
kjs

2
j

σ2
k +

∑
j 6=k α2

kjs
2
j

≥ β ≥ max
1≤k≤K

α(σ1
k +

∑
j 6=k α1

kjs
1
j )

σ1
k + s1

k +
∑

j 6=k α1
kjs

1
j

s1
k + s2

k ≤ Pk, s1
k, s

2
k ≥ 0, k = 1, ...,K,

and this leads to solving the following parameterized convex optimization problem:

(Qβ) minimize max
1≤k≤K

σ1
k +

∑
j 6=k α1

kjs
1
j

σ1
k + s1

k +
∑

j 6=k α1
kjs

1
j

subject to min
1≤k≤K

σ2
k + s2

k +
∑

j 6=k α2
kjs

2
j

σ2
k +

∑
j 6=k α2

kjs
2
j

≥ β

s1
k + s2

k ≤ Pk, s1
k, s

2
k ≥ 0, k = 1, ..., K.

Denote the optimal value of(Qβ) to bev(β). Maximizing α is equivalent to finding the maximum of

β/v(β) for β > 0, i.e., max0<β β/v(β).

3) Maximization of harmonic-rate utility:When the system utility function is given byH(u) =

H3(u) = K(u−1
1 + · · ·+ u−1

K )−1, the spectrum management problem is equivalent to

minimize
K∑

k=1

(
N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

))−1

subject to
N∑

n=1

sn
k ≤ Pk, k = 1, ...,K,

sn
k ≥ 0, k = 1, ..., K; n = 1, ..., N.

(P3)

Similar to the min-rate utility case, we have the following complexity characterization result.

Theorem 4:For the harmonic-rate utility functionH(u) = K
(∑K

k=1 u−1
k

)−1
, the spectrum manage-

ment problem(P3) is a convex optimization problem (thus polynomially solvable) whenN = 1, and is

strongly NP-hard whenN ≥ 3.

Proof. We only consider the case ofN = 1. The NP-hardness proof forN ≥ 3 can be found in Appendix
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C. WhenN = 1, problem(P3) becomes (after dropping the superscriptn)

minimize
K∑

k=1

(
ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

))−1

subject to 0 ≤ sk ≤ Pk, k = 1, ...,K.

Introducing new variablestk, we can rewrite the above problem as

minimize
K∑

k=1

tk

subject to 1/tk ≤ ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

)

0 ≤ sk ≤ Pk, tk ≥ 0, k = 1, ..., K.

By a nonlinear variable transformation,sk := exp(yk), (P3) can be equivalently turned into

minimize
∑K

k=1 tk

subject to ln


σk exp(−yk) +

∑

j 6=k

αkj exp(yj − yk)


 + ln

(
exp

(
1
tk

)
− 1

)
≤ 0,

yk ≤ lnPk, tk ≥ 0, k = 1, ..., K.

(P3)′

It is well known thatln
(
σk exp(−yk) +

∑
j 6=k αkj exp(yj − yk)

)
is a convex function iny. Moreover, it

can checked easily thatln(exp(1/t)− 1) is convex overt > 0. Consequently,(P3)′ is a convex program,

hence solvable in polynomial-time in terms of the dimension and the required solution precision.

We remark that the complexity status of(P3) remains unknown whenN = 2.

4) Maximization of proportional fairness utility:Consider the system utility functionH(u) = H2(u) =(∏K
k=1 uk

)1/K
. Notice that maximizing(

∏
k uk)

1/K (the geometric mean of users’ data rates) is equiv-

alent to maximizing
∑

k ln uk. Thus, the spectrum management problem(Pf ) becomes

maximize
K∑

k=1

ln

(
N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

))

subject to
N∑

n=1

sn
k ≤ Pk, sn

k ≥ 0, k = 1, ..., K, n = 1, ..., N.

(P4)

Below is our complexity characterization result for the proportional fairness utility maximization problem.

Theorem 5:For the proportional fairness utility functionH(u) =
(∏K

k=1 uk

)1/K
, the spectrum man-

agement problem(Pf ) is convex whenN = 1 and is NP-hard forN ≥ 3.
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Proof. For N = 1, the corresponding spectrum management problem becomes

maximize
K∑

k=1

ln ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

)

subject to 0 ≤ sk ≤ Pk, k = 1, ..., K.

(P4)′

Similar to the proof of Theorem 4, let us introduce some auxiliary variablestk and the constraints

exp(tk) ≤ ln

(
1 +

sk

σk +
∑

j 6=k αkjsj

)
,

which can be equivalently written as

σk +
∑

j 6=k αkjsj

sk
≤ 1

exp(exp(tk))− 1
.

By the variable transformationsj := exp(yj), j = 1, ...,K, we rewrite the above inequality as

ln


σk exp(−yk) +

∑

j 6=k

αkj exp(yj − yk)


 + ln (exp(exp(tk))− 1) ≤ 0. (3)

It can be checked that the functionh2(t) := ln (exp(exp(t))− 1) is convex. This shows that constraints

of the type in (3) are convex. Since(P4)′ can be equivalently written as

maximize
K∑

k=1

tk

subject to ln


σk exp(−yk) +

∑

j 6=k

αkj exp(yj − yk)


 + ln (exp(exp(tk))− 1) ≤ 0,

yk ≤ lnPk, k = 1, ..., K,

it is therefore a convex optimization problem.

The NP-hardness proof is similar to the harmonic rate case (consisting of a reduction from 3-colorability

problem), and is given in Appendix D.

The complexity status remains unknown for the two-tone case with proportional fairness criterion.

B. The case of many tones and few users

So far we have analyzed the computational complexity of the spectrum management problem for

various choices of system utility functions when the number of usersK is large while the number of

tonesN is small and fixed. In what follows, we consider the other case when the number of usersK is

small and fixed while the number of frequency tonesN grows to infinity. For the sum-rate maximization

problem (corresponding to the system utility functionH(u) = H1(u) =
∑N

n=1 un), the recent work of
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[8] shows that the resulting spectrum management problem is NP-hard even when there are only two

users in the system. This NP-hardness result effectively shatters any hope to efficiently compute the exact

optimal spectrum sharing strategy. The combinatorial growth of possible frequency assignments simply

renders the problem intractable. Below we generalize this result to other system utility functions.

Theorem 6:The two-user spectrum management problem(PN
d ) is NP-hard when the system utility

function H(u) is given by the following choices:H1(u) =
∑N

n=1 un (sum-rate),H2(u) =
∑N

n=1 lnun

(proportional fairness),H3(u) = (
∑N

n=1 u−1
n )−1 (harmonic-rate), orH4(u) = minn un (min-rate).

The proof of this complexity characterization relies on a reduction from the so called equipartition

problem: given an even number of integers, determine if they can be partitioned into two subsets of same

size such that the sum of integers in the two subsets are equal. To see how the equipartition problem

is related to the spectrum management problem, let us imagine a situation whereby two users with the

same noise power spectrum are to share a common set of frequency tones. Assume that the crosstalk

coefficients are sufficiently strong on every tone. It follows from [8] that the optimal sum-rate spectrum

sharing strategy must be FDMA. To maximize the system utility (defined by any of the mentioned

utility functions) among all FDMA strategies, the two users should partition the tones in a way that

best balances the total noise power across the frequency tones assigned to the two users. In this way,

deciding on which user should get exactly which subset of tones becomes essentially the aforementioned

equipartition problem. The details of the proof are relegated to Appendix E.

For a single user system (K = 1), there is no multiuser interference, so the optimal spectrum

management problem becomes convex, as long asH(u) is concave. In fact, in this case, all four system

utility functionsH1, H2, H3 andH4 coincide, and the optimal solution can be found via the well-known

waterfilling algorithm in polynomial time. Below is a summary of the complexity status of the discrete

spectrum management problem(Pf ).

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

Convex Opt
(Waterfilling)

K=1, N arbitrary

Strongly
NP-hard

Strongly
NP-hard

NP-hard

Sum-Rate H1

FDMA Soln

LPConvex OptConvex Opt
Strongly
NP-hardN=1, K arbitrary

Strongly
NP-hard

Strongly
NP-hardNP-hard

Strongly
NP-hard

N>2 and fixed, K 
arbitrary

NP-hardNP-hardNP-hardNP-hard
K≥2 and fixed, N 
arbitrary

Min-Rate H4Harmonic 
mean H3

Proportional 
Fairness H2
(geometric mean)

Sum-Rate H1
(arithmetic mean)

Utility Function

Problem
Class
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In the above table, the column ’Sum-Rate H1 (FDMA solution)’ represents the optimization model

where the objective is to maximize the total rates, while the users’ power spectrums areconstrainedto

have no overlap. The second column ‘Sum-Rate H1 (arithmetic mean)’ represents the model with the

same objective but the FDMA constraints are removed.

IV. D UALITY

The discrete rate-maximization problems considered in Section III are mostly NP-hard. This motivates

us to consider efficient algorithms which can find high quality approximate solutions for the rate-

maximization problem in polynomial time. One natural approach is to consider the dual formulation

and apply Lagrangian relaxation.

Consider the discrete rate-maximization problem(PN
d ):

max H(u1, · · · , uK)

s.t. uk ≤ 1
N

N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)

1
N

N∑

n=1

sn
k ≤ Pk, sn

k ≥ 0, k = 1, ..., K.

(PN
d )

The corresponding Lagrangian function is given by

LN (s, u; λ, µ) = H(u1, · · · , uK) +
K∑

k=1

λk

[
1
N

N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
− uk

]

+
K∑

k=1

µk

[
Pk − 1

N

N∑

n=1

sn
k

]

= H(u1, · · · , uK)−
K∑

k=1

ukλk +
K∑

k=1

Pkµk

+
1
N

N∑

n=1

K∑

k=1

[
λk ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
− µks

n
k

]
,

and the dual function is given by

gN (λ, µ) := sup LN (s, u;λ, µ)

s.t. u ∈ <K , sn
k ≥ 0, k = 1, ..., K.

Thus, the Lagrangian dual of(PN
d ) can be written as

min H∗(λ) + P Tµ + ḡN (λ, µ)

s.t. λ, µ ∈ <K
+

(DN
d )
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whereH∗ is the convex conjugate dual function ofH defined by

H∗(λ) := sup
t∈<K

(
H(t)− λTt

)
(4)

and

ḡN (λ, µ) := max
1
N

N∑

n=1

K∑

k=1

[
λk ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
− µks

n
k

]

s.t. sn
k ≥ 0, n = 1, ..., N ; k = 1, ..., K.

The conjugate functionH∗ can be computed explicitly for various choices of system utility functions.

It is relatively easy to verify the following.

1) For weighted sum-rate functionH(u) = wTu, the conjugate functionH∗(λ) = 0 for λ = w and

H∗(λ) = ∞ whenλ 6= w.

2) For the proportional fairness system utility functionH(u) =
∑K

k=1 ln uk, the conjugate function

H∗(λ) = K −∑K
k=1 ln λk.

3) For the min-rate utility functionH(u) = min1≤k≤K uk, the conjugate functionH∗(λ) = 0 if
∑K

k=1 λk ≥ 1, andH∗(λ) = +∞ otherwise.

4) For the harmonic-rate utility functionH(u) = (
∑K

k=1 u−1
k )−1, the conjugate functionH∗(λ) = 0

if
∑K

k=1

√
λk ≥ 1, andH∗(λ) = +∞ otherwise.

Unlike the original problem(PN
d ), its dual(DN

d ) is convex which is potentially easy to solve. LetP ∗
N

andD∗
N denote their respective optimal values. It follows from weak duality thatP ∗

N ≤ D∗
N . It is known

from Section III that(PN
d ) is typically NP-hard, suggesting that the primal(PN

d ) and the dual(DN
d )

are in general not equivalent. Indeed, the following example suggests that the duality gapD∗
N − P ∗

N is

typically positive.

Example: Consider a case with two users sharing one frequency. The corresponding sum-rate maximiza-

tion problem is given by

maximize ln
(
1 + s1

1+s2

)
+ ln

(
1 + s2

1+s1

)

subject to 0 ≤ s1 ≤ P1, 0 ≤ s2 ≤ P2,
(5)

wherePi > 0 is the power budget for useri, (i = 1, 2). Let the optimal value of the above problem be

v(P1, P2). We show below thatv(P1, P2) is not concave function ofP1, P2 > 0, which implies that the

duality gap is positive. [This concavity property ofv(P1, P2) was called time-sharing property in [20].]

Note that the objective is actually equivalent to maximizing(1+s1+s2)2

(1+s1)(1+s2)
, which is a quasi-convex

function on its domain (see [1]). Therefore, its maximum value is attained at the vertices. In other words,

v(P1, P2) = max{ln(1 + P1), ln(1 + P2), 2 ln(1 + P1 + P2)− ln(1 + P1)− ln(1 + P2)}. (6)
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So if P1 = P2 = 2, thenP ∗
N = v(2, 2) = ln 3 which is attained by(s∗1, s

∗
2) = (2, 0) or (0, 2) (FDMA

solution). However, the corresponding dual formulation of (5) can be written as

minimize P1µ1 + P2µ2 + ḡ1(µ)

subject to µ = (µ1, u2) ≥ 0,
(7)

where

ḡ1(µ) = max
s1,s2≥0

ln
(

1 +
s1

1 + s2

)
+ ln

(
1 +

s2

1 + s1

)
− µ1s1 − µ2s2.

Notice thatḡ1(µ) is a convex function that is symmetric with respect toµ1 andµ2. Thus, ifP1 = P2 = 2,

then the dual objective function in (7) is symmetric with respect toµ1 andµ2. It follows that the optimal

dual solution must haveµ1 = µ2. Direct computation of̄g1(µ) (via KKT condition) shows that, when

µ1 = µ2 = 1/5, the associated primal power levels must be either(s1, s2) = (4, 0) or (0, 4). Moreover,

the subdifferential of̄g1 at (1/5, 1/5) is equal to∂ḡ1(1
5 , 15) = convex hull{(0,−4), (−4, 0)}. Plugging

these values into (7), we see that the dual optimality condition(0, 0) ∈ (P1, P2)+∂ḡ1(µ1, µ2) is satisfied

at µ1 = µ2 = 1/5. Therefore, we obtain the optimal dual solutionsµ∗1 = µ∗2 = 1/5, and the minimum

dual objective valueD∗
N = ln 5 which is strictly larger than the primal objective valueP ∗

N = ln 3.

When H(u) = wTu (weighted sum-rate), a so calledtime-sharing propertywas introduced in [20]

which can ensure zero duality gapD∗
N − P ∗

N = 0. This property essentially requires the region of

achievable rates{(u1, · · · , uK) | ∑N
n=1 sn

k ≤ Pk, sn
k ≥ 0, 1 ≤ k ≤ K} to be convex, where each

uk is defined in(PN
d ). Mathematically, the time-sharing property is equivalent to the concavity of the

mappingv(P1, P2). Unfortunately, time-sharing property does not hold in general. For instance, consider

the preceding example wherev(P1, P2) is given by (6). Simple calculation shows that

2 ln(1 + P1 + P2)− ln(1 + P1)− ln(1 + P2) ≥ ln(1 + P1) andP1, P2 > 0

if and only if P2 + 1− P 2
1 ≥ 0. Similarly,

2 ln(1 + P1 + P2)− ln(1 + P1)− ln(1 + P2) ≥ ln(1 + P2) andP1, P2 > 0

if and only if P1 + 1 − P 2
2 ≥ 0. Let Ω := {(P1, P2) ∈ <2

++ | P2 + 1 − P 2
1 ≥ 0, P1 + 1 − P 2

2 ≥ 0}.
We havev(P1, P2) = 2 ln(1 + P1 + P2) − ln(1 + P1) − ln(1 + P2) for (P1, P2) ∈ Ω. Now we see that

v(P1, P2) cannot be concave inΩ, since, for instance its Hessian at an interior point ofΩ, (1, 1), is given

by

∇2v(P1, P2)|(P1,P2)=(1,1) =




1
36 −2

9

−2
9

1
36


 ,

which is clearly not negative semidefinite.
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A. Asymptotic Strong Duality

When the duality gapD∗
N − P ∗

N is nonzero, the dual problem(DN
d ) is not equivalent to the primal

problem(PN
d ). Nonetheless,(DN

d ) may still provide a close approximation of(PN
d ). This motivates us

to find an upper bound on the duality gap between(PN
d ) and (DN

d ). Notice that, for the continuous

spectrum management problem (corresponding toN = ∞), the duality gapD∗∞ − P ∗∞ = 0, as was

established in [20] in the context of sum-rate maximization. This suggests that the duality gapD∗
N −P ∗

N

for finite N should vanish asymptotically asN →∞ for general system utility functions. In this section,

we show that this asymptotic strong duality result indeed holds true for general system utility functions,

thanks to a hidden convexity resulting from the frequency setΩ being an interval (rather than a finite

discrete set). The key in our analysis is the so-called Lyapunov theorem for vector measures [13].

Definition: A measure isnon-atomicif every set of non-zero measure has a subset with strictly less

non-zero measure.

The standard Lebesgue measure is non-atomic, while the uniform measure on a finite set is atomic.

The following is a convenient form of Lyapunov Theorem due to Blackwell [2].

Lemma 1:Let v be a non-atomic measure on a Borel fieldB generated from subsets of a spaceΩ. Let

gi(x(·), ·) be compatible withB-measurable functionx(·) (i.e., if x(·) is B-measurable thengi(x(·), ·) is

B-measurable),i = 1, ..., m. Then,








∫
Ω g1(x(·), ·)dv

...
∫
Ω gm(x(·), ·)dv




∣∣∣∣∣∣∣∣∣
x is B-measurable





is a convex set.

It is important to notice that there is no assumption on the convexity ofgi functions or the setΩ. The

convexity of the image of the integral mapping is due to the non-atomic property of measurev. We

now use Lemma 1 to argue the asymptotic strong duality for the continuous formulation of the spectrum

management problem.

Suppose that the system utility functionH is monotonically nondecreasing componentwise and jointly
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concave. We can equivalently rewrite(Pc) as

max H(u1, · · · , uK)

s.t. u1 ≤
∫
f∈Ω ln

(
1 + s1(f)

σ1(f)+
∑

j 6=1 α1j(f)sj(f)

)
df

...

uK ≤ ∫
f∈Ω ln

(
1 + sK(f)

σK(f)+
∑

j 6=K αKj(f)sj(f)

)
df

∫
f∈Ω sk(f)df ≤ Pk, k = 1, ..., K,

sk(f) ≥ 0, f ∈ Ω, sk(·) is Lebesgue measurable; k = 1, ..., K.

(Pc)

The following theorem follows from Lemma 1.

Theorem 7:Let v(P ) be the optimal value of(Pc) (also known as the perturbation function of(Pc)).

Suppose thatH is monotonically increasing componentwise and jointly concave. Thenv(P ) is a concave

function in P .

Proof. Let P 1 andP 2 be two parameter vectors. Lets1(f) ands2(f) be optimal solutions for(Pc) with

parametersP 1 andP 2 respectively. Let

tik =
∫

f∈Ω
ln

(
1 +

si
k(f)

σk(f) +
∑

j 6=k αkj(f)si
j(f)

)
df, i = 1, 2; k = 1, ..., K.

Then, by Lemma 1, there exist nonnegative Lebesgue measurable functions{s̄k(f)} such that

∫

f∈Ω
ln

(
1 +

s̄k(f)
σk(f) +

∑
j 6=k αkj(f)s̄j(f)

)
df = (t1 + t2)/2

and
∫

f∈Ω
s̄k(f)df =

(∫

f∈Ω
s1
k(f)df +

∫

f∈Ω
s2
k(f)df

)/
2 ≤ (P 1

k + P 2
k )/2.

Therefore, the optimal value of(Pc) with parameter(P 1 + P 2)/2 satisfies

v((P 1 + P 2)/2) ≥ H((t11 + t21)/2, · · · , (t1K + t2K)/2)

≥ (H(t11, · · · , t1K) + H(t21, · · · , t2K))/2 = (v(P 1) + v(P 2))/2.

where the second inequality is due to concavity ofH.

A consequence of Theorem 7 is that the Lagrangian dual problem admits no duality gap with the
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original problem. Specifically, define the following Lagrangian function

L(s, t; λ, µ) = H(t1, · · · , tK) +
K∑

k=1

λk

[∫

f∈Ω
ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
df − tk

]

+
K∑

k=1

µk

[
Pk −

∫

f∈Ω
sk(f)df

]

= H(t1, · · · , tK)−
K∑

k=1

tkλk +
K∑

k=1

Pkµk

+
∫

f∈Ω

K∑

k=1

[
λk ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
− µksk(f)

]
df. (8)

Let
g(λ, µ) := sup L(s, t;λ, µ)

s.t. t ∈ <K

sk(f) ≥ 0, f ∈ Ω, sk(·) is Lebesgue measurable; k = 1, ...,K.

Since t is separated froms, we may simplify the expression forg(λ, µ) by using the conjugate dual

function of H (cf. (4)) which is convex. We have

g(λ, µ) = H∗(λ) + pTµ + ḡ(λ, µ),

where

ḡ(λ, µ) := max
∫

f∈Ω

K∑

k=1

[
λk ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
− µksk(f)

]
df

s.t. sk(f) ≥ 0, f ∈ Ω, sk(·) is Lebesgue measurable; k = 1, ..., K.

Clearly, g(λ, µ) is convex jointly inλ andµ. The Lagrangian dual problem of(Pc) is defined as

minimize g(λ, µ)

subject to λ, µ ∈ <K
+ .

(Dc)

Due to Theorem 7, the perturbation functionv(P ) is concave. By a well known result in convex analysis

(Section 34 of [14]), this immediately implies that the duality gap is zero; see also Theorem 1 in Yu and

Lui [20].

Corollary 1: Suppose that the system utility functionH(u1, ..., uK) is jointly concave in(u1, u2, ..., uK)

and is nondecreasing in eachuk. Then, the optimal values of(Pc) and (Dc) are equal; i.e., the strong

duality relation holds.

Since the concavity and monotonicity assumptions in Corollary 1 are satisfied by the min-rate, harmonic-

rate, proportional fairness rate and sum-rate functions, it follows that the duality gap between(Pc) and

September 5, 2007 DRAFT



20

(Dc) is zero for all of these choices of system utility functions. By a “continuity” argument, this should

imply that the duality gap between the discrete primal-dual pair(PN
d ) and (DN

d ) should vanish when

N →∞. This is what we establish in the next theorem.

Theorem 8:Suppose the system utility functionH(u1, u2, ..., uK) is jointly concave and continuous in

(u1, ..., uK), and is monotonically non-decreasing in each argument. Moreover, assume each user’s utility

function is given byui = Ri(s1(f), s2(f), . . . , sK(f)), with Ri nonnegative and Lebesgue measurable,

wheresj(f) is the nonnegative and Lebesgue integrable power spectral density function of userj. Let

P ∗
N andD∗

N denote the optimal values of(PN
d ) and(DN

d ) respectively. Then the duality gapP ∗
N −D∗

N

vanishes asymptotically in the sense that

lim inf
N→∞

(P ∗
N −D∗

N ) = 0.

In light of Corollary 1, we only need to show that the optimal values of(PN
d ) and (DN

d ) converge

respectively to those of(Pc) and(Dc) respectively, asN →∞. The main difficulty with the proof is that

the continuous formulations(Pc) and (Dc) involve Lebesgue integrals while the discrete formulations

(PN
d ) and(DN

d ) involve Riemann sum of Lebesgue integrals. It is well known that we cannot in general

approximate the value of a Lebesgue integral by a Riemann integral. The mismatch of integrals arise

because Lyapunov theorem works only for Lebesgue integrals while in spectral management applications

we are confined to Riemann sum type of discrete formulations. Fortunately, for the optimization problems

considered here, the mismatch can be resolved. We leave the details of the proof to Appendix F.

V. D ISCUSSIONS

For a communication system in which users must share a common bandwidth, dynamic spectrum

management (DSM) offers a great potential to significantly improve total system performance and spectral

efficiency. This paper considers the computational challenges associated with DSM. If the potential

benefits of DSM are to be realized, these challenges must be properly addressed. The complexity

results of this paper suggest that for a given channel condition, computing the optimal spectrum sharing

strategy is generally difficult, unless either the number of users in the system or the number of shared

frequency tones is small (1 or 2). Even for a moderately sized problem (with10 ∼ 20 users and1000 ∼
2000 frequency tones), finding the globally optimal spectrum sharing strategy can be computationally

prohibitive. Consequently, our goal for DSM should be more realistic. The most that we can hope for

is to be able to efficiently determine an approximately optimal spectrum sharing strategy with provably

good quality.
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One efficient approach to find high quality approximately optimal spectrum sharing strategies is through

Lagrangian relaxation. This is because the dual formulation of the spectrum management problem is

always convex and is amenable to distributed implementation. The duality analysis in this paper shows

that the duality gap vanishes as the size of discretization decreases to zero, suggesting that the optimal

spectrum management problem is asymptotically convex. The main reason for the vanishing duality

gap is a hidden convexity associated with the continuous formulation due to the Lyapunov theorem in

functional analysis. The asymptotic strong duality suggests that it may be possible to devise a polynomial

time approximation scheme for the continuous spectrum management problem(Pc). That is, it may be

possible to find anε-optimal spectrum sharing strategy for(Pc) in time that is polynomial inK and

1/ε, whereε > 0. However, to achieve this goal, it will be necessary to develop a strengthened duality

analysis which explicitly bounds the size of duality gap for any finite discretization. We plan to address

these and other related issues in a forthcoming paper.

A number of extensions to the current work are possible. For example, rather than maximizing a

system-wide utility function as in the formulation(Pc), a telecom system operator may wish to minimize

the total transmission power while ensuring a given data rate for each user. This leads to the following

QoS (quality of service) constrained optimization:

minimize
K∑

k=1

∫

f∈Ω
sk(f)df

subject to
∫

f∈Ω
ln

(
1 +

sk(f)
σk(f) +

∑
j 6=k αkj(f)sj(f)

)
df ≥ rk,

sk(f) ≥ 0, Lebesgue integrable,k = 1, 2, ..., K,

whererk is the required data rate for userk. The corresponding discretized version becomes

minimize
1
N

K∑

k=1

N∑

n=1

sn
k

subject to
1
N

N∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
≥ rk, sn

k ≥ 0, k = 1, 2, ..., K.

For the one-tone case (N = 1), the discrete formulation is simply a linear program (solvable in polynomial

time). Also, if only one user is present (K = 1), then the problem is solved by the iterative water-filling

procedure. For other general cases (K ≥ 2 or N ≥ 3), the proof techniques of Section III can be easily

adapted to show the NP-hardness of the above QoS constrained problem. Moreover, Lyapunov theorem

can again be applied to the above pair of continuous-discrete formulations and the asymptotic strong

duality still holds.
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Our work can also be extended to other resource management problems in multiuser communication

such as transmission time management. In the latter case, we only need to change “f , s(f),
∫ · df , etc”

to “t, s(t),
∫ · dt, ...” respectively. Management of hybrid resources such as time-frequency sharing can

also be treated similarly.
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APPENDIX

Appendix A Proof of Theorem 1

We now present a polynomial transformation of the maximum independent set problem on a graph

to (P1)′. Since the former is NP-hard, this will imply the NP-hardness of(P1)′ and (P1). Suppose that

G = (V,E) is an undirected graph. An independent set ofG is a subsetS ⊆ V such that no two nodes

in S are connected: for anyvi, vj ∈ S, (vi, vj) 6∈ E. To find an independent set with a given size is

NP-hard.

Consider a connected graph withK vertices, i.e.|V | = K. For eachvi ∈ V , let

αij =





MK2, if vj is adjacent tovi;

0, otherwise,

where M is any positive number greater thanK, and σk = M , Pk = 1, k = 1, ...,K. In this way,

the feasible set becomes a Cartesian product of probability simplices. We claim thatG has a maximum

independent set of size|I| if and only if the corresponding(P1)′ has an optimal valuev∗ satisfying

|I| ln
(

1 +
1
M

)
≤ v∗ < (|I|+ 1) ln

(
1 +

1
M

)
.

If G has a maximum independent setI, then by letting

sk =





1, if vk ∈ I,

0, otherwise,

we have a solution for(P1)′ with an objective value equal to|I| ln (
1 + 1

M

)
.

On the other hand, suppose that one has an optimal solutions∗ for (P1)′ with optimal valuev∗. By a

direct computation, we have

∂2H

∂s2
k

= − 1
(sk + M + MK2

∑
(vk,vj)∈E sj)2

+
∑

i:(vi,vk)∈E

1
(K−2 +

∑
(vi,vj)∈E sj)2
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SinceG is connected, so the second sum is not vacuous and the definition ofM ensures that∂
2H

∂s2
k

> 0

for all feasible vectors. Thus, the objective functionH(s) is convex with respect to every component of

s (though not jointly convex ins). Since the maximum of a convex function over a polytope is always

attainable at a vertex, it follows that we can assume thats∗ is a 0-1 vector. Let

S := {vk | s∗k = 1, 1 ≤ k ≤ K}.

Let I be a maximum independent set contained inS. Then, it follows from the propertyM > K that

v∗ =
∑

vk∈S

ln
(

1 +
1

M + MK2|{vj ∈ S | (vj , vk) ∈ E}|
)

< |I| ln
(

1 +
1
M

)
+

∑

vk∈S

ln
(

1 +
1

M + MK2

)

≤ |I| ln
(

1 +
1
M

)
+ K ln

(
1 +

1
M + MK2

)

≤ |I| ln
(

1 +
1
M

)
+ ln

(
1 +

1
M

)
= (|I|+ 1) ln

(
1 +

1
M

)

where the strict inequality is due to the connectedness ofG which implies that|{vj ∈ S | (vj , vk) ∈
E}| ≥ 1. Thus, we have

|I| ln
(

1 +
1
M

)
≤ v∗ < (|I|+ 1) ln

(
1 +

1
M

)
,

establishing our claim.

In caseN ≥ 2, we considerN copies of graphG, called it GN = (V N , EN ), defined as follows:

(vi
k, v

j
k) ∈ EN for any 1 ≤ i 6= j ≤ N , and (vi

k, v
j
l ) ∈ EN iff (vk, vl) ∈ E, where1 ≤ i, j ≤ N ,

1 ≤ k 6= l ≤ K. Then, an independent set inG corresponds to an independent set inGN , and vice versa.

Hence,(P1) is in general strongly NP-hard for any fixed integerN ≥ 1.

Appendix B Proof of Theorem 2

The N = 1 case has been treated earlier. We only need to prove the problem is strongly NP-hard for

N = 3. The general case ofN > 3 by settingαn
kj = 0 andσn

k = M , for all n > 3 and allk, j, where

M ≥ max
k
{σ1

k, σ
2
k, σ

3
k}+ max

k,j
{α1

kj , α
2
kj , α

3
kj}

(∑

k

Pk

)

is a constant. With this choice, it can be checked that all tones numberedN > 3 are too noisy to be

used by any user in the system. In this case, the generalN > 3 case is reduced to a three tone case.

DRAFT September 5, 2007



25

WhenN = 3, the spectrum management problem(Pf ) becomes

maximize min
1≤k≤K

3∑

n=1

ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)

subject to s1
k + s2

k + s3
k ≤ Pk, s1

k, s
2
k, s

3
k ≥ 0, k = 1, ..., K.

(P2)

To prove the strong NP-hardness, we construct a polynomial transformation from the so called vertex

3-coloring problem to(P2). Given a connected graphG = (V, E) with K vertices, (i.e.|V | = K), the

3-coloring problem requires the determination of whether or not there is a partitionV = V 1 ∪ V 2 ∪ V 3

(mutually exclusive) such thatV 1, V 2, V 3 are all independent sets of the graph. For each graphG, we

define a corresponding spectrum management problem(P2) as follows: forn = 1, 2, 3,, let

αn
ij =





3, if vj is adjacent tovi; ,

0, otherwise.

Also, setσn
k = 1 andPk = 1, for all n, k.

We claim that graphG is 3-colorable if and only if(P2) has an optimal value greater or equal than

ln 2. If a 3-coloring solutionV = V 1 ∪ V 2 ∪ V 3 exists, then we may let

s1
k =





1, if vk ∈ V 1,

0, otherwise,
ands2

k =





1, if vk ∈ V 2,

0, otherwise,
ands3

k =





1, if vk ∈ V 3,

0, otherwise,

with k = 1, ..., K. This achieves an objective valueln 2 for (P2).

Now suppose that we have a solution for(P2) with an objective value at leastln 2. Let

V n :=

{
vk

∣∣∣∣∣ ln

(
1 +

sn
k

σn
k +

∑
j 6=k αn

kjs
n
j

)
≥ 1

3
ln 2, 1 ≤ k ≤ K

}
, n = 1, 2, 3.

Clearly, we haveV = V 1 ∪ V 2 ∪ V 3. We claim that eachV n must be an independent set. To see this,

suppose the contrary so that there are two nodesvk, vj ∈ V n (for somen = 1, 2, 3) which are adjacent

in G. Then the above definition ofV n implies that

sn
k ≥ (21/3 − 1)(1 + 3sn

j ) and sn
j ≥ (21/3 − 1)(1 + 3sn

k)

where we have used the definitions ofσn
i andαn

ij . Combining these two inequalities yields

sn
k ≥ (21/3 − 1)(1 + 3(21/3 − 1)(1 + 3sn

k))

which implies thatsn
k < 0. This is a contradiction, so the nodesvj andvk cannot be adjacent.

Notice that the setsV 1, V 2, V 3 may be overlapping. In this case, we can redefine the sets asV 1 := V 1,

V 2 := V 2\V 1, V 3 := V 3\(V 1∪V 2). In this way,V = V 1∪V 2∪V 3 forms a partition and gives a 3-color

solution for G. Since the above transformation involves only numbers that are at most polynomial in
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K (in fact constant inK), this establishes the strong NP-hardness of the original spectrum management

problem.

Appendix C Proof of Theorem 4

The proof of strongly NP-hardness for the caseN ≥ 3 is similar to the min-rate case considered in

Theorem 2, and we only provide an outline below. Consider a graphG = (V, E) with |V | = K. We need

to show that the graph is 3-colorable if and only if the optimal value of the(Pf ) is at leastK/ ln 2. Let

µ =
ln 2
3K

and αij =





1/µ2, if vj is adjacent tovi;

0, otherwise,
(9)

and σn
k = 1 for n = 1, 2, 3, and k = 1, 2, ...,K. We claim thatG is 3-colorable if and only if the

following problem:

maximize




K∑

k=1

(
3∑

n=1

ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

))−1


−1

subject to
3∑

n=1

sn
k ≤ 1, sn

k ≥ 0, k = 1, ...,K, n = 1, 2, 3,

(10)

has an optimal value at leastln 2
K .

“=⇒”: If the graph is indeed 3-colorable, then there is a partition of the vertices, sayV = V 1∪V 2∪V 3,

such thatV n is an independent set,n = 1, 2, 3. Let

s1
k =





1, if vk ∈ V 1,

0, otherwise,
ands2

k =





1, if vk ∈ V 2,

0, otherwise,
ands3

k =





1, if vk ∈ V 3,

0, otherwise,

with k = 1, ..., K. Clearly this is a feasible solution of the above problem, whose objective value equals

ln 2
K .

“⇐=”: Let f∗ be the optimal value of(10) with f∗ ≥ ln 2
K . Let us define

V n :=

{
vk

∣∣∣∣∣ ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

)
≥ µ, 1 ≤ k ≤ K

}
, n = 1, 2, 3. (11)

Since{sn
k | n = 1, 2, 3; k = 1, ..., K} is an optimal solution for(10) with optimal valuef∗, for each

given k, 1 ≤ k ≤ K, it follows that

3∑

n=1

ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

)
≥ f∗ ≥ ln 2

K
= 3µ.

DRAFT September 5, 2007



27

By the above inequality and (11), we have∪3
n=1V

n = V . What remains to be seen is that eachV n

forms an independent set. For this purpose, take any two verticesvk, vl ∈ V n, and we wish to show that

(vk, vl) 6∈ E. First, we note, due tovk ∈ V n, that

sn
k ≥

sn
k

1 +
∑

j 6=k αkjs
n
j

≥ exp(µ)− 1 ≥ µ,

and similarly,sn
l ≥ µ, sincevl ∈ V n. Suppose by contradiction that(vk, vl) 6∈ E and soαkj = 1/µ2.

Then,
µ

1 + µ
=

1
1 + 1

µ2 µ
≥ 1

1 + 1
µ2 sn

l

≥ sn
k

1 +
∑

j 6=k αkjs
n
j

≥ µ,

which is clearly a contradiction.

Finally, we notice that the setsV 1, V 2, V 3 may be overlapping. In this case, we can redefine the sets

asV 1 := V 1, V 2 := V 2\V 1, V 3 := V 3\(V 1 ∪ V 2). In this way,V = V 1 ∪ V 2 ∪ V 3 forms a partition

and gives a 3-color solution forG. Since the polynomial transformation outlined above involves only

numbers that are polynomial inK, we conclude the original spectrum management problem is strongly

NP-hard.

Appendix D Proof of Theorem 5

For the caseN ≥ 3, we use a polynomial time reduction (similar to the one used in Theorem 2) to

transform the 3-colorability problem to(P4). Consider a graphG = (V, E) with |V | = K. Let

λ =
(

1
3

)K

ln 2 and αij =





1/λ2, if vj is adjacent tovi;

0, otherwise,
(12)

andσk = 1, k = 1, ..., K.

We claim that the graph is 3-colorable if and only if the following problem:

maximize
K∑

k=1

ln

(
3∑

n=1

ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

))

subject to
3∑

n=1

sn
k ≤ 1, k = 1, ..., K,

sn
k ≥ 0, k = 1, ..., K; n = 1, 2, 3,

(13)

has an optimal value at leastK ln ln 2.

“=⇒”: If the graph is indeed 3-colorable, then there is a partition of the vertices, sayV = V 1∪V 2∪V 3,

such thatV n is an independent set,n = 1, 2, 3. Let

s1
k =





1, if vk ∈ V 1,

0, otherwise,
ands2

k =





1, if vk ∈ V 2,

0, otherwise,
ands3

k =





1, if vk ∈ V 3,

0, otherwise,
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with k = 1, ..., K. Clearly this is a feasible solution of (13), whose objective value equalsK ln ln 2.

“⇐=”: Let f∗ be the optimal value of the above problem withf∗ ≥ K ln ln 2. Let us define

V n :=

{
vk

∣∣∣∣∣ ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

)
≥ λ, 1 ≤ k ≤ K

}
, n = 1, 2, 3. (14)

Notice that for any feasible solution of (13), it holds that
3∑

n=1

ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

)
≤

3∑

n=1

ln (1 + sn
k) ≤ 3 ln 2,

for all k = 1, ..., K. Suppose that{sn
k | n = 1, 2, 3; k = 1, ..., K} is an optimal solution for(Ppf ) with

optimal valuef∗. Then, for each givenk, 1 ≤ k ≤ K, it follows that
3∑

n=1

ln

(
1 +

sn
k

1 +
∑

j 6=k αkjs
n
j

)
≥ exp(f∗)

(3 ln 2)K−1
≥ (ln 2)K

(3 ln 2)K−1
= 3λ.

By the above inequality and (14), we have∪3
n=1V

n = V . What remains to be seen is that eachV n forms

an independent set. For this purpose, take any two verticesvk, vl ∈ V n, and we wish to show that in this

case it(vk, vl) 6∈ E. First, we note that

sn
k ≥

sn
k

1 +
∑

j 6=k αkjs
n
j

≥ exp(λ)− 1 ≥ λ,

and similarly,sn
l ≥ λ. Suppose by contradiction that(vk, vl) 6∈ E and soαkj = 1/λ2. Then,

λ

1 + λ
=

1
1 + 1

λ2 λ
≥ 1

1 + 1
λ2 sn

l

≥ sn
k

1 +
∑

j 6=k αkjs
n
j

≥ λ,

which is clearly a contradiction. Thus, the vertices inV n (n = 1, 2, 3) are independent, establishing

the NP-hardness as desired. [Notice that we cannot claim strong NP-hardness since the transformation

outlined above involves exponentially large numbers (in terms ofK), although their binary lengths remain

polynomial.].

Appendix E Proof of Theorem 6

Let K = 2. The case ofH(u) = H1(u) =
∑N

n=1 un (sum-rate) has been considered in [8]. Below,

we treat the other three cases using the same polynomial transformation from the equipartition problem:

given a set ofN (even) positive integersa1, a2,...,aN , determine if there exists a subsetS ⊂ {1, 2, ..., N}
of N/2 numbers such that

∑

n∈S

an =
∑

n 6∈S

an =
1
2

N∑

n=1

an.

Recall that it has been shown [8] that if

αn
12α

n
21 ≥ 1/4, for all n
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then the optimal solution of the two-user sum-rate maximization problem must be FDMA, satisfying

sn
1sn

2 = 0, for all n. Furthermore, given an even integerN and a set ofN positive integersa1, a2, ..., aN ,

we can construct a two-user communication system as follows: let there be a total ofN frequency tones,

and let the channel noise powers for the two users beσn
1 = σn

2 = an, for n = 1, 2, ..., N . We also

set the crosstalk coefficientsαn
12 = αn

21 = 1.01 for all n, and letP1 = P2 = P := (N + 1)3σM , with

σM := maxn an. In this case, problem(PN
d ) is reduced to the following:

Hfdma
i := maximize Hi(u1, u2)

subject to u1 =
N∑

n=1

ln
(

1 +
sn
1

an

)
, u2 =

N∑

n=1

ln
(

1 +
sn
2

an

)

s ∈ S,
N∑

n=1

sn
1 ≤ P,

N∑

n=1

sn
2 ≤ P, (15)

where i = 1, 2, 3, 4. Let u∗1, u∗2 denote the optimal rates of user 1 and user 2 respectively. Next we

consider a convex relaxation of (15), withi = 1, by dropping the nonconvex FDMA constraints ∈ S,

and by combining the two separate power constraints as a single one:

Rrelax := maximize H1(u1, u2)

subject to u1 = u2 =
N∑

n=1

ln
(

1 +
sn

an

)

N∑

n=1

sn ≤ 2P, sn ≥ 0, ∀ n. (16)

Notice that the relaxed problem (16) is a standard single user rate maximization problem, soRrelax can be

evaluated easily using convex optimization (or the classical Karush-Kuhn-Tucker optimality condition).

For the caseH(u) = H1(u) (sum-rate maximization), it was shown [8] that

Hfdma
1 ≤ Rrelax = N ln

(
2P +

∑N
n=1 an

N

)
−

N∑

n=1

ln an

and the equality holds if and only ifu∗1 = u∗2. Moreover, the latter holds if and only if the equipartition

problem has a ‘yes’ answer. For other three cases of system utility functions (i = 2, 3, 4), we have

Hfdma
4 (u1, u2) ≤ Hfdma

3 (u1, u2) ≤ Hfdma
2 (u1, u2) ≤ Hfdma

1 (u1, u2)

for all u1, u2 ≥ 0, where the equalities hold if and only ifu1 = u2. Thus, fori = 2, 3, 4, we can conclude

thatHfdma
i ≤ Rrelax, with equality holding exactly whenu∗1 = u∗2, or equivalently when the equipartition

problem has a ‘yes’ answer. This implies the NP-hardness of the spectrum management problem(PN
d )

in the two-user case for all three system utility functionsH2(u), H3(u) andH4(u).
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Appendix F Proof of Theorem 8

In what follows, we only prove that the optimal value of(PN
d ) converges to that of(Pc), as the dual

case is similar. LetvN
d (P ) andv(P ) denote the optimal values of(PN

d ) and (Pc) respectively. Suppose

v(P ) is attained at Lebesgue integrable functions{s1(f), s2(f), ..., sK(f)}. Then, we havesi(f) ≥ 0

and

v(P ) = H(u1, u2, ..., uK),

ui =
∫ 1

0
Ri(s1(f), s2(f), . . . , sK(f))df, i = 1, 2, ...,K,

Pi ≥
∫ 1

0
si(f)df, i = 1, 2, ..., K.

By the definition of Lebesgue integral, for eachε > 0, there exists someN1 > 0 and a partition of the

nonnegative real line

0 = R0
i < R1

i < R2
i < · · · < RN1

i < RN1+1
i = ∞

such that ∣∣∣∣∣ui −
N1∑

n=1

Rn
i µ(An

i )

∣∣∣∣∣ ≤ ε,

whereµ(·) denotes the Lebesgue measure andAn
i is the inverse image of interval[Rn

i , Rn+1
i ) under

mappingRi:

An
i = R−1

i ([Rn
i , Rn+1

i )), n = 1, 2, ..., N1.

Notice that the sets{A1
i , A

2
i , ..., A

N1
i } are Lebesgue measurable and together they form a partition of the

unit interval [0, 1] =
⋃N1

n=1 An
i . Similarly, there exists someN2 > 0 and a partition of the nonnegative

real line

0 = s0
i < s1

i < s2
i < · · · < sN1

i < sN1+1
i = ∞

such that ∣∣∣∣∣
∫ 1

0
si(f)df −

N2∑

n=1

sn
i µ(Bn

i )

∣∣∣∣∣ ≤ ε,

whereBn
i is the inverse image of interval[Rn

i , Rn+1
i ) under mappingsi(f):

Bn
i = s−1

i ([sn
i , sn+1

i )), n = 1, 2, ..., N2.

Thus, each useri = 1, 2, ..., K has two partitions{A1
i , A

2
i , ..., A

N1
i }, {B1

i , B2
i , ..., BN2

i } of the unit

interval [0, 1]. By a further refinement of these partitions for alli if necessary, we assume that the

DRAFT September 5, 2007



31

partitions are identical for all users. For simplicity, let{A1, A2, ..., AN3} denote the partition common

for all users. Then we have

∣∣∣∣∣ui −
N3∑

n=1

R̄n
i µ(An)

∣∣∣∣∣ ≤ ε, ∀ i = 1, 2, ..., K, (17)

and ∣∣∣∣∣
∫ 1

0
si(f)df −

N3∑

n=1

s̄n
i µ(An)

∣∣∣∣∣ ≤ ε, ∀ i = 1, 2, ..., K, (18)

whereR̄n
i ∈ {R1

i , R
2
i , · · · , RN1

i } and s̄n
i ∈ {s1

i , s
2
i , · · · , sN2

i } for n = 1, 2, ..., N3. SinceR̄n
i is constant

over An and is defined by the values ofsi(f) over An which are{s̄n
i }K

i=1, we have

R̄n
i = Ri(s̄n

1 , s̄n
2 , · · · , s̄n

K), ∀ 1 ≤ i ≤ K, 1 ≤ n ≤ N3. (19)

Let

M = max
1≤i≤K

{RN1
i , sN2

i } = max
1≤i≤K,1≤n≤N3

{R̄n
i , s̄n

i }.

Since eachAn is Lebesgue measurable, it follows that there exists a finite union of disjoint intervals

An(1), ..., An(jn) which form an almost exact approximation ofAn in the sense that

µ


An4




jn⋃

j=1

An(j)





 ≤ ε

MN3
,

where4 denotes set difference operator. This implies that

∣∣∣∣∣∣
µ(An)−

jn∑

j=1

µ(An(j))

∣∣∣∣∣∣
≤ ε

MN3
. (20)

Consider a uniform partition of the unit[0, 1] =
{
0, 1

N , 2
N , ..., N−1

N , 1
}

. We need to approximate the end

points of the intervalsAn(j) simultaneously by rational numbers of the formi/N . By Dirichlet theorem

for simultaneous Diophantine approximation, there exists a sufficiently large integerN4 such that for all

N = kN4 (multiples of N4) each intervalAn(j) can be well-approximated by a finite interval of the

form In
N (j) = [ ij

N , kj

N ], with ij , kj being integers in the interval[0, N ], such that

∣∣∣∣µ(An(j))− |kj − ij |
N

∣∣∣∣ ≤
ε

MNjn
. (21)
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In this way, we have

µ


An4




jn⋃

j=1

In
N (j)





 ≤ µ


An4




jn⋃

j=1

An(j)





 + µ







jn⋃

j=1

In
N (j)


4




jn⋃

j=1

An(j)







≤ ε

MN3
+

jn∑

j=1

µ (In
N (j)4An(j))

≤ ε

MN3
+

jn∑

j=1

ε

MN3jn
=

2ε

MN3
,

where the last step follows from (20)–(21). Therefore, we obtain
∣∣∣∣∣∣
µ(An)− µ




jn⋃

j=1

In
N (j)




∣∣∣∣∣∣
≤ 2ε

MN3
.

In other words, each setAn can be approximated by a finite union of intervals of the formIi
N taken

from a uniform partition of unit interval[0, 1], providedN is sufficiently large (and multiple ofN4).

Substituting these approximations into integral estimates (17)–(18), we obtain
∣∣∣∣∣ui − 1

N

N∑

n=1

R̂n
i

∣∣∣∣∣ ≤
∣∣∣∣∣ui −

N3∑

n=1

R̄n
i µ(An)

∣∣∣∣∣ + max
n

R̄n
i

N3∑

n=1

∣∣∣∣∣∣
µ(An)− µ




jn⋃

j=1

In
N (j)




∣∣∣∣∣∣

≤ ε + M ×N3 × 2ε

MN3
= 3ε, ∀ i = 1, 2, ..., K,

whereR̂n
i ∈ {R1

i , R
2
i , ..., R

N1
i } for all n = 1, 2, ..., N . Similarly, we have
∣∣∣∣∣
∫ 1

0
si(f)df − 1

N

N∑

n=1

ŝn
i

∣∣∣∣∣ ≤ 3ε, ∀ i = 1, 2, ..., K,

whereŝn
i ∈ {s1

i , s
2
i , ..., s

N2
i } for all n = 1, 2, ..., N , which further implies

1
N

N∑

n=1

ŝn
i ≤

∫ 1

0
si(f)df + 3ε ≤ Pi + 3ε. (22)

Moreover, it follows from (19) that

R̂n
i = Ri(ŝn

1 , ŝn
2 , · · · , ŝn

K), ∀ 1 ≤ i ≤ K, 1 ≤ n ≤ N,

which implies ∣∣∣∣∣ui − 1
N

N∑

n=1

Ri(ŝn
1 , ŝn

2 , · · · , ŝn
K)

∣∣∣∣∣ ≤ 3ε.

Since the objective functionH(u1, u2, ..., uK) is continuous, the above estimate and (22) show that

lim
N=kN4

k→∞

|P ∗
N − P ∗

∞| ≤ δ(ε),
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whereδ(ε) → 0 as ε → 0. In a similar fashion, there existsN5 > 0 such that

lim
N=kN5

k→∞

|D∗
N −D∗

∞| ≤ δ(ε).

SinceP ∗∞ = D∗∞ (Corollary 1), it follows that

lim
N=kN4N5

k→∞

|D∗
N − P ∗

N | ≤ 2δ(ε).

Letting ε → 0, we obtainlim infN→∞ |D∗
N − P ∗

N | = 0 as desired.
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