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Abstract

Consider a communication system whereby multiple users share a common frequency band and must
choose their transmit power spectral densities dynamically in response to physical channel conditions.
Due to co-channel interference, the achievable data rate of each user depends on not only the power
spectral density of its own, but also those of others in the system. Given any channel condition and
assuming Gaussian signaling, we consider the problem to jointly determine all users’ power spectral
densities so as to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject
to individual power constraints. For the discretized version of this nonconvex problem, we characterize its
computational complexity by establishing the NP-hardness under various practical settings, and identify
subclasses of the problem that are solvable in polynomial time. Moreover, we consider the Lagrangian
dual relaxation of this nonconvex problem. Using the Lyapunov theorem in functional analysis, we
rigorously prove a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the
continuous (Lebesgue integral) formulation. Moreover, we show that the duality gap for the discrete

formulation vanishes asymptotically as the size of discretization decreases to zero.

Keywords: Spectrum management, sum-rate maximization, complexity, duality

I. INTRODUCTION

In a multiuser communication system such as cognitive radio or Digital Subscribe Lines (DSL),
interference mitigation is a major design and management objective. A standard approach to eliminate
multiuser interference is to divide the available spectrum into multiple tones (or bands) and pre-assign
them to the users on a non-overlapping basis (FDMA). Although such ‘orthogonal channelization’

approach is well-suited for high speed structured communication in which quality of service is a major
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concern, it can lead to high system overhead and low bandwidth utilization. This is because for such a
system a frequency tone pre-assigned to a user can not be released to other users even if it is not needed
when the user is idle, or is unusable due to poor channel conditions.

With the proliferation of various radio devices and services, multiple wireless systems sharing a
common spectrum must coexist [9]. In such scenarios, a pre-engineered FDMA solution may no longer
be feasible or desirable, and we are naturally led to a situation whereby users can dynamically adjust
their transmit power spectral densities over the entire shared spectrum, potentially achieving significantly
higher overall throughput. For such a multiuser system, each user’s performance depends on not only the
power allocation (across spectrum) of its own, but also those of other users in the system. To mitigate
multiuser interference, proper spectrum management (i.e., power control) is needed for the maximization
of the overall system performance. Spectrum management problem of this type also arises in a DSL
system where multiple users communicate with a central office through separate telephone lines over a
common spectrum. Due to electro-magnetic coupling, signals transmitted over different telephone wires
bundled in close proximity may interfere with each other, resulting in significant signal distortion. In fact,
such crosstalk is known to be the major source of signal distortion in a high speed DSL system [21].
Hence, for both wireless and wireline (DSL) applications, judicious management of spectrum among
competing users can have a major impact on the overall system performance.

The dynamic spectrum management problem has recently become a topic of intensive research in the
signal processing and digital communication community. From the optimization perspective, the problem
can be formulated either as a noncooperative Nash game [5], [21] or as a cooperative utility maximization
problem [4], [22]. Several algorithms were proposed to compute a Nash equilibrium solution (Iterative
Waterfilling method (IWFA) [5], [21]) or globally optimal power allocations (Dual decomposition method
[3], [11], [20]) for the cooperative game. Due to the problem’s nonconvex nature, these algorithms either
lack global convergence or may converge to a poor spectrum sharing strategy. Significant effort has been
made to establish conditions which can ensure the existence and uniqueness of a Nash equilibrium solution
as well as the convergence of IWFA [12], [15], [18], [21]. In an attempt to analyze the performance of
the dual decomposition algorithms, Yu and Lui [20] studied the duality gap of the continuous sum-rate
maximization problem and showed it to be zero in the frequency flat case. For the general frequency
selective case, they used an intuitive but non-rigorous argument to suggest that the strong duality should
still hold. Despite the aforementioned progress, a complete understanding of the problem’s complexity
status and a thorough duality analysis has not yet emerged. For example, the zero-duality gap result for

the continuous formulation does not readily translate to asymptotic zero duality for the discrete spectrum
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management problem as the discretization becomes infinitely fine (see Section V). The latter is key to
study the performance of dual decomposition algorithms for practical OFDM based multiuser systems.
In this paper, we present a systematic study of the dynamic spectrum management problem, covering
two key theoretical aspects: complexity and duality. Specifically, we determine the complexity status of
the spectrum management problem under various practical settings as well as different choices of system
utility functions, and identify subclasses which are polynomial time solvable. In so doing, we clearly
delineate the set of computationally tractable problems within the general class of NP-hard spectrum
management problems. Furthermore, we rigorously establish the zero-duality gap result of Yu and Lui
[20] for the continuous formulation when the interference channels are frequency selective. The key steps
in our analysis are to cast the continuous formulation under the Lebesgue integral framework and to use
the Lyapunov theorem [13] from functional analysis. The latter theorem says that the integral of any
set-valued function over a non-atomic measure space (in our case finite intervals) is convex, even if the
individual values of the function are not convex. Finally, we show that the duality gap for the discretized
spectrum management problem vanishes when the size of discretization approaches zero. This is the
case even if the system utility is nonlinear (but nonetheless concave). The asymptotic zero duality result
suggests that the Lagrangian dual decomposition approach [3], [11], [20] may be a viable way to reach

approximate optimality for finely discretized spectrum management problems.

II. PROBLEM FORMULATION

Consider a multi-user communication system consistingikotransmitter-receiver pairs sharing a
common frequency band € Q. For simplicity, we will call each of such transmitter-receiver pair a
“user’. Upon normalization, we can assurfeto be the unit interval i, namely,2 = [0, 1]. Each user
k has a fixed transmit power budget which it can allocate acifbs® as to maximize its own utility.
Let sx(f) : @+ [0,00) denote the power spectral density (or power allocation) function of iis€he

transmit power budget of usércan be represented as

/$k<f>df<Pk>
Q

where P, > 0 is a given constant. Due to multi-user interference, udseutility depends on not only
its own allocation functiors,(f), but also those of otherfs,(f) : ¢ # k}. Let userk’s utility function

be denoted by
ug(s1, 82, ..y SK) = /QRk(sl(f), sk ()df,

where Ri(+) : Q — [0,4+00) is a Lebesgue integrable, possibly non-concave function.
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Due to the complex coupling between users’ utility functions, it is generally impossible to maximize
the utility functionsuy, us,..., ux Simultaneously. Instead, we seek to maximize a system-wide utility
H(uq,...,ux) which carefully balances the interests of all users in the system. This leads to the following

spectrum management problem:

max H(uj, - ,ug)

s.t. u1:/QRl(sl(f),-..,SK(f))df

up = / R (s1(f sk (f)df
/ f)df < Py, sg(f) > 0 and Lebesgue measurable=1, ..., K.
Q

The subscript in the notation “@.)” signifies the continuous domain of the formulation. The maximum
value of (P,) is called thesocial optimum

There are four commonly used choices for the system utility funcl@n,, - - - ,uk):
i) Sum-rate utility: Hi(ug, ..., ux) = & S 1, uk;
ii) Proportional fairness utility: Ha(uq, ..., ux) = (HkK:1 uk) HE (equivalent to maximizingjkk_1 In uyg);
iif) Harmonic-rate utility: Hs(uy,...,ux) = (Zk LU 1) (equivalent to maximizing- ln(zk LU 1)),
iv) Min-rate utility: Hy(uy, ..., ux) = ming<p<p Ug.

In general, these utility functions can be ordered
Hy > Hy > H3 > Hy.

In terms of user fairness, the order is reversed.

The spectrum management problé#.) is in general nonconvex due to the nonconcavity of utility
functionsuy, us, ..., ug. Moreover, it is defined in continuous domain (infinite dimensional), with spectral
density functionssy(f), s2(f),..., sx(f) as decision variables. As such, the spectrum management
problem (P.) is a difficult infinite dimensional nonlinear optimization problem.

To facilitate numerical solution, we typically discretize the frequency band s@Xtkat 0, + N N, o 1}

In this way, the continuous formulation of the frequency management profiejncan be discretized
by replacing Lebesque measure with a discrete uniform measuite gnlin particular, usek’s spectral

density becomes

1 N
_07 NZSZ»§P
n=1
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and the corresponding utility is
N
1 n n
Ul = Nnéle(Sl,. . "SK)'

The corresponding social optimum is achieved by maximizing the total system wility, ..., ux)

max H(uq, JUK)
1 N
S.t ul_NZRl(Sla 7SK)
n=1
. (PY)
1
uK:NZRK(s’f,...,snK)
n=1
1 N
stggpk, >0, k=1,.. K,
n=1

We use(PY) to denote this discretized problem. IntuitivelyfY) — (P.) as N — oo, namely, as
the discretization becomes infinitely fine, the discrete problem coincides with the continuous spectrum
management problentHHowever, as we see in Section 1V, this “limiting” argument can be problematic

due to a mismatch between Riemann and Lebesgue integrals.
Rate maximization

Let ;! denote the transmitted complex Gaussian signal from kggonsisting of a transmitter and
receiver pair) at tone:, and lets} := E|:EZ|2 denote its power. For an AWGN channel, the received
signaly; is given by

K
yr =Y _hiyai + 27, neN, kek,
=1

where z;! ~ CN (0, Ny) denotes the complex Gaussian channel noise with zero mean and vakignce
and the complex scalar{sh;fk} represent channel gain coefficients. In practh%c can be determined
by the distance between transmitteand receivelk. The capacity region of this interference channel is
still unknown. So it is reasonable (and natural) to treat the interference as white noise, especially if users
do not have direct knowledge of the code/modulation schemes of other users in the system. In this way,
we can write transmittek’s achievable data rat&; at tonen [6] as

7 s

Ry (sV,...,sk)=In[1+ : ,
No + 3225 A7 ]8T

Upon normalizing the channel coefficients, we obtain

RU(sD,...,s%) = In <1+ ok ) (1)

n n n
O+ 2k OS]
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whereo} = No/|hi,|* denotes the normalized background noise power, @fyd= |1} [*/|h} . |* is
the normalized crosstalk coefficient from transmitteo receiverk at tonen. Due to normalization, we
haveaj, =1 for all .

Notice that unlike the frequency flat case considered in [7], the channel coeffibggp\‘/ary according
to tone index» due to frequency selectivity, resulting in a non-constant normalized noise p@vaaross
tones. As it turns out, this crucial difference greatly complicates the spectrum management problem in the
frequency selective case, making an otherwise convex optimization problem computationally intractable;
see Section Il

For the continuous formulatio?; () can represent the data rate achievable by ksarfrequencyf

(in the sense of Shannon [6]):

or(f) + Zj;ﬁk o (f)s;(f)

where o, (f) > 0 signifies the noise power at uséron frequencyf, and oy;(f) > 0 denotes the

Ri(s1(f), ..., sx(f)) =In <1 + s () ) , )

normalized path loss coefficient for the channel between gisemd userk on frequencyf. Clearly,
the rate functionRy(-) and the utility functionuy(-) are both nonconcave. The spectrum management

problem can be stated as

max H(up,- - ,uk)

| sk(f)
st w= [ (1 BEAESES S akj<f>sj<f>> v (Pp)
/ sk(f)df < Py, sk(f) > 0 and Lebesgue measurable=1, ..., K.
Q

In practice (e.g., IEEE 802.11x standards), the available specirumdivided into multiple tones
(or bands) and shared by the users. In this way and assukhing= H,(-), the spectrum management

problem(P%) is discretized and becomes

| KN o
. . k
maximize Z Zln (1 +— - n)

subject to

The main challenges of spectrum management are (i) honconvexity, (i) problemMsize 4000,
K > 50) and (iii) distributed optimization. A popular spectrum management approach is Frequency
Division Multiple Access (FDMA) whereby the available tones (or bands) are shared by all the users on a

non-overlapping basis. Such ‘orthogonal channelization’ approach is well-suited for high speed structured
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communication in which quality of service is a major concern. Mathematically, FDMA solutions can be

described as
{szo | spst =0, Vk# 7, Vn}, discrete
S =

{s(f) =0 sk(f)s;(f) =0, Yk #3, ¥V f}, continuous
FDMA solutions arenot necessarily vertex solutions.

[11. DISCRETEFREQUENCIES COMPLEXITY ANALYSIS

In this section, we investigate the complexity status of the spectrum management p(éhleomder
various practical settings as well as different choices of system utility functions. We provide a complete
analysis on when the problem is NP-hard and also identify subclasses of the problem that are solvable
in polynomial time. We will consider two separate cases: the case of many users and few tones (large

K and fixedN), and the case of few users and many tones (fikednd largeN).

A. The case of many users and few tones

In this section, we fixVand analyze the complexity of the spectrum management profaiemfor
large K and for various choices of system utility functions.

1) Maximization of sum-rate:Let us first consider the problem of maximizing the total system
throughput or sum-rate. This corresponds to choosing a system utility funéfien = H;(u) =
% Ele ug. We show below that the resulting spectrum management problem is NP-hard for any fixed
N.

The discrete sum-rate maximization problem is givenBy). We specializg P;) to the caseV = 1:

K s

maximize H(s) = ;m <1 o > Oékjsj> Py
subjectto 0 < s, < P, k=1,..., K.

Notice that, for simplicity, we have dropped the constant fattdk” from the objective function and
removed the superscript in our notations sinceV = 1. The resulting problem corresponds to the
practical situation whereby multiple users share a single frequency band (say, a control channel), and
wish to cooperate in order to maximize the sum-rate of all users.

Theorem 1:For the sum-rate utility function (us,...,ux) = 7%(u1 + -+ + ug), the spectrum
management problerfP;) is strongly NP-hard for any fixedv > 1.

The proof is based on a polynomial time reduction from the maximum independent set problem. The

details are relegated to Appendix A. Intuitively, if all cross talk coefficients are eftlmroo, then the
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optimal solution of(P;) will have eithers; = 0 or s, = Py, for all usersk. In this way, maximizing the
sum-rate is equivalent to finding the largest subset of users which are mutually non-interfering, which is
further equivalent to the maximum independent set problem in combinatorial optimization. The complexity
analysis for(P;) has an interesting consequence. It is well known that the maximum independent set
problem is not only difficult to optimize, but also hard to approximate (cf. Trevisan [17]). In particular,
for a K-node graph, there is a constant 0 such that if there is a polynomial-tim& —¢-approximation
algorithm' for the maximum independent set problem then P=NP. This inapproximability result, coupled
with the polynomial transformation outlined in the preceding complexity analysis, implies that the sum-
rate maximization problem cannot be well approximated even to within a fact@r6fwhen the number
of tones is 1.

2) Maximization of min-rate utility:We now study the complexity status of the spectrum management
problem(P;) when the system utility function is the minimum of all users’ ratdu) = miny, u;. As
we see next, unlike the sum-rate case considered earlier, the spectrum management problem becomes a
convex optimization problem wheN = 1.

Let N = 1 and consider the min-rate utility functioH (v) = ming u;. The corresponding spectrum

management problerfP;) becomes (after dropping the superscript

.. . S
maximize min In |1+ i
1<k<K oL+ Zﬁék QS

subjectto 0< sy < P, k=1,...,K,

which, by the monotonicity ofn(-) function, is equivalent to

.. . S
maximize min — %
1<k<K g, + Z Qi Sj
7k
subjectto 0 < s < P, k=1,..., K.

This is known as a generalized fractional linear programming problem and can be solved by parametric
linear programming. In particular, introducing an auxiliary variableve obtain the following equivalent

formulation
maximize Tt

subject to sg > (o + ;4 OkjS;)

TZO, OSSkSPk, kZl,...,K,

For a maximization problemmaxcq H(f) with H(f) nonnegative, we say is an §-approximate solution it (f) >
1) maXxyfeQ H(f)
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which can be easily solved using a binary search ofhis shows that the case &f = 1 is polynomial

time solvable. However, ifV > 2 then the problem remains NP-hard.

Theorem 2:For the min-rate system utility functiod/ (v) = minj ug, the spectrum management
problem (Py) is polynomial time solvable (in fact equivalent to a parametric linear program) when

N =1, and is strongly NP-hard wheN > 3.

The proof of Theorem 2 consists of a polynomial time reduction from the 3-colorability problem, i.e.,
the problem to determine if the nodes of a given graph can be assigned one of the three colors so that no
two adjacent nodes are colored the same. The 3-colorability problem is known to be NP-hard. Intuitively,
for any given graph, we can think of nodes in the graph as users, and colors as frequency tones. If we
set the normalized crosstalk coefficient$, to be either a (sufficiently large) constant or zero, depending
on if nodes? andk are adjacent or not. In this way, the min-rate optimal solution for the corresponding
spectrum management problem will try to assign frequency tones to users so that each tone is utilized
by at least one user in a non-interfering manner. This then leads to a solution to the coloring problem.

We provide details of the analysis in Appendix B.

There is still a missing case df = 2 that is not covered by Theorem 2. While we have not been
able to characterize its complexity, we can reduce it to a simple optimization problem involving a single
variable.

Theorem 3:For the min-rate utility function (u) = ming u; and N = 2, the spectrum management
problem(Py) is equivalent to a single-variable optimization problem.

Proof. When N = 2, the maximization of min-rate utility becomes

maximize min [In {1+ i +in {1+ o
min | In T T .1 1 2 2 2
1SR oL+ 3 g 05 Tj + 2yt 015

subject to 5,1C + si < P, s,lg,s% >0,k=1,.., K.

By a bisection search on the objective function, this maximization problem can always be broken down

to a series of feasibility problems:

sk st
In{1+ k +In|1+ k >Inao
(Fa) < Ok + Xk ks Oh Lk Wy

s}c—%s% < Py, s}g, s% >0,k=1,...,K.

We claim that for a fixedv > 0, then it takes polynomial-time to check (i#,) is feasible or not. In
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fact, (F,) is equivalent to the existence gf> 0 such that

1

1+ il >
O+ Djpn Sy P

2
1+ Ok >

2 2 o1
T + 2k Va5

s,{,%—s% < Py, S}C,Si >0, k=1,.., K,

which amounts to checking the feasibility of the system

2, .2 2 .2 1 1.1
min Ojo + Sk + 2 jak OS] >8> max ooy + Dz g 55)
p 72 =P T T .1
1<k<K o + E = ozkjsj 1<k<K o + S + E £k ozkjsj

s,lg—l—sz < Py, s,lc,s% >0,k=1,.. K,

and this leads to solving the following parameterized convex optimization problem:

1 1.1
o Op + > s QS
(Qs) minimize max — b - iz kjlj -
1<k<K 0} + 53, + Zﬁék ;S
2 2 2 2
Or 485+ D QST
. . O+ sk k O
subject to  min 5 #2 S
LSkSK  0f + 05y, OS5
s,1€+3i§Pk, s,}z,sizo, k=1,.. K.

>3
Denote the optimal value ¢fl)g) to bev (/). Maximizing « is equivalent to finding the maximum of
B/v(B) for g >0, i.e., maxogB/v(F). m

3) Maximization of harmonic-rate utility:When the system utility function is given b¥f (u) =

Hs(u) = K(up' + -+ +uj')~!, the spectrum management problem is equivalent to

K /N gn -1
minimize Z (Zln (1 + k ))
k=1 \n=1

n n n

subjectto Y sp < Py k=1,...,K,

n=1

>0 k=1,..,K;n=1,..,N.

Similar to the min-rate utility case, we have the following complexity characterization result.
-1
Theorem 4:For the harmonic-rate utility functiod/ (u) = K (Zszl u,;l) , the spectrum manage-

ment problem(Ps) is a convex optimization problem (thus polynomially solvable) wiér= 1, and is
strongly NP-hard whev > 3.

Proof. We only consider the case 6f = 1. The NP-hardness proof féa¥ > 3 can be found in Appendix
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C. WhenN =1, problem(Ps) becomes (after dropping the superscript

K —1
L Sk
minimize E In(1+

k:1< ( Tk D %’Sj))

subjectto 0 < sy < P, k=1,..., K.

Introducing new variables,, we can rewrite the above problem as

K
minimize Ztk
k=1
subject to 1/t <In [ 1+ ok
LS In
Ok + 2 j2k OkjSj

OSSkSPk, thO,k:L...,K.

By a nonlinear variable transformatiosy, := exp(yx), (P3) can be equivalently turned into

minimize S 4,
. 1
subject to In | o exp(—yx) + Zakj exp(y; — k) | +1n (exp <t> — 1> <0, (P3)’
J#k
Yy <InPp, tp, >0, k=1,... K.

It is well known thatln (o—k exp(—yk) + Dk kj exp(y; — yk)) is a convex function iny. Moreover, it
can checked easily that(exp(1/t) —1) is convex overt > 0. Consequently(P;)’ is a convex program,

hence solvable in polynomial-time in terms of the dimension and the required solution precision.

We remark that the complexity status @?;) remains unknown wheiV = 2.
4) Maximization of proportional fairness utilityConsider the system utility functioH (u) = Ha(u) =
1/K
(Hszl uk) . Notice that maximizing] [, uk)l/K (the geometric mean of users’ data rates) is equiv-

alent to maximizing) _, Inu. Thus, the spectrum management problgi) becomes

K N g
maximize In In|1+ k
; (r; ( Tk + 2tk Oy Sy ))

N
subjectto Y sp < P, sp>0,k=1,..,K,n=1,..,N.

n=1

(Py)

Below is our complexity characterization result for the proportional fairness utility maximization problem.
. . . . 1/K
Theorem 5:For the proportional fairness utility functiod (u) = (Hszl uk) , the spectrum man-

agement problenfPy) is convex whenV =1 and is NP-hard forV > 3.
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Proof. For N =1, the corresponding spectrum management problem becomes

K
maximize Zln In <1 + Sk >

P Ok + 2tk OhjS;

subjectto 0 < sy, < P, k=1,..., K.

(Py)

Similar to the proof of Theorem 4, let us introduce some auxiliary variatilemd the constraints

exp(ty) < In <1 + il ) ;

O+ Dk OhjSj

which can be equivalently written as

Ok + D ik OkjSj < 1
Sk ~ exp(exp(ty)) — 1

By the variable transformatios; := exp(y;), j = 1, ..., K, we rewrite the above inequality as

In | of exp(—yi) + Zakj exp(y; — yk) | +1n(exp(exp(tx)) — 1) <O0. (3)
ik
It can be checked that the functi@n(¢) := In (exp(exp(t)) — 1) is convex. This shows that constraints

of the type in (3) are convex. Sindé;)’ can be equivalently written as

K

maximize Ztk
k=1

subject to In | o exp(—yx) + Zakj exp(y; — yk) | +1n(exp(exp(ty)) — 1) <0,

ik
Yk < lnPk, k= 1, ...,K,
it is therefore a convex optimization problem.
The NP-hardness proof is similar to the harmonic rate case (consisting of a reduction from 3-colorability

problem), and is given in Appendix D. =

The complexity status remains unknown for the two-tone case with proportional fairness criterion.

B. The case of many tones and few users

So far we have analyzed the computational complexity of the spectrum management problem for
various choices of system utility functions when the number of uséis large while the number of
tonesN is small and fixed. In what follows, we consider the other case when the number ofiisers
small and fixed while the number of frequency to@égrows to infinity. For the sum-rate maximization

problem (corresponding to the system utility functi6i{u) = Hy(u) = ZnNzl uy), the recent work of
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[8] shows that the resulting spectrum management problem is NP-hard even when there are only two
users in the system. This NP-hardness result effectively shatters any hope to efficiently compute the exact
optimal spectrum sharing strategy. The combinatorial growth of possible frequency assignments simply

renders the problem intractable. Below we generalize this result to other system utility functions.

Theorem 6:The two-user spectrum management probig’) is NP-hard when the system utility
function H (u) is given by the following choicesH (u) = 3>V u, (sum-rate),Hy(u) = SN Inw,
(proportional fairness)Hs(u) = (32, u; 1)~ (harmonic-rate), o, (u) = min, u, (Min-rate).

The proof of this complexity characterization relies on a reduction from the so called equipartition
problem: given an even number of integers, determine if they can be partitioned into two subsets of same
size such that the sum of integers in the two subsets are equal. To see how the equipartition problem
is related to the spectrum management problem, let us imagine a situation whereby two users with the
same noise power spectrum are to share a common set of frequency tones. Assume that the crosstalk
coefficients are sufficiently strong on every tone. It follows from [8] that the optimal sum-rate spectrum
sharing strategy must be FDMA. To maximize the system utility (defined by any of the mentioned
utility functions) among all FDMA strategies, the two users should partition the tones in a way that
best balances the total noise power across the frequency tones assigned to the two users. In this way,

deciding on which user should get exactly which subset of tones becomes essentially the aforementioned
equipartition problem. The details of the proof are relegated to Appendix E.

For a single user systemK( = 1), there is no multiuser interference, so the optimal spectrum
management problem becomes convex, as lond @g is concave. In fact, in this case, all four system
utility functions H, H,, H3 and H, coincide, and the optimal solution can be found via the well-known
waterfilling algorithm in polynomial time. Below is a summary of the complexity status of the discrete

spectrum management probleify).

Utility Function

Sum-Rate H, | Sum-Rate H, | Proportional Harmonic Min-Rate H,
Problem FDMA Soln (arithmetic mean) | Fairness H, mean H,
(geometric mean)
Class
K=1, N arbitrary Convex Opt Convex Opt | Convex Opt Convex Opt Convex Opt

(Waterfilling) | (Waterfilling) | (Waterfilling) (Waterfilling) | (Waterfilling)

K22 and fixed, N

arbitrary NP-hard NP-hard NP-hard NP-hard NP-hard

N>2 and fixed, K Strongly Strongly Strongly Strongly

arbitrary NP-hard NP-hard NP-hard NP-hard NP-hard
Strongly Strongly

N=1, K arbitrary NP-hard NP-hard Convex Opt Convex Opt LP
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In the above table, the column 'Sum-Rate H1 (FDMA solution)’ represents the optimization model
where the objective is to maximize the total rates, while the users’ power spectruroenateainedto
have no overlap. The second column ‘Sum-Rate H1 (arithmetic mean)’ represents the model with the

same objective but the FDMA constraints are removed.

V. DUALITY
The discrete rate-maximization problems considered in Section Il are mostly NP-hard. This motivates
us to consider efficient algorithms which can find high quality approximate solutions for the rate-
maximization problem in polynomial time. One natural approach is to consider the dual formulation
and apply Lagrangian relaxation.

Consider the discrete rate-maximization problefj"):

max H(uh 7UK)
1 st
st up < — In|1+ k N
an—:l ( UZ*&#“W?) (Fa')
LN
NZ <P, sP>0k=1,.. K.
n=1

The corresponding Lagrangian function is given by

K N
1 sy
LN(S7U;)\MU) = H(Ul,"',UK)+ e |~ In{1+ £ — Uk
2 W 5 s e
K | X
3 Pk—stz]
k=1 n=1
= H(ug,-- Zuk)\k-i-zpk,uk

1 N K
+— Ak In — pisy |

n=1k=1

and the dual function is given by

Thus, the Lagrangian dual ¢’) can be written as

min  H*(A) + PTu+ gn(\, )
st A peRE
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where H* is the convex conjugate dual function &f defined by

H*(\) = tsgg{ (H(t) — )\Tt) (4)

and

N K
1 sy
gn(A, ) = max v E E [)\k In (1—1— k > —ukSZ]

n n n
Tf 2otk Oy S

1,..,N; k=1,.., K.

(7]
—
»
>3
Vv
[en I
S
Il

The conjugate functiofli* can be computed explicitly for various choices of system utility functions.
It is relatively easy to verify the following.
1) For weighted sum-rate functio (v) = w'u, the conjugate functiodZ*(\) = 0 for A = w and
H*(\) = oo when\ # w.

2) For the proportional fairness system utility functiéf(u) = Zszl Inuy, the conjugate function
H*\) =K - Y% In ).

3) For the min-rate utility functiond (v) = min;<i<x ux, the conjugate functiodd*(\) = 0 if
ST LAk > 1, and H*(\) = 400 otherwise.

4) For the harmonic-rate utility functiof (u) = (31, u;; ')~ the conjugate functiod*(\) = 0

if S0 Vx> 1, and H*(\) = +oo otherwise.

Unlike the original problen{PY), its dual(DZ) is convex which is potentially easy to solve. L&t
and D3, denote their respective optimal values. It follows from weak duality ffat< Dy;. It is known
from Section IIl that(P)) is typically NP-hard, suggesting that the prin{@2) and the dual DY)
are in general not equivalent. Indeed, the following example suggests that the dualiy,gapPy; is

typically positive.

Example: Consider a case with two users sharing one frequency. The corresponding sum-rate maximiza-

tion problem is given by

maximize In (1 + 1j152) +In (1 + 1_‘?51)

SUbjeCt to 0<s1 <P, 0<s9< Py,

()

where P; > 0 is the power budget for usér (i = 1,2). Let the optimal value of the above problem be
v(Py, P»). We show below that(P;, P») is not concave function of;, P, > 0, which implies that the
duality gap is positive. [This concavity property of P;, P,) was called time-sharing property in [20].]
. . . . .. +51+52)2 . . .
Note that the objective is actually equivalent to maxmmﬁﬁm, which is a guasi-convex

function on its domain (see [1]). Therefore, its maximum value is attained at the vertices. In other words,
v(P, Py) = max{ln(1+ P1),In(1+ P»),2In(1 + P+ P) —In(1+ P,) — In(1 + P)}. (6)
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So if P, = P, = 2, then P}, = v(2,2) = In3 which is attained by(s}, s3) = (2,0) or (0,2) (FDMA

solution). However, the corresponding dual formulation of (5) can be written as

minimize  Pypy + Pap + g1 () @)
subject to p = (pu1, uz) > 0,

where

_ 51 52
= In (1 In (1 — js1 — pisa.
gi(p) = max, n( + 1+52> + n< + 1+Sl> f1181 — p282

Notice thatg, (1) is a convex function that is symmetric with respecifoandus. Thus, if P, = Py = 2,
then the dual objective function in (7) is symmetric with respegit@ndys. It follows that the optimal
dual solution must havg; = u9. Direct computation ofj; (1) (via KKT condition) shows that, when
w1 = pue = 1/5, the associated primal power levels must be eiterss) = (4,0) or (0,4). Moreover,
the subdifferential ofj; at (1/5,1/5) is equal t0dg;(1,15) = convex hulf(0, —4), (—4,0)}. Plugging
these values into (7), we see that the dual optimality conditiof) € (P, P») 4+ 9g1(u1, p2) is satisfied
at u; = po = 1/5. Therefore, we obtain the optimal dual solutigns= p5 = 1/5, and the minimum
dual objective valueDy, = In5 which is strictly larger than the primal objective vali&;, = In 3.

When H(u) = w'u (weighted sum-rate), a so calléiine-sharing propertywas introduced in [20]
which can ensure zero duality gapy, — Py, = 0. This property essentially requires the region of
achievable rate§(uq,--- ,ux) | fo:l sp < Py, s > 0,1 <k < K} to be convex, where each
uy is defined in(PY). Mathematically, the time-sharing property is equivalent to the concavity of the
mappingv( P, P»). Unfortunately, time-sharing property does not hold in general. For instance, consider

the preceding example whet¢P;, P») is given by (6). Simple calculation shows that
2In(14 P, + Py)) —In(1+ P;) —In(1+ P,) > In(1+ P;) and P, P, > 0
if and only if P, +1 — P2 > 0. Similarly,
2In(1+4 P, + Py) —In(1+ P;) —In(1+ P,) > In(1+ P,) and P, P, > 0

ifand only if Py +1— P > 0. LetQ:= {(P,P) e R, | B, +1—P? >0, P +1— P} >0}
We havev(Py, P») = 2In(1 + Py + P») —In(1 + P1) — In(1 + P») for (P, P3) € Q2. Now we see that
v(Py, P») cannot be concave if, since, for instance its Hessian at an interior poinfof1, 1), is given
by

V2U(P17 PQ)‘(PI,PQ):(l,l) = 5
which is clearly not negative semidefinite.
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A. Asymptotic Strong Duality

When the duality gapDy, — Py, is nonzero, the dual probler@*DfiV) is not equivalent to the primal
problem(P}). Nonetheless(D?}) may still provide a close approximation ¢P)). This motivates us
to find an upper bound on the duality gap betwéét}’) and (D2). Notice that, for the continuous
spectrum management problem (correspondingVte= oc), the duality gapD?, — P% = 0, as was
established in [20] in the context of sum-rate maximization. This suggests that the dualiy gapPy
for finite V should vanish asymptotically &6 — oo for general system utility functions. In this section,
we show that this asymptotic strong duality result indeed holds true for general system utility functions,
thanks to a hidden convexity resulting from the frequency{sdteing an interval (rather than a finite

discrete set). The key in our analysis is the so-called Lyapunov theorem for vector measures [13].

Definition: A measure isnon-atomicif every set of hon-zero measure has a subset with strictly less

non-zero measure.

The standard Lebesgue measure is non-atomic, while the uniform measure on a finite set is atomic.

The following is a convenient form of Lyapunov Theorem due to Blackwell [2].

Lemma 1:Let v be a non-atomic measure on a Borel figldjenerated from subsets of a spatd_et
gi(z(-),-) be compatible with3-measurable functiom(-) (i.e., if z(-) is B-measurable thep;(z(-), ) is

B-measurable); = 1, ...,m. Then,

Jogr(2(),-)dv
: z is B-measurabl

fQ Im(2(-), -)dv

iS a convex set.

It is important to notice that there is no assumption on the convexity; @finctions or the sef). The
convexity of the image of the integral mapping is due to the non-atomic property of measWe
now use Lemma 1 to argue the asymptotic strong duality for the continuous formulation of the spectrum

management problem.

Suppose that the system utility functiéh is monotonically nondecreasing componentwise and jointly
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concave. We can equivalently rewrit€.) as

max H(up,- - ,uk)

Sl(f)
st w < [ioln (1 + Jl(f)+2#1a1j(f)8j(f)) df

sr(f)
ure < freqtn (14w ) &
ffGQ Sk(f)df < Pk, k= 1, ...,K,
sp(f) >0, f €Q, si(-) is Lebesgue measurable=1, ..., K.

The following theorem follows from Lemma 1.

Theorem 7:Let v(P) be the optimal value ofP.) (also known as the perturbation function (dt.)).
Suppose thatf is monotonically increasing componentwise and jointly concave. Tiéy is a concave
function in P.

Proof. Let P! and P? be two parameter vectors. Let(f) ands?(f) be optimal solutions fofP.) with

parametersP?! and P? respectively. Let

k= : uth ~ df, i=1,2,k=1,.... K.
' /fEQn<1+0k(f)+2j¢kakj(f)5§(f) fri=Ll2ak=1..,

Then, by Lemma 1, there exist nonnegative Lebesgue measurable fungtigrig} such that

Sk(f) o
/fGQ ! (1 e 2 itk O‘kj(f)gj(f)> G

and

/fEQ Sk(f)df = (/feﬂ sp(F)df + /feQ s%(f)df>/2 < (P +P2))2.

Therefore, the optimal value @fP.) with parameter P! + P?)/2 satisfies

o((P'+P?)/2) = H((t+1)/2,-, (tk +1%)/2)

v

(H(t1, - s tie) + H(tE, - 1%))/2 = (o(PY) +0(P?)) /2.
where the second inequality is due to concavityfhf m

A consequence of Theorem 7 is that the Lagrangian dual problem admits no duality gap with the
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original problem. Specifically, define the following Lagrangian function

: _ sk(f) N
L(s,t; A\, p) = H(tr, - ,t ZAk !/feg <1+Uk(f)"‘Zj?gkakj(f)Sj(f))df tk]
K
"‘;Mk [Pk _/fGQ Sk(f)df}
= H(ty, - ,t Ztk)\kvLZPkMk
sk(f) s
/f@kzl [A’“ln (” k<f>+z#kakj<f>sj<f>> skl ] )] v @
Let

g\, p) == sup L(s,t; A p)

st. teRK

sp(f) >0, f €Q, sx() is Lebesgue measurable=1, ..., K.
Sincet is separated frons, we may simplify the expression fay(\, 1) by using the conjugate dual

function of H (cf. (4)) which is convex. We have

g\ p) = H*(A\) +pTp+g(\, p),

where

g\ p) = max A In 5e(f) - d
ghop) = ma fegkzl [ ¢ (1 B GES SRl R K
st sk(f) >0, feQ, si(-) is Lebesgue measurable= 1, ..., K.

Clearly, g(A, ) is convex jointly inA and . The Lagrangian dual problem ¢F.) is defined as

minimize g(\, p) (D)

subject to A, u € RE.

Due to Theorem 7, the perturbation functiofP?) is concave. By a well known result in convex analysis
(Section 34 of [14]), this immediately implies that the duality gap is zero; see also Theorem 1 in Yu and
Lui [20].

Corollary 1: Suppose that the system utility functiéf(u,, ..., ux ) is jointly concave inuy, ug, ..., ux)
and is nondecreasing in each. Then, the optimal values dfP.) and (D.) are equal; i.e., the strong
duality relation holds.

Since the concavity and monotonicity assumptions in Corollary 1 are satisfied by the min-rate, harmonic-

rate, proportional fairness rate and sum-rate functions, it follows that the duality gap beti®gend
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(D.) is zero for all of these choices of system utility functions. By a “continuity” argument, this should
imply that the duality gap between the discrete primal-dual paﬁ’) and (Dév) should vanish when
N — oo. This is what we establish in the next theorem.

Theorem 8:Suppose the system utility functidifi(u,, ue, ..., ux) is jointly concave and continuous in
(u1, ..., ur ), and is monotonically non-decreasing in each argument. Moreover, assume each user’s utility
function is given byu; = R;(s1(f),s2(f),...,sx(f)), with R; nonnegative and Lebesgue measurable,
where s;(f) is the nonnegative and Lebesgue integrable power spectral density function gf user
P}, and D%, denote the optimal values ¢)V) and (DY) respectively. Then the duality gai, — D3

vanishes asymptotically in the sense that
1}&igf(P; —Dy)=0.

In light of Corollary 1, we only need to show that the optimal valuegBf') and (DY) converge
respectively to those dfP.) and(D.) respectively, asvV — oo. The main difficulty with the proof is that
the continuous formulationgP,) and (D.) involve Lebesgue integrals while the discrete formulations
(PY) and (DY) involve Riemann sum of Lebesgue integrals. It is well known that we cannot in general
approximate the value of a Lebesgue integral by a Riemann integral. The mismatch of integrals arise
because Lyapunov theorem works only for Lebesgue integrals while in spectral management applications

we are confined to Riemann sum type of discrete formulations. Fortunately, for the optimization problems

considered here, the mismatch can be resolved. We leave the details of the proof to Appendix F.

V. DISCUSSIONS

For a communication system in which users must share a common bandwidth, dynamic spectrum
management (DSM) offers a great potential to significantly improve total system performance and spectral
efficiency. This paper considers the computational challenges associated with DSM. If the potential
benefits of DSM are to be realized, these challenges must be properly addressed. The complexity
results of this paper suggest that for a given channel condition, computing the optimal spectrum sharing
strategy is generally difficult, unless either the number of users in the system or the number of shared
frequency tones is small (1 or 2). Even for a moderately sized problem (with 20 users and 000 ~
2000 frequency tones), finding the globally optimal spectrum sharing strategy can be computationally
prohibitive. Consequently, our goal for DSM should be more realistic. The most that we can hope for
is to be able to efficiently determine an approximately optimal spectrum sharing strategy with provably

good quality.
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One efficient approach to find high quality approximately optimal spectrum sharing strategies is through
Lagrangian relaxation. This is because the dual formulation of the spectrum management problem is
always convex and is amenable to distributed implementation. The duality analysis in this paper shows
that the duality gap vanishes as the size of discretization decreases to zero, suggesting that the optimal
spectrum management problem is asymptotically convex. The main reason for the vanishing duality
gap is a hidden convexity associated with the continuous formulation due to the Lyapunov theorem in
functional analysis. The asymptotic strong duality suggests that it may be possible to devise a polynomial
time approximation scheme for the continuous spectrum management proBlenThat is, it may be
possible to find are-optimal spectrum sharing strategy foP.) in time that is polynomial inK" and
1/¢, wheree > 0. However, to achieve this goal, it will be necessary to develop a strengthened duality
analysis which explicitly bounds the size of duality gap for any finite discretization. We plan to address
these and other related issues in a forthcoming paper.

A number of extensions to the current work are possible. For example, rather than maximizing a
system-wide utility function as in the formulatidi#®. ), a telecom system operator may wish to minimize
the total transmission power while ensuring a given data rate for each user. This leads to the following

QoS (quality of service) constrained optimization:
K

minimize Z/f st(f)df
€

. N sk(f)
subject to /fegl (1 + RIS S akj(f)Sj(f)) df > r,

sk(f) > 0, Lebesgue integrabld; = 1,2, ..., K,

wherer; is the required data rate for usker The corresponding discretized version becomes

| KN
minimize széﬁ

k=1n=1
1 N st
subjectto  — > In |1+ k >y, sR>0, k=1,2,..., K.
N 7; < OF 2k sy )

For the one-tone cas&/(= 1), the discrete formulation is simply a linear program (solvable in polynomial
time). Also, if only one user is presenk(= 1), then the problem is solved by the iterative water-filling
procedure. For other general casés X% 2 or N > 3), the proof techniques of Section Ill can be easily
adapted to show the NP-hardness of the above QoS constrained problem. Moreover, Lyapunov theorem
can again be applied to the above pair of continuous-discrete formulations and the asymptotic strong

duality still holds.
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Our work can also be extended to other resource management problems in multiuser communication
such as transmission time management. In the latter case, we only need to cﬁam@e,“f- df, etc”
to “¢, s(t), /- dt, .. respectively. Management of hybrid resources such as time-frequency sharing can

also be treated similarly.
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APPENDIX

Appendix A Proof of Theorem 1

We now present a polynomial transformation of the maximum independent set problem on a graph
to (P;)’. Since the former is NP-hard, this will imply the NP-hardnes$®f)’ and (P;). Suppose that
G = (V, E) is an undirected graph. An independent setGois a subsetS C V' such that no two nodes
in S are connected: for any;,v; € S, (v;,v;) ¢ E. To find an independent set with a given size is
NP-hard.

Consider a connected graph with vertices, i.e|V| = K. For eachv; € V, let

MK? if v; is adjacent tov;;
Oéij =
0, otherwise

where M is any positive number greater thdf, ando, = M, P, = 1, £k = 1,..., K. In this way,
the feasible set becomes a Cartesian product of probability simplices. We claid theg a maximum

independent set of sizd| if and only if the correspondingP;)’ has an optimal value* satisfying

1 1
|I|1n <1+M> <v* < ([I|4+1)n <1—|—M> :
If G has a maximum independent detthen by letting
1, if v, € 1,
S =
0, otherwise
we have a solution fo¢P;)’ with an objective value equal td|In (1 + 5;).
On the other hand, suppose that one has an optimal solsitiéor (P;)" with optimal valuev*. By a

direct computation, we have

O’H 1 LY 1
asz (sk + M+ MEK? Z(Umvj)GE sj)2 i:(vi,or)EE (=2 + Z(vz‘»vj)GE Sj)Q
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SinceG is connected, so the second sum is not vacuous and the definitibh erfisures tha% >0

k
for all feasible vectos. Thus, the objective functiof (s) is convex with respect to every component of
s (though not jointly convex irs). Since the maximum of a convex function over a polytope is always

attainable at a vertex, it follows that we can assume $has a 0-1 vector. Let
Si={v|s;=1,1<k<K}.

Let 7 be a maximum independent set contained'irThen, it follows from the property/ > K that

1
= In(1
° ZS “( T M ME vy € 5[ (v, 0) € E}|>

1 1
(142 m(14- L+
< Hn<+M>+Zn<+M+MK2>

VL ES
< {1+ ) km(1s L
= . M n M+ MK?

1 1 1
< — —_ = R
< \I]ln(l—i—]”)—i—ln(l—!— r> (|I|+1)ln<1+nr>

where the strict inequality is due to the connectednes§& afhich implies that|{v; € S | (vj,v) €

E}| > 1. Thus, we have

1 1
|I|1n<1+M> §U*<(|I]—|—1)ln<l—|—M>,

establishing our claim.

In caseN > 2, we considerN copies of graph, called it GV = (VV, EY), defined as follows:
(vi,vl) € EN forany1 < i # j < N, and (vi,0]) € EN iff (v, v) € E, wherel < i,j < N,
1 <k #1< K. Then, an independent set@corresponds to an independent seGifl, and vice versa.

Hence,(P;) is in general strongly NP-hard for any fixed integér> 1.
Appendix B Proof of Theorem 2

The N =1 case has been treated earlier. We only need to prove the problem is strongly NP-hard for

N = 3. The general case d¥ > 3 by settingagj =0ando} = M, for all n > 3 and allk, j, where

1 2 3 1 2 3 E
M Zm’?X{U]wO-k,O—k}+I%%X{Oékj,ak],ak]} ( Pk-)
’ k

is a constant. With this choice, it can be checked that all tones numBéred3 are too noisy to be

used by any user in the system. In this case, the gedéral3 case is reduced to a three tone case.
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When N = 3, the spectrum management probléfy) becomes

3 n
.. s
maximize min In|1+ k )
n n n
1§k§Kn_1 < oy + 5 £k akjsj

subject to s,lc + si + si < Py, si,s%,sz >0,k=1,.., K.

(P2)

To prove the strong NP-hardness, we construct a polynomial transformation from the so called vertex
3-coloring problem to ). Given a connected grapi = (V, E) with K vertices, (i.e|V| = K), the
3-coloring problem requires the determination of whether or not there is a paititient/! U V2 U V3
(mutually exclusive) such thatr®, V2, V3 are all independent sets of the graph. For each gtapive

define a corresponding spectrum management probfmas follows: forn = 1,2, 3,, let

3, if v; is adjacent ta;;,

n __
Qij = .
0, otherwise

Also, seto =1 and P, = 1, for all n, k.
We claim that graphG is 3-colorable if and only if ;) has an optimal value greater or equal than

In 2. If a 3-coloring solutionV = V! U V2 U V? exists, then we may let

1, if v, eV
s) = ands; = ands} =
0, otherwise, 0, otherwise, 0, otherwise,

1, if v, € VZ, 1, if v, € V?’,
with £ = 1, ..., K. This achieves an objective valle?2 for (P).

Now suppose that we have a solution {d%,) with an objective value at leat 2. Let

Vn = {Uk

Clearly, we have/ = V! U V2 U V3. We claim that each™ must be an independent set. To see this,

s 1
In|1+ k >_-In2,1<k<K}y,n=123.
< ag—kzﬁkozzjs’;)_S - = }

suppose the contrary so that there are two nages; € V" (for somen = 1,2, 3) which are adjacent

in G. Then the above definition df™ implies that
sp> (22 —1)(1+3s7) and s? > (213 — 1)(1 + 3s})
where we have used the definitionsajf and o};. Combining these two inequalities yields
sp> (23 — 1) (14323 —1)(1 4 3s7))

which implies thats) < 0. This is a contradiction, so the nodesandwv, cannot be adjacent.
Notice that the set®!, V2, V3 may be overlapping. In this case, we can redefine the séfs as V!,
VZ.=VAVL V3= V3\(VIUuV?). In this way,V = VIUV2UV? forms a partition and gives a 3-color

solution for G. Since the above transformation involves only numbers that are at most polynomial in
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K (in fact constant inkK), this establishes the strong NP-hardness of the original spectrum management

problem.
Appendix C Proof of Theorem 4

The proof of strongly NP-hardness for the cdge> 3 is similar to the min-rate case considered in
Theorem 2, and we only provide an outline below. Consider a gfagh(V, E) with |V| = K. We need
to show that the graph is 3-colorable if and only if the optimal value of(#g is at least/{/In 2. Let

In2 1/u?, if v; is adjacent tov;;

n=-—and a;; = 9)
3K ! 0, otherwise

andop = 1forn =1,2,3, andk = 1,2,..., K. We claim thatG is 3-colorable if and only if the

following problem:

-1

K /3 §n -1
maximize In{1+ k
; (n:l ( L+ Zj?’ék OékjS?))
3
subjectto » sp < 1,87 >0,k=1,.,K,n=12,3,

n=1

(10)

has an optimal value at leal.
“—": If the graph is indeed 3-colorable, then there is a partition of the verticed; say/ ' uV2UV?3,

such thatV™ is an independent set,= 1,2, 3. Let
1, if v, eVl

s) = ands; = ands; =
0, otherwise, 0, otherwise, 0, otherwise,

1, if v, e V? 1, if v, e V3,

with k£ = 1, ..., K. Clearly this is a feasible solution of the above problem, whose objective value equals

In2
ook

“ ”. * H H * ]n H
<" Let f* be the optimal value of10) with f* > 72 Let us define

Vni= {vk

Since{s} | n =1,2,3;k = 1,..., K} is an optimal solution fo(10) with optimal value f*, for each

Sn
In |1+ k >u,1<k<Kp,n=123. 11

givenk, 1 < k < K, it follows that

3 n
s In2
E In(1+ k > f*>— =3u.
—_ ( I akjs?) K
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By the above inequality and (11), we havé_, V" = V. What remains to be seen is that ed¢h
forms an independent set. For this purpose, take any two vetticese V", and we wish to show that

(vk,v;) € E. First, we note, due to, € V", that

n
Sk

sy > —~
LD ek kS
and similarly,s? > y, sincev; € V™. Suppose by contradiction théty,v;) ¢ E and soay; = 1/u?.

> eXp(:U’) -1> K,

Then,
n
—t 11 = T = * n

which is clearly a contradiction.

e

Finally, we notice that the sefg!, V2, V3 may be overlapping. In this case, we can redefine the sets
asV!i:=v9H v2.=vAV! V3 .= v3\(VIUV?2). In this way,V = VU V2 U V3 forms a partition
and gives a 3-color solution fa%. Since the polynomial transformation outlined above involves only
numbers that are polynomial i, we conclude the original spectrum management problem is strongly
NP-hard.

Appendix D Proof of Theorem 5

For the caseV > 3, we use a polynomial time reduction (similar to the one used in Theorem 2) to

transform the 3-colorability problem t@P;). Consider a graplds = (V, F) with |V| = K. Let

1\ % 1/X2, if v; is adjacent ta;

A== In2 and Q5 = (12)
0, otherwise
ando, =1,k=1,..., K.
We claim that the graph is 3-colorable if and only if the following problem:
K 3 on
maximize In In |1+ k B
z; (Z—:l < L 2 om Otk 5 >>

- (13)

subjectto » sp <1, k=1,.., K,
n=1

sp >0, k=1,...,K;n=1,2,3,
has an optimal value at lea&f In In 2.
“—": If the graph is indeed 3-colorable, then there is a partition of the verticed/ say/ ' UV2uUV?3,
such thatV™ is an independent set,= 1,2, 3. Let

1, if v, € Vl, 1, if v, € V3,

Sllc = and Si = and 52 =
0, otherwise, 0, otherwise, 0, otherwise,

1, if v € V2
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with £ =1, ..., K. Clearly this is a feasible solution of (13), whose objective value eglddisin 2.

“«<=": Let f* be the optimal value of the above problem wjth> K Inln2. Let us define
ln<1+ il >2A,1§k§K},n:1,2,3. (14)

V™= g
Notice that for any feasible solution of (13), it holds that

3 n 3

s
E In|1+ k < E In(1+s;)<3In2,
o ( L+ akjs?)

n=1

forall K =1,..., K. Suppose thafs} | n =1,2,3;k = 1,..., K} is an optimal solution fof P, ;) with

optimal valuef*. Then, for each giver, 1 < k& < K, it follows that

3 n * K

sy exp(f*) (In2)
> 1+1+Z- Pyl I K12 K1 = 5
ot j#k QkjS; (3In2) (3In2)

By the above inequality and (14), we havg_, V" = V. What remains to be seen is that edch forms

an independent set. For this purpose, take any two vertices € V", and we wish to show that in this

case it(vg,v;) ¢ E. First, we note that

S’Vl
sp > ; >exp(N) — 12> A,
and similarly,s!" > X. Suppose by contradiction théty, v;) ¢ E and soay; = 1/A% Then,
n
A _ 11 > 11 > sy Y
which is clearly a contradiction. Thus, the verticesVift (n = 1,2,3) are independent, establishing

the NP-hardness as desired. [Notice that we cannot claim strong NP-hardness since the transformation
outlined above involves exponentially large numbers (in term& pfalthough their binary lengths remain

polynomial.].
Appendix E Proof of Theorem 6

Let K = 2. The case ofH (u) = Hy(u) = Zflvzl u, (sum-rate) has been considered in [8]. Below,
we treat the other three cases using the same polynomial transformation from the equipartition problem:
given a set ofV (even) positive integers,, as,...,ay, determine if there exists a subset- {1,2,..., N}
of N/2 numbers such that

N
Y= =Y
n=1

nes ngSs
Recall that it has been shown [8] that if

afyay; > 1/4, for all n
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then the optimal solution of the two-user sum-rate maximization problem must be FDMA, satisfying
stsy = 0, for all n. Furthermore, given an even integ€rand a set ofV positive integers:;, ao, ..., an,

we can construct a two-user communication system as follows: let there be a tétarefuency tones,

and let the channel noise powers for the two usersrpe= o5 = a,, for n = 1,2,..., N. We also

set the crosstalk coefficients), = a3, = 1.01 for all n, and letP, = P, = P := (N + 1)30y, with

oy 1= max, a,. In this case, probler(lPéV) is reduced to the following:

Hifdma := maximize H;(uy,u2)

N n
subjectto  u; = Zln( >, uz:Zm <1+52>
G
n=1

N
seS, Zs’fgp, > s5< P, (15)
n=1 n=1

wherei = 1,2,3,4. Let u}, uj denote the optimal rates of user 1 and user 2 respectively. Next we
consider a convex relaxation of (15), with= 1, by dropping the nonconvex FDMA constraite S,

and by combining the two separate power constraints as a single one:

Ry olar := maximize Hiy(u1,uz)
N gn
subject to  uy = us = Z In <1 + )
n=1 An

N
Zs” <2P, s">0, Vn. (16)

n=1

Notice that the relaxed problem (16) is a standard single user rate maximization problBpg,s@an be
evaluated easily using convex optimization (or the classical Karush-Kuhn-Tucker optimality condition).

For the cased (u) = Hi(u) (sum-rate maximization), it was shown [8] that
2P n
H{dma < Ryojaw = N ln <+z”1a> Z]nan

and the equality holds if and only if] = u3. Moreover, the latter holds if and only if the equipartition

problem has a ‘yes’ answer. For other three cases of system utility functieng,@, 4), we have
H{"™ (uy,up) < H{ " (uy, uz) < H{"™ (uy, ug) < H{ "™ (u1, up)

for all u1,us > 0, where the equalities hold if and only«ifi = us. Thus, fori = 2, 3,4, we can conclude
thatHifdm“ < Ryc1qz, With equality holding exactly when] = u3, or equivalently when the equipartition
problem has a ‘yes’ answer. This implies the NP-hardness of the spectrum management p}qﬁbem

in the two-user case for all three system utility functidig(u), Hs(u) and Hy(u).
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Appendix F  Proof of Theorem 8

In what follows, we only prove that the optimal value @) converges to that of.), as the dual
case is similar. Let)’(P) andv(P) denote the optimal values ¢f)) and (P.) respectively. Suppose
v(P) is attained at Lebesgue integrable functidss(f), s2(f),...,sx(f)}. Then, we haves;(f) > 0

and
v(P) = H(up,ug,...,ux),

1
- /ORi(sl(f),SQ(f),...,sK(f))df, i=1,2,.. K,

1
Pi > /Sl(f)df, ’i:1,2,...,K.
0

By the definition of Lebesgue integral, for each- 0, there exists somé&/; > 0 and a partition of the
nonnegative real line

0=R)<R!<R}<---<RM <RV =
such that

Ny
n=1

where 1i(-) denotes the Lebesgue measure atjdis the inverse image of intervaR?, R7™) under
mappingR;:
A =RV (RN RMTY), n=1,2,.. Ny

()

Notice that the set§A}, A%, ..., Aﬁvl} are Lebesgue measurable and together they form a partition of the
unit interval [0, 1] = Uﬁ;l A?. Similarly, there exists som&, > 0 and a partition of the nonnegative

real line
N;+1

O:s?<s}<s?<-~<sf\h<si =

such that

N,
/ 1 (A = )| <
where B? is the inverse image of interv@R?,R?“) under mappings;(f):
B =57 ([s?,s8), n=1,2,..,Na.
Thus, each usei = 1,2,..., K has two partitions{ A}, A?, ..., AN}, (B!, B?, ..., BN} of the unit

interval [0, 1]. By a further refinement of these partitions for alif necessary, we assume that the
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partitions are identical for all users. For simplicity, let!, A2, ..., ANs} denote the partition common

for all users. Then we have

<e Vi=12,..K, (17)

Ny
— > RPu(A™)
n=1

and

<e, Vi=12 . K, (18)

1 N;
/0 si(f)df =S su(A™)
n=1

where R} € {R},R?,--- RNV} and3? € {s},s

over A" and is defined by the values ef(f) over A™ which are{s?}X |, we have

-+ 82} for n = 1,2,..., N3. Since R is constant

i 2"

R} = R;(s},85, -+ ,5%), V1<i<K,1<n<Ns. (19)
Let
_ N1 Nz _ n =n
M = 121:?%({]% i }_lgiglr(r,l?%{ngN (R 8-

Since eachA™ is Lebesgue measurable, it follows that there exists a finite union of disjoint intervals

A™(1), ..., A"(j,) which form an almost exact approximation 4f in the sense that

€

Jn
plAa | AmG) < Ny

j=1
where A denotes set difference operator. This implies that

]L
€

MN3

(A (20)

j=1
Consider a uniform partition of the unjid, 1] {0, N N, e %, 1}. We need to approximate the end
points of the intervalsi™(j) simultaneously by rational numbers of the fofyiiv. By Dirichlet theorem
for simultaneous Diophantine approximation, there exists a sufficiently large imé&gsuch that for all
N = kN, (multiples of N,) each intervalA™(j) can be well-approximated by a finite interval of the
form I3(j) = [iﬁf NJ] with i;, k; being integers in the intervad, N], such that

[k =il | .«

wA"G) = = < NN (21)
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In this way, we have

Jn Jn Jn Jn
plAa | mG)

J=1 Jj=1 j=1 j=1

N
=
o
3
>
-
s
3
S
+
=
-
23
S
>
-
s
3
S

where the last step follows from (20)—(21). Therefore, we obtain

2¢
< .
— MN;j

Jn
(A = [ U IR G)
j=1

In other words, each set™ can be approximated by a finite union of intervals of the fafntaken
from a uniform partition of unit interval0, 1], provided N is sufficiently large (and multiple ofVy).

Substituting these approximations into integral estimates (17)—(18), we obtain

N N;g NS jn
1 » D D .
wi— o SR < w3 RN max RS (A" — e | 180G)
n=1 n=1 n=1 J=1
P
< e+M><N3><M]€VS:3e, Vi=1,2,.. K,

where R} € {R}, R?,..., RN} for all n = 1,2, ..., N. Similarly, we have

1 1 N A
/Osi(f)df—an_:lsi

wheres? € {s},s?,...,s™?} for all n = 1,2, ..., N, which further implies

799299

<3¢, Vi=1,2,..,K,

1 & !
NZg;Lg/O si(f)df + 3¢ < Pi + 3e. (22)

Moreover, it follows from (19) that

RY = Ry(87, 85, ,8%), V1<i<K,1<n<N,
which implies
1 N
n=

Since the objective functioi (u,,us, ..., ux) iS continuous, the above estimate and (22) show that

Jim [P — Py < 6(e),

k— oo
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whered(e) — 0 ase — 0. In a similar fashion, there exist§s > 0 such that

lim Dy — D] < 6(c).

k— oo

Since Py, = D} (Corollary 1), it follows that

lim D} — Pl < 26(c).
k— oo s

Letting e — 0, we obtainlim infy_.o [D} — Px| = 0 as desired.
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