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Abstract

This paper presents a simple and effective method to
reduce the size of log data for recovery in main mem-
ory databases. Fuzzy checkpointing is known to be very
efficient in main memory databases due to asynchronous
backup activities. By this feature, most recovery works in
the past have used only physical logging schemes. Since the
size of physical log records is quite large, physical logging
schemes cause the recovery time to be much longer than that
using logical logging schemes. In this paper, we propose a
hybrid logging method that can accommodate logical log-
ging under fuzzy checkpointing. This method significantly
decreases the size of log data, and hence speeds up the
recovery time. We also propose a reapplying rule in seg-
mented MMDB, which reduces the number of log records
for recovery. We evaluate the performance of the proposed
methods through analytic analyses. The results show that
we can reduce the size of log data to more than half, com-
pared with those that use only physical logging.

Keywords: database recovery, main memory databases
(MMDB), fuzzy checkpointing, hybrid logging method,
shadow updating, delayed backup

1. Introduction

In Main Memory Databases (MMDB) data reside per-
manently in main memory. By the significant decrease
of memory cost with the fast growth of memory capac-
ity, the importance of MMDB has been increasingly rec-
ognized [3]. There are several database systems that use
MMDB as a part of databases [6, 9, 15]. Though MMDB
can provide faster response time and higher throughput thanyThis material was supported in part by Ministry of Information and
Communication, 1996.

Disk-Resident Databases (DRDB), all the contents of mem-
ory can be lost in system failures due to volatility of main
memory. To preserve data against crashes, we need a recov-
ery method that restores MMDB to a consistent state. Many
researches have been done in the past for recovery methods
in MMDB [2, 4, 7, 8, 10, 11, 14].

MMDB has a goal of high-performance transaction pro-
cessing. Thus a recovery method must be efficiently pro-
cessed with little synchronization and fast recovery. Among
several tasks in recovery methods, checkpointing is the most
important one for these requirements. Since MMDB has
no buffering activities for data stored in the memory per-
manently, an efficient checkpointing scheme is required.
Fuzzy checkpointing in MMDB, which has been shown to
be effective in DRDB, was introduced by Hagmann [5].
As fuzzy checkpointing flushes dirty pages asynchronously
against transaction activities, the quiescence of transactions
is not required. However, only physical logging scheme
was considered in fuzzy checkpointing due to asynchronous
flushing in the past MMDB recovery works [5, 11, 12].
Physical logging causes a recovery time of MMDB to be
longer than logical logging. This is because a large amount
of log data are produced in physical logging [14]. Logical
logging can make a long physical log into a record of only
a few words, which can reduce the size of log data signif-
icantly. To achieve faster recovery, we need a method to
reduce the size of log data by accommodating logical log-
ging.

There are some researches that attempt to reduce the size
of log data. DeWittet al.[2] and Hagmann [5] present a log
compression method. These methods are to eliminate the
“redo” part of log records for aborted transactions and the
“undo” portion of log records for committed transactions.
In Lehman and Carey [8] and Jagadishet al. [7], redo log
records are flushed to disks and undo log records are dis-
carded, when a transaction is committed. Salem and Garcia-
Molina [14] use a shadow updating policy to record only



redo log records. However, two former methods are not
based on fuzzy checkpointing, and in [14] it has been shown
that fuzzy checkpointing still has longer recovery time than
other checkpointing methods with logical logging. If sec-
ondary index modifications are logged, the recovery time of
fuzzy checkpointing would be much longer.

In DRDB there are some works on adapting logical log-
ging under fuzzy checkpointing. Bernsteinet al. [1] de-
scribe a penultimate fuzzy checkpointing method with logi-
cal logging. This checkpointing scheme, however, requires
the quiescence of transaction processing. The quiescence
time is determined by duration of active transactions and
the number of dirty pages. Mohanet al. [13] introduce a
recovery method, called ARIES which is based on a fuzzy
checkpointing and WAL logging scheme. ARIES supports
logical logging, which is, however, restricted to objects with
increment or decrement kinds of operations, e.g., garbage
collection and changes to the amount of free space. The
two above-mentioned fuzzy checkpointing methods are for
DRDB, not MMDB. This means that flushing of dirty pages
is based on buffering activities. Because MMDB has data in
main memory permanently, the penultimate checkpointing
idea in [1] and the scheme of un-flushing dirty page in [13]
cannot be applied for MMDB.

In this paper, we propose a simple and efficient logging
method that uses both physical and logical log records un-
der fuzzy checkpointing in MMDB. The basic idea of the
method is that a transaction writes physical log records dur-
ing only checkpointing, but uses logical log records in other
cases. Shadow updating and private log buffers are used to-
gether with hybrid logging to make a transaction consistent
checkpoint. We apply the proposed method to segmented
MMDB in order to support consecutive checkpointings. We
also present an effective method that can significantly re-
duce thenumberof log records used for recovery.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the system configurations and the pro-
posed fuzzy checkpointing method. Then we apply the
method to segmented MMDB. Section 3 describes the re-
covery processing and an effective reapplying method. In
Section 4, we evaluate the impact and performance of the
proposed method through analyses. Finally Section 5 has
conclusions and describes some further works.

2. Fuzzy Checkpointing Accommodating Log-
ical Logging

2.1. Basic Concept

Under fuzzy checkpointing [5] in MMDB, the check-
pointer flushes dirty pages without considering on transac-
tion activities. Thus only physical logging must be used
during checkpointing. With physical log records, we can

restore a fuzzy checkpoint to the same physical state as it
was. After then, the logical log records can be applied to
the checkpoint because the checkpoint is in exactly the same
state when the log records were generated. This is the basic
idea of our approach that can accommodate logical logging
in fuzzy checkpointing. We refer to the approach asHybrid
Logging Rule:

Hybrid Logging Rule Write physical log
records during only checkpointing, and use log-
ical log records in other cases.

By using shadow updating and a private log buffer of
each transaction, we can make a checkpoint into a transac-
tion consistent checkpoint. Under shadow updating, only
committed transactions can update MMDB, which prevents
the partial undo of a transaction and generates only redo
log records. Using both shadow updating and private log
buffers causes log records of a transaction to be written con-
secutively to log. Since these features enable to apply redo
log records by the unit of a transaction, a fuzzy checkpoint
can be restored to a transaction-consistent checkpoint.

2.2. System Configurations

Our hardware system is based on general system config-
urations, so we do not consider a special stable memory.1
Main memory is partitioned into two areas: system and
database area. The system area is used by an operating sys-
tem to control the system. The database area is controlled
by a database management system (DBMS) and consists
of MMDB area, log buffer, and shadow area. We assume
that the entire database can be stored in the MMDB area.
The log buffer has several log pages in which log records of
transactions are stored. A log page is flushed into disk when
it is full. The shadow area is used for shadow updating and
keeps updated data. During commit works of transactions,
the data are moved to appropriate locations in the MMDB
area.

In disks, two backup databases are maintained andping-
pongbackup policy [14] is used. For each checkpoint, one
of two backup databases is used alternatively. During a
checkpoint, only portions of the database that have been
updated are written out to their corresponding position on
the backup database according to ping-pong policy. This
increases the number of pages to be flushed, but prevents
the violation of WAL. The violation of WAL is a situation
that an updated page is flushed to a backup database before
the corresponding log records are flushed to disk. The viola-
tion may occur when fuzzy checkpointing is used carelessly.
When the system crashes in this situation, the log records
have to be applied to the page in order to redo or undo ac-
tions issued by the corresponding transaction. However, as1The stable memory is not an important factor on this work.
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Figure 1. Transaction Processing Model

the log records are not stored in stable log, the page can-
not be recovered. This problem can be solved by ping-pong
backup policy.

With one backup database, the violation of WAL can be
avoided. To do this, the quiescence of transaction process-
ing is required during checkpointing. It is not adequate to
MMDB because of high-performance transaction process-
ing. If we use a stable memory as the log buffer, the WAL
violation can be avoided without two backup databases and
the quiescence. However, most conventional systems are
not equipped with stable memory in standard configuration
and a method without stable memory can be easily applied
to systems with it. So, in this paper, we do not consider the
usage of stable memory.

2.3. Transaction Processing

Under shadow updating, updated data of a transaction
are first written to the shadow area, not to the MMDB area
in place. The updated data are reflected on the MMDB area
after normal operations of the transaction are finished. Fig-
ure 1 shows a transaction processing model for our recovery
method. We use thepre-commitscheme that has been pre-
sented in [2]. For locking policy a strict two-phase locking
protocol is used.

At step 1, operations of a transaction are executed by
locking required objects. After that, the transaction modeis
changed to pre-commit mode. A transaction in pre-commit
mode first writes its log records to the current log page (step
2). Next, MMDB is updated through the updated data of
the transaction in the shadow area (step 3). And then, the
used pages in the shadow area and all acquired locks of the
transaction are released (step 4 and 5). Finally, at step 6 the
transaction compares the current log page with the log page
that has its log records. If two pages are the same, the trans-
action waits the current log page to be flushed; otherwise, it
just commits. Then the user is notified that the transaction
has committed.

According to our hybrid logging rule, the type of log
records to be written at step 2 is determined by the activ-
ity of the checkpointing. During step 1, a transaction makes
logical log records for its operations. These log records are

begin_chkpt

redo
point crash

end_chkptend_chkpt

Figure 2. Redo Point of Normal Checkpoint

stored in a private log buffer of the transaction. After fin-
ishing its operations, the transaction tries to lock the current
log page in order to write its log records. After locking the
log page, the transaction determines the type of log. If the
checkpointer is at work, the transaction writes physical log
records to the log page; the log records are constructed from
the shadow area. Otherwise, the transaction writes logical
log records that are stored in its private log buffer. As the
lock of current log page is a synchronization point between
transactions and the checkpointer, the checkpointer cannot
finish its work while a transaction does logging work.

2.4. Checkpointing

We use ping-pong backup scheme with fuzzy check-
pointing. When a new fuzzy checkpoint begins, the check-
pointer writes a checkpoint beginning mark,beginchkpt,
to the current log page, and then flushes dirty pages to
one database backup in disks without considering on locks
and other transaction activities. When finishing the backup
work, the checkpointer write a checkpoint ending mark,
endchkpt, to current log page and flushes the log pages to
log disks. After the log page with theendchkpt is writ-
ten to disk, the checkpointer records the position ofbe-
gin chkptat a known location on disk. After that, the next
checkpointing can begin and backup dirty pages to another
backup database. This is a normal fuzzy checkpointing pro-
cess [5, 14].

There are two problems in using logical logging under
the normal fuzzy checkpointing. One is the WAL viola-
tion, but it can be avoided by ping-pong backup scheme.
Another problem is related to the redo point of recovery.2
Figure 2 shows the redo point under the normal check-
pointing process. As we do not consider the quiescence
of database, some transactions may be updating pages at
beginchkptand partially updated pages can be flushed to
backup databases. If the system crashes as shown in Fig-
ure 2, the redo point for recovery is determined as the small-
est number among log page numbers of these transactions.
Thus the redo point is before thebeginchkptin log.

The problem related to the redo point is that the type of
log records written by transactions updating some pages at2As using shadow updating policy, we do not consider a transaction
undo.
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beginchkptis of logical log. This is because the hybrid log-
ging rule obeys logical logging during non-checkpoint du-
ration. As an example, consider a situation in Figure 3.T1
andT2 record their logical log records to a log page accord-
ing to the hybrid logging rule. With physical log records, we
can restore after-images without worrying about the current
state of the data. With logical log records, however, the redo
log records may only be applicable to a data item when it
is in exactly the same logical state as when the log records
were created [1]. Thus, the logical log records cannot be
applied to the partially updated pages ofT1 andT2.

To solve this problem, we have to correspond the redo
point with beginchkpt in the last complete checkpoint.
In other words, the checkpointer must begin its backup
processing after all transactions updating MMDB atbe-
gin chkpt finish their updating works. By delaying the
backup beginning point, the checkpointer can do backup
dirty pages on which all updated data of transactions with
logical log records are reflected. Therefore, we can avoid
applying logical log records to partially updated pages. Fig-
ure 4 shows this delayed backup mechanism.Tbackup is the
beginning point of backup work. Some pages ofT3 andT4 may be flushed to a backup database during updating,
which generates partially updated pages. However, these
pages can be recovered because the type of log records ofT3 andT4 is of physical log.

This delayed backup is easily implemented by using a
variable. We define the variable asnumactive tr[ ] , which
represents the number of transactions updating MMDB in
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Figure 4. Delayed Backup Concept

int numactive tr[N] ;
/* N is the number of log pages. */
/* numactive tr[N] are initialized by zero. */

int tail;
/* tail is an index ofnumactive tr[] ,

which points the oldest log page with updating
transaction(s). */: : :

Checkpointing() f
Write beginchkptto a current log pagei;
Change the current log page

to the next log page;
Sleep untiltail � i;
Backup dirty pages;
Write endchkptto a current log pagej

and flush it;
Change current log page to the next log page;
Wait the log pagej and its previous all log

pages to be written to log disks;
Record the position ofbeginchkptto a known

location on disk;g
Figure 5. Fuzzy Checkpointing with Delayed
Backup Timing Point

each log page. After writing its log records to a log pagei, a transaction increasesnumactive tr[i] by one, and de-
creasesnumactive tr[i] by one after updating MMDB.
When numactive tr[i] is zero, it means that transactions
that had written their log records to the log pagei finished
their updating works. By using this variable, the check-
pointer can determine the backup timing point.

Figure 5 shows a fuzzy checkpointing algorithm with the
delayed backup timing point. After writingbeginchkptto a
current log pagei, the checkpointer sleeps untiltail comes
to log pagei. The indextail is moved by transactions. Af-
ter updating MMDB, the transaction locks the log pagej
with its log records and decreasesnumactive tr[j] by one.
At that time, whennumactive tr[j] is zero andtail points
to the log page, the transaction setstail to the next adequate
log page number. If checkpointing is at work, the transac-
tion wakes up the checkpointer.

This approach adds locking overhead to the transaction
overhead, because of twice lockings per a log page. How-
ever, the first locking is a normal process for transaction
processing, and thereby the overhead has little influence on
transaction processing. Due to the delayed time added to
the checkpointing, the checkpointing interval is increased a
little. But updating works at MMDB are processed with-



out disk I/Os, so they are straightforward works. Thus the
delayed time may be very small, and the quiescence of the
database work does not occur.

2.5. Applying to Segmented MMDB

As fuzzy checkpointing in MMDB has little syn-
chronization with executing transactions, a consecutive
fuzzy checkpointing has been considered in some previous
MMDB recovery methods [14, 11]. That is, theendchkpt
of a checkpoint becomes thebeginchkptof the next check-
point. In this way the checkpointer is always active, so there
is no room to use logical logging.

A way applying our hybrid logging scheme to the con-
secutive checkpointing is to partition MMDB to several seg-
ments and to checkpoint segments circularly in the serial
order. A segment consists of one or more pages. Every
database object (relation, index, etc) is stored in a segment.
When the checkpointer is flushing dirty pages in thei th
segment, a transaction uses physical logging for objects in
the segment and logical logging for objects in other seg-
ments. To do this, we need some information on the rela-
tion between a log record and its segment. This information
can be stored in the private log buffer of a transaction and
the shadow area. The following rule is the hybrid logging
scheme in segmented MMDB.

Hybrid Logging Rule for Segmented
MMDB Write physical log records for ob-
jects in a segment that is on checkpointing,
and use logical log records for objects in other
segments.

The ping-pong backup policy is also used in segmented
MMDB. The checkpointer flushes dirty pages in each seg-
ment orderly to one of two backup databases in disks. The
delayed backup method is used in order to adjust the redo
point. Before flushing dirty pages in a segment, the check-
pointer delays the backup timing point. A consecutive
checkpointing algorithm on segmented MMDB is presented
in Figure 6. We use only the beginning mark of a segment
segid, beginchkptsegid. The mark indicates the beginning
of the checkpoint of a segmentsegidas well as the ending
of the checkpoint of just previous segment. Whenever the
checkpointer completes the checkpoint of a segment, the
checkpointer records the position ofbeginchkptsegidat a
known location on disk, like the checkpointing in the non-
segmented MMDB.

Since we use one log buffer, the delayed time to adjust
the redo point at each segment checkpoint is equal to that
of non-segmented MMDB. However, the time is so small
that it has little influence on transaction processing. We can
multiple log buffers, one for each segment. The log records

Checkpointing() f
foreachsegmentdo f

Write beginchkptsegidto a current log
pagei;

Flush the log pagei;
Change current log page

to the next log page;
Sleep untiltail � i;
Record the position ofbeginchkptsegid

to a known location on disk;
Backup dirty pages in segmentsegid;gg

Figure 6. Consecutive Fuzzy Checkpointing
on Segmented MMDB

of a transaction are stored to the log buffers of correspond-
ing segments. In this case, a global log buffer is required to
check the completeness of transactions and checkpoints. In
the global log buffer, the marks for beginning and ending of
transactions and checkpointings are stored. By using multi-
ple log buffers, the delayed time can be reduced. However,
because of having more lock points, the overhead of locking
and its contention will be grown.

3. Recovery Processing

As non-segmented MMDB can be regarded as a special
case of segmented MMDB with one segment, we gener-
ally describe the recovery of segmented MMDB. The re-
covery for MMDB is composed of two processes: reloading
backup database and reapplying log. The reloading process
is to move the last complete checkpoint into main mem-
ory, and the reapplying process is to apply log data to the
reloaded database. Since we use the delayed backup pol-
icy for each segment, the redo point of segmenti is be-
gin chkpt i.

For reloading, we have to determine the last complete
checkpoint. In the conventional fuzzy checkpointing, the
last complete checkpoint has been regarded ascheckpoint1
in Figure 7, which shows the checkpointing process of
MMDB with 4 segments. The point to note is that the
checkpoint of segment 1 aftercheckpoint1 has a meaning-
ful image. The image is in which all log records of segment
1 generated during thecheckpoint1 are applied to the back-
uped pages of segment 1 in thecheckpoint1. This means
that the checkpoint of segment 1 aftercheckpoint1 includes
data items updated incheckpoint1. So, we have to reload
the pages of segment 1 checkpointed aftercheckpoint1, not
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in checkpoint1. This approach can be applied to segment 2
and 3. Therefore, the last complete checkpoint for recovery
is checkpoint2. This approach has been proposed in [12],
which reduces the amount of log required for recovery. By
applying this approach to our hybrid logging scheme, we
can reduce the more size of log data to be read from disks,
which reduces the more number of disk I/Os.

After pages backuped during the last complete check-
point are reloaded into memory, the log records generated
during the checkpoint are applied to the pages. However,
we do not have to apply all physical and logical log records
to the reloaded pages. This is because, according to the de-
layed backup mechanism, the checkpointing of segmenti
begins only after all transactions that write their log records
beforebeginchkpt i finish updating works. This means that
backuped pages during the checkpoint of segmenti have
all after-images of the corresponding log records generated
beforebeginchkpt i. Thus, when segmenti is recovered,
we do not have to reapply log records stored beforebe-
gin chkpt i.

We focus the reapplying method on the last complete
checkpoint. Figure 8 shows components of log records
of the last complete checkpoint in Figure 7. The check-
point of segment 4 begins withbeginchkpt4, and the log
records generated during the checkpoint consists of phys-
ical log records for objects in segment 4 and logical log
records for objects in other segments. When we consider
the checkpointed image of segment 1, it includes all up-
dates of logical log records of segment 1 among log records
generated during the checkpoint of segment 4; the delayed
backup mechanism guarantees this. So, we do not have to
apply logical log records of segment 1 in segment 4 to the
reloaded database at all. Therefore, we can recover a seg-
ment by reapplying only logical log records of the previ-
ously recovered segments and physical log records of its
segment to the reloaded database.

The reapplying method can be also used in segmented

L1 L2 L3 P4 P1 L2 L3 L4 L1 P2 L3 L4 L1 L2 P3 L4

begin_chkpt_4
begin_chkpt_1

begin_chkpt_2

begin_chkpt_3

Figure 8. Contents of Log of Figure 7

MMDB under conventional fuzzy checkpointings that per-
mit only physical logging scheme. Following is the general
expression of the reapplying policy:

Reapplying Rule When recovering the last com-
plete checkpoint of segmented MMDB, in each
segment reapply log records related to its segment
and previous recovered segments in the last com-
plete checkpoint. After recovering the last com-
plete checkpoint, reapply all remain log records
to MMDB till log records of the last complete
transaction.

By the last complete transaction, we mean the last trans-
action whose all log records are stored in log disk. In our
configurations, determining whether a transaction is the last
complete transaction can be readily checked, because the
log records of a transaction are stored in log consecutively.
The reapplying rule enables to reduce the number of log
records to be applied.

4. Performance Evaluation

This section shows the effect and recovery performance
over the hybrid logging scheme through simple analyses.
Our metrics are the size of log data generated in a com-
plete checkpoint (chkpt-log-size), the size of log data to
apply for recovering the last complete checkpoint (apply-
log-size), and recovery time.chkpt-log-sizedetermines the
number of disk I/Os and it has great influence on the recov-
ery time. apply-log-sizeis for presenting the influence of
the reapplying rule.

We consider consecutive checkpoints on segmented
MMDB. MMDB is partitioned toN segments. We assume
that transactions access segments with equal access ratio;
that is, log records generated during the checkpoint of a seg-
ment includeS log records for each segment. So,S �N log
records are included in a segment checkpoint. LetP be the
size of a physical log record andL the size of a logical log
record.

Since we assume the equal access ratio to segments,
chkpt-log-sizein only physical logging is the sum of the
log size of each segment multiplied byP ; that is,(S �N)�P �N = SN2P . If hybrid logging scheme is used, the log
records generated in a checkpoint consist of physical log
records of the checkpointed segment and logical log records
of other segment. The size of log records generated during
a segment checkpoint isS � P + S � (N � 1) � L. Thus
chkpt-log-sizeis (S � P + S(N � 1)� L)�N= S �N(P + L �N � L)= SN2L+ SNP � SNL:



Table 1. Rate of the size of log

Case Logging Reapplying chkpt-log- apply-log-

Rule size size

1 Physical X 1 1
2 Physical O 1 12 + 12N
3 Hybrid O LP + 1N L2P + 1N� LNP � L2NP

Next, we analyzeapply-log-size. If only physical log-
ging scheme is used and our reapplying rule is not consid-
ered,apply-log-sizein segmented MMDB isSN2P , like
chkpt-log-size. When the reapplying scheme is used with
physical logging, theapply-log-sizeisS � P+ S � P + S � P

...+ S � P + S � P � (N � 1)= SP (1 + 2 + 3 + : : :+N)= SP � N(N + 1)2= 12SN2P + 12SNP:
When hybrid logging scheme is considered, logical log

records are applied to the previous segments by using the
reapplying rule. Theapply-log-sizethus isS � P+ S � P + S � L+ S � P + S � L� 2

...+ S � P + S � L� (N � 1)= SPN + SL(1 + 2 + 3 + : : :+N � 1)= SPN + SL (N � 1)N2= 12SN2L+ SPN � 12SNL:
To evaluate the impact of physical logging and the reap-

plying scheme, table 1 shows rates of the log size in hybrid
logging to the log size in only physical logging; that is, all
above equations are divided bySN2P . According to [14],
we assume thatL is 64 words andP is 192 words. The
rate of reduced size of log data to varyingN is presented
at Figure 9. With 4 segments, the size of log data gener-
ated during a checkpoint can be reduced to half, compared
with that of only physical logging. Forapply-log-size, we
can reduce it to less than half by using hybrid logging and
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the reapplying scheme, so the recovery process can be per-
formed faster. For simple and straight analyses, we consider
only chkpt-log-sizeon next analyses.

Next, we consider a database with hotspots and assume
thatfH portions of all database pages have(1� fH) of ac-
cesses, e.g.,20-80 rule. LetH be thenumberof log records
generated during a complete checkpoint. If a database is
partitioned into two segments: hotspot segment and non-
hotspot segment, we can assume that rates of generation of
dirty pages and checkpointing time in the hotspot segment
are similar to the access rate of hotspot,(1� fH). Thus, the
number of log records generated during the checkpoint of
the hotspot segment is(1 � fH) � H . When considered
a uniform distribution over accessed positions,(1 � fH)
portions of (1 � fH) � H log records are related to the
hotspot segment. These portions of log records are physical
log records and the remainders are logical log records. We
can also apply this idea to the non-hotspot segment. Thus,
chkpt-log-sizewith two segments is(1� fH)H [(1� fH)P + fHL]+ fHH [fHP + (1� fH)L]

We expand the above idea toN segments:dN � fHe
hotspot segments and(N � dN � fHe) non-hotspot seg-
ments. LetNH be dN � fHe. We assume every hotspot
(or non-hotspot) segments has same access rate. Thus the
number of log generated during the checkpoint of a hotspot
segment is (1� fH)H � 1NH :

Among the above number of the log records,(1 �fH)=NH portions are only related to the segment that is on
checkpointing, and the type of these log records is of physi-
cal log. The type of log records for remaining other hotspot
segments and for all non-hotspot segments is of logical log.



Thus the size of log data for a hotspot segment is(1� fH)HNH �� (1� fH)NH P + (1� fH)NH (NH � 1)L+ fHL� :
Similarly, the size of log data for a non-hotspot segment can
be given by fHHN �NH�� fHN �NHP + fHN �NH (N �NH � 1)L+ (1� fH)L� :

Since there areNH hotspot segments and (N�NH) non-
hotspot segments,chkpt-log-sizeis the sum of above equa-
tions multiplied byNH and (N � NH), respectively. The
size of log data in only physical logging isHP . The rate
of the log size with hybrid logging to only physical logging
thus is(1� fH) � (1� fH)NH + (1� fH)NH (NH � 1)LP + fH LP �+fH � fHNH + fHNH (N �NH � 1)LP + (1� fH)LP �= (1� fH)2NH + f2HN �NH+LP �(1� fH)2 + f2H + 2fH(1� fH)��LP � (1� fH)2NH + f2HN �NH � :
If we consider equal access rate for each segment,fH =1=2, the result of above equation is1N + LP � LNP ;
which is the same tochkpt-log-sizeof case 3 in Figure 1.

Figure 10 shows the rate of reduced size of log data to
varyingN for hotspot rates, withL of 64 words andP of
192 words. This result says that our hybrid logging method
has great impact on reducing the size of log data. WhenfH
is 20%, 45% of the log size are reduced with six segments,
compared with that of only physical logging.

Finally, we measure the recovery time of MMDB. Ta-
ble 2 shows some parameters and their default values. They
are derived from [11] and [14]. For the simplicity, the re-
covery time of the last complete checkpoint is considered.
The recovery time consists of the MMDB reloading time,
log pages reading time, and log reapplying time. The time
to read the backup database,Tback isTback = SdbSpage � (Tseek + Tlatency + Ttransfer):
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Figure 10. Effects of Log Reduction under
hotspots

The size of log data for recovering the last complete
checkpointing,Slog, isSlog = (1� Pabort)� Trate � ticp �Dredo
whereticp is an inter-checkpoint interval andDredo is the
size of redo log data per transaction. If only physical log-
ging is used,Dredo = Sinit+Srec�Nact. When only logi-
cal logging is used, we simply assumeDredo = Sop+Sinit.Dredo of the hybrid logging is calculated according to the
result of Figure 10.ticp is a period between the beginnings of checkpoints
and is determined by the number of dirty pages generated
and the I/O capability. According to [11], the expected
number of dirty pages generated during a timet, Ndirty(t),
is Ndirty(t) ="1��1� RspaNpage�fhotact�Nact�Trate�t#�fhot �Npage+ "1��1� RspaNpage�(1�fhotact)�Nact�Trate�t#�(1� fhot)�Npage
whereNpage isSdb=Spage. Since we use ping-pong backup
policy, the number of dirty pages to be flushed during timet, Nush(t), isNdirty(2� ticp).

According to [14], the number of pages that can be writ-
ten out to the disks during timet, Nio(t) is given byNio(t) = Nbdisks � tTseek � Tlatency � Ttransfer :



Table 2. Parameters and Their Defaults
Symbol Meaning DefaultsSdb database size 512 M wordsSlpg log page size 1024 wordsSpage page size 8K wordsSrec record size 32 wordsSop logical log entry size 32 wordsSinit log header size 32 wordsTrate transaction arrival rate 1000 TPSTseek average seek time 0.008 secTlatency average rotation time 0.00417 secTtransfer average transfer time per

page
0.00039 secNbdisks number of backup disks 20Nact actions per transaction 5Pabort abort probability 0.05fH fraction of hotspot 0.2fhotact fraction of actions to

hotspot
1-fHRspa pages per action 1.1

By settingNush(t) = Nio(t), we find the minimumticp.
In general, since disk reading and CPU processing can be

overlapped together, and since disk I/O time is much larger
than CPU processing time, the log page reading time may
be regarded as total log processing time. Due to locality of
log that is sequential file [11], the time to read log isSlogSlpg � (0:3� Tseek + Tlatency + Ttransfer):

Figure 11 presents recovery times of three logging
scheme. The recovery time of logical logging (Logical) is
an ideal case because we cannot use only logical logging
with fuzzy checkpointing in MMDB. Compared with the
recovery time of physical logging, our hybrid logging ap-
proach performs better. As having more segments causes
the size of physical log data to be smaller, the recovery time
of our approach converges to that of logical logging. With
20 segments, the gap of recovery times between physical
logging and hybrid logging is about 20 seconds. This is not
small in the high transaction processing rate. At 1000 TPS,
20000 transactions can be processed during the gap.

5. Conclusions and Further Work

Fuzzy checkpointing is an efficient checkpointing
method in MMDB, but generates greater size of log data
due to physical logging. This causes the recovery time of
MMDB to be longer since much disk I/Os are required to
read the log. To reduce the size of log data, we have pro-
posed the hybrid logging method accommodating logical
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Figure 11. Recovery Time of a Checkpoint

logging under fuzzy checkpointing. By using the hybrid
method, the size of log data generated during a checkpoint
can be significantly reduced. We have also presented an ef-
ficient reapplying rule in segmented MMDB. This rule re-
duces thenumberof log records applied for recovery.

We have shown through analyses that the hybrid method
can reduce the size of log data generated during a check-
point by more than half, compared with those that use only
physical logging. The result of the reapplying rule shows
that we can recover the last complete checkpoint with about
half of number of log records generated during the check-
point. For further works, we are investigating possibilityof
appliance to redo/undo schemes and segmenting methods
suitable to the proposed method. Detail analyses through
experiments are also a subject.
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