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Abstract Disk-Resident Databases (DRDB), all the contents of mem-
ory can be lost in system failures due to volatility of main
This paper presents a simple and effective method tomemory. To preserve data against crashes, we need a recov-
reduce the size of log data for recovery in main mem- ery method that restores MMDB to a consistent state. Many
ory databases. Fuzzy checkpointing is known to be veryresearches have been done in the past for recovery methods
efficient in main memory databases due to asynchronousn MMDB [2, 4, 7, 8, 10, 11, 14].

backup activities. By this fea_lture, m(_)st recovery quks iN" MMDB has a goal of high-performance transaction pro-
the past have used only physical logging schemes. Since thgegsing. Thus a recovery method must be efficiently pro-
size of physical log records is quite large, physical 10@gin  cessed with little synchronization and fast recovery. Amon

schemes cause the recovery time to be much longer than thale, er4) tasks in recovery methods, checkpointing is the mos
using logical logging schemes. In this paper, we propose ajmnortant one for these requirements. Since MMDB has

hybrid logging method that can accommodate logical 10g- g pyifering activities for data stored in the memory per-
ging under fuzzy checkpointing. This method significantly yanently, an efficient checkpointing scheme is required.
decreases the size of log data, and hence speeds up thPuzzy checkpointing in MMDB, which has been shown to
recovery time. We also propose a reapplying rule in seg- e effective in DRDB, was introduced by Hagmann [5].
mented MMDB, which reduces the number of log records ag f,77y checkpointing flushes dirty pages asynchronously
for recovery. We evaluate the performance of the proposed,y5inst transaction activities, the quiescence of traitses
methods through an_alytic analyses. The results show thatig™ ot required. However, only physical logging scheme
we can reduce the size of log data to more than half, com-\y45 considered in fuzzy checkpointing due to asynchronous
pared with those that use only physical logging. flushing in the past MMDB recovery works [5, 11, 12].

. Physical logging causes a recovery time of MMDB to be
Keywords: database recovery, main memory databases|onger than logical logging. This is because a large amount
(MMDB), fuzzy checkpointing, hybrid logging method, of |og data are produced in physical logging [14]. Logical

shadow updating, delayed backup logging can make a long physical log into a record of only
a few words, which can reduce the size of log data signif-

1. Introduction icantly. To achieve faster recovery, we need a method to
reduce the size of log data by accommodating logical log-
ging.

In Main Memory Databases (MMDB) data reside per-
manently in main memory. By the significant decrease

of memory cost with the fast growth of memory capac- X o
compression method. These methods are to eliminate the

ity, the importance of MMDB has been increasingly rec- ., _
ognized [3]. There are several database systems that uséedo part of log records for aborted transactions and the

MMDB as a part of databases [6, 9, 15]. Though MMDB ‘undo” portion of log records for committed transactions.

can provide faster response time and higher throughput thari? Léhman and Carey [8] and Jagadistal. [7], redo log
records are flushed to disks and undo log records are dis-

TThis material was supported in part by Ministry of Inforneatiand Carc_led’ when a transaction is Com_mitted-_ Salem and Garcia-
Communication, 1996. Molina [14] use a shadow updating policy to record only

There are some researches that attempt to reduce the size
of log data. DeWitet al.[2] and Hagmann [5] present a log




redo log records. However, two former methods are not restore a fuzzy checkpoint to the same physical state as it
based on fuzzy checkpointing, and in [14] it has been shownwas. After then, the logical log records can be applied to
that fuzzy checkpointing still has longer recovery timertha the checkpoint because the checkpointis in exactly the same
other checkpointing methods with logical logging. If sec- state when the log records were generated. This is the basic
ondary index modifications are logged, the recovery time of idea of our approach that can accommodate logical logging
fuzzy checkpointing would be much longer. in fuzzy checkpointing. We refer to the approachsbrid

In DRDB there are some works on adapting logical log- Logging Rule
ging under fuzzy checkpointing. Bernstedt al. [1] de-
scribe a penultimate fuzzy checkpointing method with logi-
cal logging. This checkpointing scheme, however, requires
the quiescence of transaction processing. The quiescence
time is determined by duration of active transactions and By using shadow updating and a private log buffer of
the number of dirty pages. Mohagt al. [13] introduce a  each transaction, we can make a checkpoint into a transac-
recovery method, called ARIES which is based on a fuzzy tion consistent checkpoint. Under shadow updating, only
checkpointing and WAL logging scheme. ARIES supports committed transactions can update MMDB, which prevents
logicallogging, which is, however, restricted to objecifw  the partial undo of a transaction and generates only redo
increment or decrement kinds of operations, e.g., garbagelog records. Using both shadow updating and private log
collection and changes to the amount of free space. Thepuffers causes log records of a transaction to be written con
two above-mentioned fuzzy checkpointing methods are for secutively to log. Since these features enable to apply redo
DRDB, not MMDB. This means that flushing of dirty pages |og records by the unit of a transaction, a fuzzy checkpoint
is based on buffering activities. Because MMDB has data in can be restored to a transaction-consistent checkpoint.
main memory permanently, the penultimate checkpointing
idea in [1] and the scheme of un-flushing dirty page in [13] 2.2. System Configurations
cannot be applied for MMDB.

In this paper, we propose a simple and efficient Iogging  Our hardware system is based on general system config-
method that uses both physical and logical log records un-yrations, so we do not consider a special stable merory.
der fuzzy checkpointing in MMDB. The basic idea of the Main memory is partitioned into two areas: system and
method is that a transaction writes phySical |Og records dur database area. The System area is used by an Operating sys-
ing only checkpointing, but uses logical log records in othe tem to control the system. The database area is controlled
cases. Shadow updating and private log buffers are used topy a database management system (DBMS) and consists
gether with hybrld Iogglng to make a transaction consistent of MMDB area, |Og buffer, and shadow area. We assume
checkpoint. We apply the proposed method to segmentechat the entire database can be stored in the MMDB area.
MMDB in order to support consecutive checkpointings. We The |og buffer has several log pages in which log records of
also present an effective method that can significantly re- transactions are stored. A log page is flushed into disk when
duce thenumberof log records used for recovery. it is full. The shadow area is used for shadow updating and

The rest of the paper is organized as follows. In Sec- keeps updated data. During commit works of transactions,
tion 2, we present the system configurations and the pro-the data are moved to appropriate locations in the MMDB
posed fuzzy checkpointing method. Then we apply the grea.
method to Segmented MMDB. Section 3 describes the re- In diSkS, two backup databases are maintainem
covery processing and an effective reapplying method. In pongbackup policy [14] is used. For each checkpoint, one
Section 4, we evaluate the impact and performance of theof two backup databases is used alternatively. During a
proposed method through analyses. Finally Section 5 hascheckpoint, only portions of the database that have been
conclusions and describes some further works. updated are written out to their corresponding position on

the backup database according to ping-pong policy. This
2. Fuzzy Checkpointing Accommodating Log-  increases the number of pages to be flushed, but prevents

ical Logging the violation of WAL The violation of WAL is a situation

that an updated page is flushed to a backup database before
the corresponding log records are flushed to disk. The viola-
tion may occur when fuzzy checkpointing is used carelessly.
When the system crashes in this situation, the log records
have to be applied to the page in order to redo or undo ac-
tions issued by the corresponding transaction. However, as

Hybrid Logging Rule  Write physical log
records during only checkpointing, and use log-
ical log records in other cases.

2.1. Basic Concept

Under fuzzy checkpointing [5] in MMDB, the check-
pointer flushes dirty pages without considering on transac-
tion activities. Thus only physical logging must be used
during checkpointing. With physical log records, we can  'The stable memory is not an important factor on this work.
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Figure 1. Transaction Processing Model stored in a private log buffer of the transaction. After fin-

ishing its operations, the transaction tries to lock theeuir
log page in order to write its log records. After locking the

the log records are not stored in stable log, the page can . )
g g pag log page, the transaction determines the type of log. If the

not be recovered. This problem can be solved by plng-loom‘gcheckpointer is at work, the transaction writes physicgl lo

backup policy. records to the log page; the log records are constructed from
With one backup database, the violation of WAL can be g page, thelog . : .
: : . . the shadow area. Otherwise, the transaction writes logical
avoided. To do this, the quiescence of transaction process; T .
. ) ) - . log records that are stored in its private log buffer. As the
ing is required during checkpointing. It is not adequate to

MMDB because of high-performance transaction process-loCk of c_urrent log page is a sy_nchromzatmn p0|r_1t between
: transactions and the checkpointer, the checkpointer ¢anno
ing. If we use a stable memory as the log buffer, the WAL

violation can be avoided without two backup databases andfInISh its work while a transaction does logging work.

the quiescence. However, most conventional systems are o

not equipped with stable memory in standard configuration 2-4. Checkpointing

and a method without stable memory can be easily applied

to systems with it. So, in this paper, we do not consider the We use ping-pong backup scheme with fuzzy check-

usage of stable memory. pointing. When a new fuzzy checkpoint begins, the check-
pointer writes a checkpoint beginning matbeginchkpt
2.3. Transaction Processing to the current log page, and then flushes dirty pages to

one database backup in disks without considering on locks
Under shadow updating, updated data of a transactionand other transaction activities. When finishing the backup

are first written to the shadow area, not to the MMDB area \évr?é_lzh;[(h? t(c:)hcel(j:(rgcr)][[nltoer Wantz :ngr}?ucgﬁggrﬁ]z?glngam:Stkt’o
in place. The updated data are reflected on the MMDB are P g pag g pag

after normal operations of the transaction are finished- Figalog d's@' After the log bage with thendchkpt_ls_ writ-
ure 1 shows a transaction processing model forourrecoveryte.n to disk, the CheCpr'.n ter recprds the positionbet
n_chkptat a known location on disk. After that, the next

- i _9
method_. We use thpre_ comrr_mschem_e that has been pre checkpointing can begin and backup dirty pages to another
sented in [2]. Forlocking policy a strict two-phase locking backup database. This is a normal fuzzy checkpointing pro-
protocol is used. '

. : cess [5, 14].
At step 1, operations of a transaction are executed by . . . :
: ; . : . There are two problems in using logical logging under
locking required objects. After that, the transaction mizde L g :
. oo .. the normal fuzzy checkpointing. One is the WAL viola-
changed to pre-commit mode. A transaction in pre-commit _. . . .
: o tion, but it can be avoided by ping-pong backup scheme.
mode first writes its log records to the current log page (step : . .
) Another problem is related to the redo point of recovery.
2). Next, MMDB is updated through the updated data of Figure 2 shows the redo point under the normal check
the transaction in the shadow area (step 3). And then, the 9 b

used pages in the shadow area and all acquired locks of thé)omtmg process. As we do not consider the quiescence

; : of database, some transactions may be updating pages at
transaction are released (step 4 and 5). Finally, at step 6 th beginchkptand partially updated pages can be flushed to

transaction compares the currentlog page with the log pageoackup databases. If the system crashes as shown in Fig-
that has its log records. If two pages are the same, the trans- '

) ) ) . .-ure 2, the redo point for recovery is determined as the small-
action waits the current log page to be flushed; otherwise, it .
: ; . i .’ “est number among log page numbers of these transactions.
just commits. Then the user is notified that the transaction 2 ; .
. Thus the redo point is before theginchkptin log.
has committed. L
. . . The problem related to the redo point is that the type of
According to our hybrid logging rule, the type of log log records written by transactions updating some pages at
records to be written at step 2 is determined by the activ- 9 y P 9 pag

ity (_)f the checkpointing. During _step 1, atransaction makes  2as ysing shadow updating policy, we do not consider a traitsac
logical log records for its operations. These log recor@s ar undo.
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Figure 3. Example of Redo Point Problem

beginchkptis of logical log. This is because the hybrid log-
ging rule obeys logical logging during non-checkpoint du-
ration. As an example, consider a situation in Figur&'3.
andT7'2 record their logical log records to a log page accord-
ing to the hybrid logging rule. With physical log records, we
can restore after-images without worrying about the curren
state of the data. With logical log records, however, thered
log records may only be applicable to a data item when it

is in exactly the same logical state as when the log records

were created [1]. Thus, the logical log records cannot be
applied to the partially updated pagesiof andT'2.

To solve this problem, we have to correspond the redo
point with beginchkpt in the last complete checkpoint.
In other words, the checkpointer must begin its backup
processing after all transactions updating MMDB begt-
gin_chkpt finish their updating works. By delaying the

backup beginning point, the checkpointer can do backup

dirty pages on which all updated data of transactions with
logical log records are reflected. Therefore, we can avoid
applying logical log records to partially updated pageg- Fi
ure 4 shows this delayed backup mechani®py.., is the
beginning point of backup work. Some pagesT&f and

T4 may be flushed to a backup database during updating

int numactivetr[N];
/* N is the number of log pages. */
/* numactivetr[N] are initialized by zero. */
int tail;
[* tail is an index ohumactivetr[] ,
which points the oldest log page with updating
transaction(s). */

Checkpointing() {

Write beginchkptto a current log page

Change the current log page
to the next log page;

Sleep untittail < i;

Backup dirty pages;

Write end.chkptto a current log pagg
and flush it;

Change current log page to the next log page;

Wait the log page and its previous all log
pages to be written to log disks;

Record the position dieginchkptto a known
location on disk;

}

Figure 5. Fuzzy Checkpointing with Delayed
Backup Timing Point

each log page. After writing its log records to a log page
1, a transaction increasesimactivetr[i] by one, and de-
creasesnumactivetr[i] by one after updating MMDB.
When numactivetr[i] is zero, it means that transactions

which generates partially updated pages. However, theséhat had written their log records to the log paginished

pages can be recovered because the type of log records
T3 andT4 is of physical log.

This delayed backup is easily implemented by using a
variable. We define the variable aamactivetr[ ], which
represents the number of transactions updating MMDB in

begin_chkpt end_chkpt

|
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Figure 4. Delayed Backup Concept

[¢)

fheir updating works. By using this variable, the check-
pointer can determine the backup timing point.

Figure 5 shows a fuzzy checkpointing algorithm with the
delayed backup timing point. After writingeginchkptto a
current log page, the checkpointer sleeps untilil comes
to log page. The indextail is moved by transactions. Af-
ter updating MMDB, the transaction locks the log pgge
with its log records and decreasmsmactivetr[j] by one.

At that time, whemumactivetr[j] is zero andtail points

to the log page, the transaction sktfl to the next adequate
log page number. If checkpointing is at work, the transac-
tion wakes up the checkpointer.

This approach adds locking overhead to the transaction
overhead, because of twice lockings per a log page. How-
ever, the first locking is a normal process for transaction
processing, and thereby the overhead has little influence on
transaction processing. Due to the delayed time added to
the checkpointing, the checkpointing interval is increbae
little. But updating works at MMDB are processed with-



out disk 1/0s, so they are straightforward works. Thus the o
delayed time may be very small, and the quiescence of theCheckpointing() {

database work does not occur. foreachsegmentio { ,
Write beginchkptsegidto a current log

pager;
Flush the log pagé
Change current log page

2.5. Applying to Segmented MMDB

As fuzzy checkpointing in MMDB has little syn- to the next log page;
chronization with executing transactions, a consecutive Sleep untittail < i;
fuzzy checkpointing has been considered in some previous Record the position dfeginchkptsegid
MMDB recovery methods [14, 11]. That is, temd.chkpt to a known location on disk:
of a checkpoint becomes theginchkptof the next check- Backup dirty pages in segmestgid;
point. In this way the checkpointeris always active, sogher }

is no room to use logical logging.

A way applying our hybrid logging scheme to the con-
secutive checkpointing is to partition MMDB to several seg-
ments and to checkpoint segments circularly in the serial Figure 6. Consecutive Fuzzy Checkpointing
order. A segment consists of one or more pages. Every on Segmented MMDB
database object (relation, index, etc) is stored in a segmen
When the checkpointer is flushing dirty pages in thih
segment, a transaction uses physical logging for objects in
the segment and logical logging for objects in other seg-
ments. To do this, we need some information on the rela-
tion between a log record and its segment. This information
can be stored in the private log buffer of a transaction and
the shadow area. The following rule is the hybrid logging
scheme in segmented MMDB.

of a transaction are stored to the log buffers of correspond-
ing segments. In this case, a global log buffer is required to
check the completeness of transactions and checkpoints. In
the global log buffer, the marks for beginning and ending of
transactions and checkpointings are stored. By using multi
ple log buffers, the delayed time can be reduced. However,
because of having more lock points, the overhead of locking

. . and its contention will be grown.
Hybrid Logging Rule for Segmented

MMDB  Write physical log records for ob-

jects in a segment that is on checkpointing, 3. Recovery Processing
and use logical log records for objects in other
segments. As non-segmented MMDB can be regarded as a special

case of segmented MMDB with one segment, we gener-

The ping-pong backup policy is also used in segmentedally describe the recovery of segmented MMDB. The re-
MMDB. The checkpointer flushes dirty pages in each seg- covery for MMDB is composed of two processes: reloading
ment orderly to one of two backup databases in disks. Thebackup database and reapplying log. The reloading process
delayed backup method is used in order to adjust the redaois to move the last complete checkpoint into main mem-
point. Before flushing dirty pages in a segment, the check- ory, and the reapplying process is to apply log data to the
pointer delays the backup timing point. A consecutive reloaded database. Since we use the delayed backup pol-
checkpointing algorithm on segmented MMDB is presented icy for each segment, the redo point of segmeig be-
in Figure 6. We use only the beginning mark of a segment gin_chkpti.
segid beginchkptsegid The mark indicates the beginning For reloading, we have to determine the last complete
of the checkpoint of a segmesegidas well as the ending  checkpoint. In the conventional fuzzy checkpointing, the
of the checkpoint of just previous segment. Whenever the last complete checkpoint has been regardedaskpoint;
checkpointer completes the checkpoint of a segment, thein Figure 7, which shows the checkpointing process of
checkpointer records the position leéginchkptsegidat a MMDB with 4 segments. The point to note is that the
known location on disk, like the checkpointing in the non- checkpoint of segment 1 afteheckpoint; has a meaning-
segmented MMDB. fulimage. The image is in which all log records of segment

Since we use one log buffer, the delayed time to adjust 1 generated during théieckpoint, are applied to the back-
the redo point at each segment checkpoint is equal to thatuped pages of segment 1 in thieeckpoint;. This means
of non-segmented MMDB. However, the time is so small thatthe checkpointof segment 1 aftéeckpoint; includes
that it has little influence on transaction processing. We ca data items updated itheckpoint,. So, we have to reload
multiple log buffers, one for each segment. The log records the pages of segment 1 checkpointed aftexkpoint,, not



Checkpoing MMDB under conventional fuzzy checkpointings that per-
mit only physical logging scheme. Following is the general
I L2 s expression of the reapplying policy:

\ \ \ \ \ \
/ Reapplying Rule When recovering the last com-
plete checkpoint of segmented MMDB, in each
segment reapply log records related to its segment
and previous recovered segments in the last com-
plete checkpoint. After recovering the last com-
plete checkpoint, reapply all remain log records

in checkpoint,. This approach can be applied to segment 2 to MMDB till log records of the last complete
and 3. Therefore, the last complete checkpoint for recovery transaction.

is checkpoint,. This approach has been proposed in [12],
which reduces the amount of log required for recovery. By
applying this approach to our hybrid logging scheme, we

can reduce the more size of log data to be read from disks, . .
complete transaction can be readily checked, because the

which reduces the more number of disk 1/0s. | ds of at i ored in | ivel
After pages backuped during the last complete check- 0g records ot a transaction are stored in og consecutively
The reapplying rule enables to reduce the number of log

point are reloaded into memory, the log records generated X
during the checkpoint are applied to the pages. However,recOrds to be applied.
we do not have to apply all physical and logical log records
to the reloaded pages. This is because, according to the de4. Performance Evaluation
layed backup mechanism, the checkpointing of segment

begins only after all transactions that write their log netso This section shows the effect and recovery performance
beforebeginchkpti finish updating works. This meansthat gyer the hybrid logging scheme through simple analyses.
backuped pages during the checkpoint of segmdmve  oyr metrics are the size of log data generated in a com-
all after-images of the corresponding log records gendrate plete checkpointdhkpt-log-sizg the size of log data to
beforebeginchkpti. Thus, when segmeritis recovered, apply for recovering the last complete checkpompgly-

we do not have to reapply log records stored befoee  |oq.sizg, and recovery timechkpt-log-sizeletermines the

gin_chkpti. _ number of disk I/Os and it has great influence on the recov-
We focus the reapplying method on the last complete gry time. apply-log-sizes for presenting the influence of

checkpoint. Figure 8 shows components of log records ihe reapplying rule.

of the last complete checkpoint in Figure 7. The check-  \ye consider consecutive checkpoints on segmented

point of segment 4 begins witheginchkpt4, and the log  MMDB. MMDB is partitioned toN segments. We assume

records generated during the checkpoint consists of phySthat transactions access segments with equal access ratio;

ical log records for objects in segment 4 and logical 109 thatis, log records generated during the checkpoint of a seg

records for objects in other segments. When we considerent includes log records for each segment. Sb, N log

the checkpointed image of segment 1, it includes all up- yecords are included in a segment checkpoint. B &te the

dates of logical log records of segment 1 among log recordsgjze of 4 physical log record arfdthe size of a logical log
generated during the checkpoint of segment 4; the delayed.gcorq.

backup mechanism guarantees this. So, we do not have to  gjnce we assume the equal access ratio to segments,
apply logical log records of segment 1 in segment 4 to the chkpt-log-sizein only physical logging is the sum of the
reloaded database at all. Therefore, we can recover a S€00g size of each segment multiplied By that is,(S - N) x
ment by reapplying only logical log r_ecords of the previ-_ P x N = SN2P. If hybrid logging scheme is used, the log
ously recovered segments and physical log records of itSyacords generated in a checkpoint consist of physical log
segment to the reloaded database. . records of the checkpointed segment and logical log records

The reapplying method can be also used in segmentedyt other segment. The size of log records generated during

a segment checkpoint x P + S x (N — 1) x L. Thus
begi n_chkpt _4 begi n_chkpt _2 chkpt-log-sizés
begi n_chkpt _1 begi n_chkpt _3

i1 2 13 P4[£[P1 L2 L3 L4¥[LL P2 L3 L4[t]it L2 P3 L4] | ] (SxP+S(N-1)xL)xN
S N(P+L-N-1L)
Figure 8. Contents of Log of Figure 7 — SN2L+SNP - SNL.

Checkpoint ,

Figure 7. The Last Complete Checkpoint

By the last complete transaction, we mean the last trans-
action whose all log records are stored in log disk. In our
configurations, determining whether a transaction is the la
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Table 1. Rate of the size of log (apply-log-size of case 2) ——
0.9 (chk-log-size of case 3) —~— |
Case| Logging | Reapplying| chkpt-log- | apply-log- 08 L (apply-log-size of case 3) —*— |
Rule size size Q
_ g 0.7 | .
1 Physical X 1 1 - 06
2 | Physical o) 1 Ly L 8 or ]
: K 05 | .
3 Hybrid ] L+ L+l e
L __L_ 04 |
NP 2NP
03 | .
Next, we analyzeapply-log-size If only physical log- 02 T T T . s & 7 8 <
. . X . . 3 4 5 6 7 8 9 10
ging scheme is used and our reapplying rule is not consid- Number of Segments
ered,apply-log-sizen segmented MMDB isSN2 P, like
chkpt-log-size When the reapplying scheme is used with Figure 9. Rate of The Reduced Log
physical logging, thapply-log-sizes
SxP the reapplying scheme, so the recovery process can be per-
+ SxP+SxP formed faster. For simple and straight analyses, we conside

only chkpt-log-sizeon next analyses.
: Next, we consider a database with hotspots and assume
+ SxP+SxPx(N-1) that fi portions of all database pages hdve- fx) of ac-
— SP(14243+...4N) cesses, e.gZO-SO rule Let H be thenumberof log records _
generated during a complete checkpoint. If a database is

— SPx M partitioned into two segments: hotspot segment and non-
) 21 hotspot segment, we can assume that rates of generation of

= _SN2P+ _SNP. dirty pages and checkpointing time in the hotspot segment
2 2

are similar to the access rate of hotsgat- fi). Thus, the

When hybrid logging scheme is considered, logical log number of log records generated during the checkpoint of
records are applied to the previous segments by using thehe hotspot segment ig — fu) x H. When considered

reapp|ying rule. Thapp|y_|og_sizehus is a uniform distribution over accessed pOSitiOl(ﬂ;,— fH)
portions of (1 — fu) x H log records are related to the
S xP hotspot segment. These portions of log records are physical
+ SxP+SxL log records and the remainders are logical log records. We

can also apply this idea to the non-hotspot segment. Thus,
chkpt-log-sizevith two segments is

-;- SxP+SxLx(N-1) (1= fu)H[(1 = fu)P + fulL]
= SPN+SL1+2+3+...+N—1) + fuH[fuP + (1= fu)L]

(N-1)N We expand the above idea 16 segments:[N x fy]

2 hotspot segments ar{dv — [N x fu]) non-hotspot seg-
_ ESNQL L SPN — ESNL. ments. LetNyg be [N x fu]. We assume every hotspot

2 2 (or non-hotspot) segments has same access rate. Thus the
number of log generated during the checkpoint of a hotspot
segmentis

4+ SxP+SxLx2

= SPN+SL

To evaluate the impact of physical logging and the reap-
plying scheme, table 1 shows rates of the log size in hybrid

logging to the log size in only physical logging; that is, all 1

above equations are divided BYN2P. According to [14], (1 — fu)H x No

we assume thak is 64 words andP is 192 words. The "

rate of reduced size of log data to varyingis presented Among the above number of the log recordg, —

at Figure 9. With 4 segments, the size of log data gener- fi1)/Ny portions are only related to the segment that is on
ated during a checkpoint can be reduced to half, comparedcheckpointing, and the type of these log records is of physi-
with that of only physical logging. Faapply-log-sizewe cal log. The type of log records for remaining other hotspot
can reduce it to less than half by using hybrid logging and segments and for all non-hotspot segments is of logical log.



Thus the size of log data for a hotspot segment is

(1—fu)H
No
{(1;[HfH)P+ (IJ:IJH)(NH —1)L+fHL} .

Similarly, the size of log data for a non-hotspot segment can
be given by

fuH o

N — Ny
[ fu_p, Ju (N-N —1)L+(1—f)L}
N — Ny N — Ny H H)=

Since there ar@'y hotspot segments and/(— Ny) non-
hotspot segmentshkpt-log-sizés the sum of above equa-
tions multiplied by Ny and (V — Ng), respectively. The
size of log data in only physical logging B P. The rate
of the log size with hybrid logging to only physical logging
thus is

(1-fu) (- fu) L L
(1_fH){ N, T (NH_l)ﬁ‘FfHﬁ}
L L
+fn [1{[—1 + ]C—i(N—NH — 1)+ (1 —fH)ﬁ}
_ (11— fu)? + 1A
Ny N — Ng
+% (1= fu)* + fit + 2fu(1l — fu)]
L |:(1_fH)2 fa
P Ny N —-Ng|-

-

If we consider equal access rate for each segmgnt

1/2, the result of above equation is
1 N L L
N P NP’

which is the same tohkpt-log-sizef case 3 in Figure 1.
Figure 10 shows the rate of reduced size of log data to
varying N for hotspot rates, witt. of 64 words andP of
192 words. This result says that our hybrid logging method
has great impact on reducing the size of log data. When
is 20%, 45% of the log size are reduced with six segments,
compared with that of only physical logging.
Finally, we measure the recovery time of MMDB. Ta-
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Figure 10. Effects of Log Reduction under
hotspots

The size of log data for recovering the last complete

checkpointing Siog, iS
Slog = (1 - Pabort) X Trate X ticp X Dredo

wheret;., is an inter-checkpoint interval anfl,.q, is the
size of redo log data per transaction. If only physical log-
gmg is usedDredo = Oinit + Srec X Nact. When Only lOQi'
cal logging is used, we simply assutig.qo = Sop + Sinit-
D..q, 0f the hybrid logging is calculated according to the
result of Figure 10.

ticp IS @ period between the beginnings of checkpoints
and is determined by the number of dirty pages generated
and the /O capability. According to [11], the expected
number of dirty pages generated during a tim&qiry (t),
is

Nirty (t)

1— <1 _ Bapa

L Npage

Xflwt X Npage
Rspa

1—(1-
(e

X(]- - fhot) X Npage

> frotact X Nact X Trate ><t‘|

) (1= fhnotact ) X Nact X Trate Xt]

ble 2 shows some parameters and their default values. They

are derived from [11] and [14]. For the simplicity, the re- WhereNp.g is Sap/Spage- Since we use ping-pong backup
covery time of the last complete checkpoint is considered. policy, the number of dirty pages to be flushed during time
The recovery time consists of the MMDB reloading time, t, Naush(t), iS Nairty (2 X ticp)-

log pages reading time, and log reapplying time. The time
to read the backup databa§g,.x is

Sdb

Spage

Thack = X (Tseek + Tlatency + Ttransfer)-

According to [14], the number of pages that can be writ-
ten out to the disks during time N;,(t) is given by

t

Tseek X T]atency X Ttmnsfer

Nio(t) = Nbdisks X



Table 2. Parameters and Their Defaults

| Symbol | Meaning | Defaults |
Sab database size 512 M words
Sipg log page size 1024 words
Spage page size 8K words
Srec record size 32 words
Sop logical log entry size 32 words
Sinit log header size 32 words
Trate transaction arrival rate | 1000 TPS
Tseek average seek time 0.008 sec
Tlatency | average rotationtime | 0.00417 sec
Tiranster | @verage transfer time per0.00039 sec

page
Npaisks | number of backup disks| 20
Nacs actions per transaction | 5
Pavort abort probability 0.05
fu fraction of hotspot 0.2
Thotact fraction of actions to 1-fyg
hotspot

Rspa pages per action 1.1

By settingNaysn () = Nio(t), we find the minimunt;.p,.
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Figure 11. Recovery Time of a Checkpoint

logging under fuzzy checkpointing. By using the hybrid
method, the size of log data generated during a checkpoint
can be significantly reduced. We have also presented an ef-
ficient reapplying rule in segmented MMDB. This rule re-
duces theaumberof log records applied for recovery.

We have shown through analyses that the hybrid method
can reduce the size of log data generated during a check-

In general, since disk reading and CPU processing can pdP0int by more than half, compared with those that use only

overlapped together, and since disk I/O time is much larger
than CPU processing time, the log page reading time may
be regarded as total log processing time. Due to locality of
log that is sequential file [11], the time to read log is

Slog

1— X (03 X Tseek + Tlatency + Ttmnsfer)-

pg
Figure 11 presents recovery times of three logging

scheme. The recovery time of logical logging (Logical) is

physical logging. The result of the reapplying rule shows
that we can recover the last complete checkpoint with about
half of number of log records generated during the check-
point. For further works, we are investigating possibitity
appliance to redo/undo schemes and segmenting methods
suitable to the proposed method. Detail analyses through
experiments are also a subject.
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