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Econometrica, Vol. 57, No. 2 (March, 1989), 357-384 

A NEW APPROACH TO THE ECONOMIC ANALYSIS OF 
NONSTATIONARY TIME SERIES AND THE BUSINESS CYCLE 

BY JAMES D. HAMILTON1 

This paper proposes a very tractable approach to modeling changes in regime. The 
parameters of an autoregression are viewed as the outcome of a discrete-state Markov 
process. For example, the mean growth rate of a nonstationary series may be subject to 
occasional, discrete shifts. 

The econometrician is presumed not to observe these shifts directly, but instead must 
draw probabilistic inference about whether and when they may have occurred based on the 
observed behavior of the series. The paper presents an algorithm for drawing such 
probabilistic inference in the form of a nonlinear iterative filter. The filter also permits 
estimation of population parameters by the method of maximum likelihood and provides 
the foundation for forecasting future values of the series. 

An empirical application of this technique to postwar U.S. real GNP suggests that the 
periodic shift from a positive growth rate to a negative growth rate is a recurrent feature of 
the U.S. business cycle, and indeed could be used as an objective criterion for defining and 
measuring economic recessions. The estimated parameter values suggest that a typical 
economic recession is associated with a 3% permanent drop in the level of GNP. 

KEYwoRDs: Switching regression, segmentation, nonstationary, business cycle, nonlin- 
ear filtering, regime changes. 

1. INTRODUCTION AND SUMMARY 

A NUMBER OF RECENT STUDIES have sought to characterize the nature of the long 
term trend in GNP and its relation to the business cycle. Researchers such as 
Beveridge and Nelson (1981), Nelson and Plosser (1982), and Campbell and 
Mankiw (1987a, b) explored this question using ARIMA models or ARMA 
processes around a deterministic trend. Others, such as Harvey (1985), Watson 
(1986), and Clark (1987) based their analyses on linear unobserved components 
models. A third approach employs the co-integrated specification of Engle and 
Granger (1987), whose relevance for business cycle research is examined in a 
fascinating paper by King, Plosser, Stock, and Watson (1987). 

These approaches are based on the assumption that first differences of the log 
of GNP follow a linear stationary process; that is, in all of the above studies, 
optimal forecasts of variables are assumed to be a linear function of their lagged 
values. In this paper I suggest a modest alternative to these currently popular 
approaches to nonstationarity, exploring the consequences of specifying that first 
differences of the observed series follow a nonlinear stationary process rather 
than a linear stationary process. A variety of parameterizations for characterizing 
nonlinear dynamics have recently been proposed, and there has now accumulated 

am indebted to John Cochrane, Angus Deaton, Robert Engle, Maijorie Flavin, Kevin Hassett, 
and anonymous referees for comments on earlier drafts of this paper. This material is based upon 
work supported by the National Science Foundation under Grant No. SES-8720731. The Govern- 
ment has certain rights to this material. 
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abundant evidence that departures from linearity are an important feature of 
many key macro series. Studies establishing such nonlinearities include the 
bispectral analysis of Hinich and Patterson (1985), documentation of business 
cycle asymmetries by Neftci (1984) and Sichel (1987), the ARCH-M model of 
Engle, Lilien, and Robins (1987), Stock's (1987) time transformation, chaos 
models (Brock and Sayers, 1988), Gallant and Tauchen's (1987) "seminonpara- 
metric" approach to modeling dynamics, and Quah's (1987) "clinging" process. 

The nonlinearities with which my paper is concerned arise if the process is 
subject to discrete shifts in regime-episodes across which the dynamic behavior 
of the series is markedly different. My basic approach is to use Goldfeld and 
Quandt's (1973) Markov switching regression to characterize changes in the 
parameters of an autoregressive process. For example, the economy may either be 
in a fast growth or slow growth phase, with the switch between the two governed 
by the outcome of a Markov process. Building upon ideas developed by Cosslett 
and Lee (1985), a nonlinear filter and smoother are presented for uncovering 
optimal statistical estimates of the state of the economy based on observations of 
output. As in the Kalman filter, one is using the time path of an observed series 
to draw inference about an unobserved state variable. But whereas the Kalman 
filter is a linear algorithm for generating estimates of a continuous unobserved 
state vector, the filter and smoother in this paper provide nonlinear inference 
about a discrete-valued unobserved state vector. 

A very similar stochastic specification has also been explored by Aoki (1967, 
p. 131), Tong (1983, p. 62), and Sclove (1983), though the statistical approach of 
these researchers was quite different from the one suggested here. Aoki discussed 
control of such systems but did not develop the estimation algorithm presented in 
this paper. Tong treated the shifts in regime as directly observable, whereas the 
core of my paper addresses optimal probabilistic inference about such shifts 
based on the observed behavior of GNP. Sclove calculated what the likelihood 
function would have been if the regimes were observable, and then assumed that 
the actual historical regimes were those that would make this joint likelihood of 
GNP along with unobserved regimes as big as possible. My approach, by 
contrast, is to solve for the actual marginal likelihood function for GNP, 
maximize this likelihood function with respect to population parameters, and 
then use these parameters and the data to draw the optimal statistical inference 
about the unobserved regimes. 

My algorithm might also be viewed as formalizing the statistical identification 
of " turning points" of a time series. Modern treatments by Wecker (1979), Neftci 
(1982), and Diebold and Rudebusch (1987) provide references to some of the 
earlier work and interest on this question. Wecker discussed optimal forecasts of 
an "indicator function" (e.g., z, = if both Y.-1 <y and y, > yt+). Wecker's 
indicator is imposed more or less arbitrarily on an otherwise linear process; in my 
specification, by contrast, the " turning point" is a structural event that is 
inherent in the data-generating process. Neftci (1982) analyzed the case where (1) 
only the most recent turning point influences the density function for current 
observations, and (2) there is known to be a possibility of at most one turning 
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point observed during a given interval (tl, t2). These assumptions could also be 
imposed as a special case of the general framework studied here, generating 
Neftci's algorithm for dating turning points as a special case of the basic filter 
used in this study. 

The filter also has a clear analog in the analysis of Liptser and Shiryayev 
(1977), who developed a nonlinear continuous-time filter for a similar problem.2 
The discrete-time filter developed here has three distinct advantages over their 
treatment. First, if one used Liptser and Shiryayev's formula (which is only 
strictly valid for continuous time) to approximate discrete changes over short 
intervals of time, in principle one could end up generating a probability outside 
the unit interval. By contrast, all probabilities generated by the filter and 
smoother proposed in this paper are exact, and so lie in [0,1] by construction. 
Second, a natural byproduct of the discrete-time filter used here is evaluation of 
the sample likelihood, permitting ready estimation and hypothesis testing about 
the system's parameters. Third, the specification adopted in this paper fits in 
neatly as a complement to conventional time series tools and techniques; for 
example, present value calculations turn out to be quite straightforward. 

My approach could also be viewed as a natural extension of Neftci's (1984) 
analysis of U.S. unemployment data. In Neftci's specification, the economy is 
said to be in state 1 whenever unemployment is rising and in state 2 whenever 
unemployment is falling, with transitions between these two states modeled as 
the outcome of a second-order Markov process. In my paper, by contrast, the 
unobserved state is only one of many influences governing the dynamic process 
followed by output, so that even when the economy is in the "fast growth" state, 
output in principle might be observed to decrease. 

The paper applies the technique to postwar U.S. data on real GNP. One 
possible outcome of maximum likelihood estimation of parameters might have 
been the identification of long-term trends in the U.S. economy, separating 
periods with faster growth from those with slower growth. In fact, this is not 
what was found. Instead, the best empirical fit to the data is obtained when the 
growth states of the Markov process are associated in a very direct way with the 
business cycle. A positive growth rate is associated with normal times, and a 
negative growth rate associated with recessions. Indeed, the best statistical 
estimates of which quarters were historically characterized by negative growth 
states for the U.S. economy are remarkably similar to NBER dating of business 
cycles, and could be used as an alternative objective algorithm for dating business 
cycles. The results complement the findings by Nelson and Plosser (1982) and 
Campbell and Mankiw (1987a, b), who concluded that business cycles are associ- 
ated with a large permanent effect on the long run level of output. The estimates 
also provide empirical support for the proposition that the dynamics of reces- 
sions are qualitatively distinct from those of normal times in a clear statistical 
sense, and reinforce Neftci's (1984) and Sichel's (1987) evidence on the asymme- 
try of U.S. business cycles. 

2See Liptser and Shiryayev (1977, Theorem (9.1), p. 333). 
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The plan of the paper is as follows. Section 2 specifies the basic model of trend 
explored in the paper, and compares it with an ARIMA model with normally 
distributed innovations. Section 3 characterizes the optimal forecast of the future 
level of a series generated by such a trend. Section 4 presents one example of how 
this nonlinear trend might interact with a linear process to generate data, and 
discusses maximum likelihood estimation and inference about the unobserved 
state for this case. Section 5 applies the technique to postwar U.S. data on real 
GNP. Section 6 explores the implications for defining and measuring business 
cycles, and provides a comparison of alternative approaches. Section 7 presents 
diagnostics comparing the model with the standard ARIMA specification, while 
Section 8 addresses the long-term consequences of an economic recession. Brief 
conclusions are offered in Section 9. 

2. A MARKOV MODEL OF TREND 

Let n, denote the trend component of a particular time series y,. I will say that 
n1 obeys a Markov trend in levels if 

(2.1) n,=als +a0+ n,1 

where st= 0 or 1 denotes the unobserved state of the system.3 I assume that the 
transition between states is governed by a first-order Markov process: 

Prob [St = 1 ISt-1 = 1] =p, 

(2.2) 
Prob [S,= OlS, = 1] = 1 -p, 
Prob [St = OlSt,1 = 0] = q, 

Prob [St = lISt,1 = 0] = 1 - q. 

Generalization to a higher-order process and to more than two states is discussed 
below. 

I will describe n,- exp(nt) as exhibiting a Markov trend in logs. 
The stochastic process for St (equation 2.2) is strictly stationary, and admits 

the following AR(1) representation: 

(2.3) st=(1-q)+ Xst +vt, 
(2.4) X=--1 +p+q, 

where conditional on St =1, 

Vt = (1 -p) with probability p, 

VI = -p with probability 1-p, 

conditional on S,_ 1 = 0, 

V =- (1-q) with probability q, 

V, = q with probability 1 - q. 

3I adopt the usual notational convention that for discrete-valued variables, capital letters denote 
the random variable and small letters a particular realization. Both interpretations of course apply to 
equations such as (2.1), in which I will use small letters by convention. 



ECONOMIC ANALYSIS OF TIME SERIES 361 

On the basis of representation (2.3), then, one can view (2.1) as a special case of a 
standard ARIMA model, albeit with a somewhat unusual probability distribution 
of the innovation sequence { V, }. It is therefore useful to describe in some detail 
the differences between (2.3) and an AR(1) process driven by normally dis- 
tributed innovations. 

Before doing so, however, note some of the essential properties of (2.3). From 
(2.3) and the fact that EOV,= 0 for all t > 0, we see 

(2.5) EoS, - (1 
q 

) ?X + tEOSo 

where Eo denotes the expectation conditional on information available at date 
zero (which need not include observation of so). Observing that EOS, can be 
interpreted as the probability that S, = 1 given information available at time zero 
(denoted Po[S,= 1]), (2.5) can be rewritten 

(2.6) Po[S, =1] = X + (07ro- r) 

where 

(2.7) v7 (I -q)l(l -p + I-q)l 

To Po[ So = 1] 

Asymptotically, then, the conditional probability converges to the limiting un- 
conditional probability given by 

P [ St = 1 ] = q7 . 

As in the case of an ARIMA process with normally distributed innovations, 
the error term V, in equation (2.3) is uncorrelated with lagged values of St, 

E[VkIS,t =1]=E[VIISt ==0]=0 for j=1,2,.... 

In contrast to the normal case, however, V, is not statistically independent of 
lagged values of St, e.g., 

E [ ,2 S,_ = 1] = p (1-) 

E[VJ21S, =0] = q(l-q). 

The latter property makes an important difference when noise is added to the 
system. For example, in the model that I will fit to data, I assume that the state st 
is not observed directly, but instead is one of many factors influencing an 
observed series. To appreciate the difference that arises in this case between (2.1) 
and an ARIMA model with normal innovations, consider the simplest possible 
example: 

(2.8) y,=s, +e,. 

Here y, is a stationary process (perhaps the first difference of Y,) and e, - N(0, a72) 
is an i.i.d. series independent of V,-j for all j. Applying (1 - XL) where L is the 
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lag operator (Lx x,= X,_;) to (2.8), 

(2.9) yt-yt-X =(I-q)+,+Et-Xet,1. 

The error term on the right-hand side of (2.9) admits an MA(1) representation, 

V, + E,-A E,t_1 = Ut - ut-_1 

or 

(2.10) ut= v + OVt-1 + ?82Vt2 + OtV3 + ? * +Et + (9- 

+ ( - X)OEt-2 + (o - /)02Et -3+ * -' 

where 9 is the value less than one in absolute value that, along with 0g, satisfies 

(2.11) (1 + 92)a 2 = (1 + X2)aE2 + a.2 

(2.12) -9a 2= -Xa2, 

where 

(2.13) aUV=E(Vt2) 

-p(I -p) + q(l - q)(I - 7). 

As in the case of V,, the innovation U, is uncorrelated with U,>j for j > 0, but 
is not independent. An earlier version of this paper illustrated the relevance of 
this point by way of example, showing that while E[U,(U,_L - OU2)] = 0, it 
nonetheless is the case that 

E[ Ut( Ut 2] =0 (I - p)(1 - q)( p - q) OX 
a2 - 2A - 

I 

in general not zero. What this means in practical terms is that while one could 
use the ARMA(1, 1) representation 

yt - Xy,_1 = (1 - q) + u, - Ou@,1 

as a basis for forecasting y,+j as a linear function of Y,, Y.-I, these forecasts 
are not optimal; nonlinear forecasts that exploit the serial dependence of the 
white noise series U, are superior.4 From (2.6), these optimal forecasts are given 
by 

Eyty+j = =" + Ai { SI lY, yl_ 

where P[St = 1 lYt, Yt . .1 is the nonlinear function of y,, Y.... to be pre- 
sented in Section 4. 

Thus, the essential differences between the specification (2.1) and a standard 
ARIMA model with normal innovations are twofold. First, (2.1) specifies that the 
growth rate n,- n ,_ need not change every period, but rather only does so in 
response to occasional, discrete events. Second, when added to a linear normal 
process, (2.1) generates a nonlinear process for the observed series for which, 

4See Granger (1983) on this general issue. 
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while an ARIMA representation exists, it does not generate optimal forecasts of 
the future value of the series. 

3. FORECASTING AND PRESENT VALUE CALCULATIONS 

3.1. Markov Trend in Levels 

Let i, denote the cumulative number of "ones" since time zero, 
it-5 s+52+ ***+ti 

so from (2.1), 
(3.1) nt=no+a1it+a0t. 

Recall from (2.6) that 

(3.2) E { Sj Prob [So = 1] = 7TO) =qJ+ A( rTo- 1) 

and so from (3.1), 
(3.3) Eo{ Nt Eo[ N0] = n0, Prob [S0 = 1] = T0 

=no+al['7Tt?+ VX(,To - T)]? aot 

=no + [al7 + ao]t + [a,X(1 -Xt)/(l -X)I [,To - 7]. 
The limiting growth rate as t -*oo is seen from (3.3) to be independent of 

information about the state of the system at date 0: 

lim E[(Nt+1-NN)ln0, 7TO] = al)7+ a0. 
. 00 

Intuitively, we know from equation (2.6) that for large t the economy will be in 
state 1 with probability 7T, in which case the growth rate would be a, + ao, 
whereas the economy will be in state 0 with probability 1 - w, in which case the 
growth rate would be ao; hence the expected growth rate is a,7r + ao. Further- 
more, if one had no useful information about the state of the system at date 0, 
7TO = iT and (3.3) implies that this limiting growth rate would be the basis for 
constructing forecasts of N, for all finite t. On the other hand, if one did have 
useful information that, say, 7TO > 7T, then for ajX > 0, E[N,tPO(So= 1) = 701 
would be systematically larger than E[Ntj PO(So = 1) = z] for all t, with the 
difference growing with t as the term (1 - Xt) goes to unity. In particular, if we 
compare certain knowledge that So = 1 (7Tr = 1) with certain knowledge that 
SO =0 (T = 0), we see 
(3.4) lim { E[NtISo = 1]- E[NISo= 01 = ajX/(1 - X). 

t X- C 

So, while information about the state of the economy at date 0 has no effect 
on the long run growth rate (Nt+1 - N), it does exert a permanent effect on the 
level Nt.5 

sAn analogous result of course characterizes a standard ARIMA(p, 1, q) process. See Beveridge 
and Nelson (1981, p. 155). 



364 JAMES D. HAMILTON 

The discounted present value can also be evaluated from (3.3): 

(35) ir!OC noIAI. 
3.5) E (E: pNtv o In } (1- fl) 

+ 3(1 - q) 13X7Ao 

( 2 + (1--),()(1- )] 

aof 
+ 2 

(1 -A)2 

3.2. Markov Trend in Logs 

Here I characterize forecasts of future values of a series that follows a Markov 
trend in logs by exploiting a simple vector recursion in expected values. 

Let PJ[A, BI denote the probability that events A and B will occur together, 
conditional on information available at T. Note that the following recursion, 

(3 .6) Po [I, = i, St = 1] =P p Polt I_1 = i -1, St-, = 1] 

+ (I1-q) - PO[It,_ = i -1, St-, = ?], 

holds for t = 1, 2,... and i =1, 2,..., t. For i = 0 we of course have 

(3.7) Po[I1= O,S,= 1] = O 

holding for t = 1, 2,.... Similarly, the recursion 

(3.8) Po[I, = i, St = O] = (I1-p) Polit-i = i, St-, = 1] 

+ q - Po[It,- = i, St-, = 0], 

holds for t = 1, 2,... and i = 0,1,., t - 1, with 

(3.9) PO[I= t, S,=0I=0 

for t = 1, 2,... . 
Let a', exp (a1) and ao exp (ao). Multiplying equation (3.6) by alao, sum- 

ming for i = 1, 2,..., t, and using (3.7) yields 

(3.10) ao POEI, = i, St = 1] 
i=o 

t-1 
- [&1%p]. * &fc%1. PoI,t-i=], St-, =11 

j=O 
t-1 

a [a &(q)] *Eala * PO[It_l = j St-, = 0] 
j=O 

Similarly, multiplying (3.8) by alao, summing for i = 0,1,. .., t - 1, and using 
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(3.9) gives 

(3.11) E a1&0% PoIIt= i, St = 01 
i=O 

t-1 

-[(1-p)AO] Alj6t1 .o[t=j, St-=1 
j=O 

t- 1 

+[qa%]. ? A lia 1 Po[It-1 =j St-,= 01 
j=O 

Define 

( 2) Mo (t, s ) = E Ai 
A, 

Po [It =i, S 
i=O 

for s = 0,1 and write (3.10) and (3.11) as 

[MO(t, 1) 1_ [ aoaP ao l(l-q) ][MO(t -11)1 
MO(t 0) J -a o(1-p) aoq ][Mo(t -1,0) ] 

or, defining 

(1-p) q 1 
we have 

(3.13) [a M(O ] &B [ Mo(t- :flO)] 
Note from (3.12) that Mo(0, s) = Po[SO = s]. Thus (3.13) has the solution 

[Mo(t ?)] [Bo 4I 9 I 

Solving for the roots of ILI - BI =0, we see 
IL + /-2 = q + pa1, 

AM2=a (-1 +p+q). 
Following Chiang (1980, pp. 148-152), write 

(3.14) Bt= T 
Al t_ |1 

where 

T_ - q) (fL2-q) 

- _P) (-p) 
T-1~~~~~ [ 1p) (q - 

A2) 
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The expected value of the level of a series that follows a Markov trend in logs is 
then seen to be 

(3.15) E = [-1 n qMO(t,0?) + MO(t1 -)] 

n0[I I ] a 
t 
Bt [ 7To I -7 ]r 

t- ao 

n tah ct (ukro s 2xts a p 2 o t f l 

(111 
- 

2) 

where 

k /al ] [ 7TO + al (I1?T 

= [-1 }+ p + q a [ofl.&1(-1 q 

Normalizing ,ul > ,U2, we see that, as in the case of a Markov trend in levels, the 
long-run growth rate is independent of information about the initial state: 

A 

Eo Nt +1 

lim A ̂  =AO 
t 00 EoNt 

but a change in the current state exerts a permanent effect on the future level of 
the series, 

(3.16) tlim Eot Ntj7To0=1 A-l( 
- (- + p + q) 

From (3.15), the present value is 

(~~~~C A .17 
)AoEAO,A ? 

:?)A 

t=O 1 a-/a&(pi + q) +A a-(1 +p + q)aj 

4. ESTIMATION, FILTERING, AND SMOOTHING 

4.1. Stochastic Specification 

Several options are available for combining the trend term n, with another 
stochastic process. Here I discuss the approach that results in the computation- 
ally simplest maximum likelihood estimation. 

Suppose we have observations on a time series { y}. Specify 

(4.1) 5t= nt+.Ft 

where n, is as given in (2.1) and (2.2) and z, follows a zero mean ARIMA(r, 1, 0) 
process: 

(4.2) 'Ft - t-, = 0(+t-(- IZt-2) + +2(Ft-2 -t-3) + * 

+ Or(ZFtr Z't-r- 1) + Ett- 
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I take { E, } to be an i.i.d. N(O, a2) sequence that is independent of { n, j } for all 
j. Differencing (4.1) and rewriting (4.2) we obtain 

Y= a1st + aiO + Zt, 

(4.3) z =lzt- 1 + p2Zt-2 + +?4Zt-r + ET, 

where y, and z, - - Zt-z1. 
The econometrician is presumed to observe y, but not z, or st. I first discuss a 

filter whereby the econometrician can draw probabilistic inference about the 
unobserved state st given observations on yt, and then show how evaluation of 
the sample likelihood is a natural byproduct of the filter. The analysis is closely 
related to the discussion by Cosslett and Lee (1985), who derived a recursion to 
evaluate the likelihood function for the case where (4.3) is a standard stationary 
regression equation with no lagged dependent variables. 

4.2. Filtering 

The basic filter accepts as input the joint conditional probability 

PI St-I= St-1 St-2 =St-2,'"., St-r = St-rlYt-1i Yt-2'"-, Y-r+1I 

and has as output 

P [St St, St-1 = St-1t. St-r+l St-r+1iYt' Yt-i' ... Y-r+1] 

along with, as a byproduct, the conditional likelihood of yt: 

f (YtlYt-1, Yt-2,*--- Y-r+l) 

Note well the notation: [st, St - 1* St-r+1] refers to the r most recent values 
of s whereas [Ye, Yt -, * * * Y-r?+I denotes the complete history of y observed 
through date t. By "PIS, = S, S,-_ = s,l,... , St_r+ 1= St-r+1lyt, Yt-1, --, Y-r+i] 
I refer to a vector consisting of 2r elements. For example, suppose r = 4. The 
element indexed by (1, 0, 1, 1) denotes the probability that St-1 = 1, St-2 = 0, 
St3= 1, and St_4= 1. These 16 probabilities sum to unity by construction, and 
represent an inference about the unobserved state (st1, St-2' St-35 St--4) based 
on observations of y through date t - 1. The algorithm is as follows. 

STEP 1: Calculate 

P[St = St, St-1 = St-1, St-r ., St-rlYt-1, Yt-2- .. I Y-r+1] 

= P P[=SIS =S1IXPISt1 = St-1 St-2 = St-2 - 

St-r St-rlYt-1' Yt-2' . * Y-r+1] 

where P[St = stSt1= s-t_lJ is given by (2.2). (Note P[St = stSt = St-] = 

P[St = StISt-1 = St-1 St-2 = St-2' * * * St-r = St-r Yt-1' Yt-2* ... , Y-r+i] by the in- 
dependence and first-order Markov assumptions.) 



368 JAMES D. HAMILTON 

STEP 2: Calculate the joint conditional density-distribution of y, and 
(St, St- - - - St- r): 

f (Y,, St = St, St-1 = St-1, St-r = St-r IY,-i Yt-2 "' Y-r+i) 

f (ytlSt, = S t-1 = St-1 ... St-r = St- r, Yt- 1 Yt-2' - Y-r+?) 

XP[St=S, St-1 =St-1 St-r=St-rlYt-1, Yt-2' Y-r+lI] 

where we know 

f(y,51t=St, St- =St-1,., St-r=St-r Yt-1 Yt-2 .. Y-r+l) 

1 rI 
= exp [2 ((Yt - aisto) - (Yt- I - asI -o) 

-r(Yt-r-aist-r ao)) 

STEP 3: We then have 

f(YtlYt-l Yt-2'', Y-r+l) 

1 1 1 

= E .- f f(yt,St St, St _l= St -l 
St=0 S,-1=0 St-r ? 

St-r St-rlYt-1, Yt-2 .. Y-r+l) 

STEP 4: Thus 

P[St =St, St-1 = St-1, *,., St-r= St-rlYt, Yt-1, Y-r+1] 

f (Yt, St =St, St-1 St-1, - * St-r St-rlYt-1, Yt-2y? Y -r+l) 

f(YtlYt-1' Yt-2,'", Y-r+l) 

STEP 5: The desired output is then obtained from 

P [St St, St -1 =St -1 , St -r+1l St-r+1 lYt, Yt-1 , Y -r+1] 

- E P[St = s,, St-1 = St-,, St_r = St-rlYt, Yt-1 - Y-r+1l] 
tr=0 

One could start up the algorithm with 

P[SO=So0 S_ 5-1=SI, -S-r+l=S-r+11YO Y-1 s- Y-r+lI 

though evaluating this expression proves to be somewhat involved computation- 
ally. I have instead in this paper adopted the simpler expedient of starting the 
filter with the unconditional probability P[50=s0, S-1 =s-1,-, S-r+1 = 

s-r+1], evaluated as follows. Set P[S-r+1 = 1] equal to the limiting probability 7r 
of the Markov process from equation (2.7), and of course set P[S-r?+ 01 = 
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1- g. Then for T =- r + 2, - r + 3, .. ., O calculate 

P[ST T' ST-1 = S_1, r+l Sr+1 = S-r+1 

= P [ ST = STI S1 =ST-1 

XPST-1 = ST-1 ST-2 = ST- 2, Sr+i = S-r+l] 

The final product of this subiteration, 

P[SO 0 so, S -1 =s,..., S_r+1 S-r+1I 

is then used as input for the basic filter for t = 1. The iteration on the basic filter 
is then repeated for t = 1, 2, . . ., T. 

For some applications, one might want to allow the possibility of a perma- 
nent change in regime (e.g., q = 1). For such applications, we should not set 
P[S-r+l = 1] from equation (2.7), but should instead treat it as a separate 
parameter (say g-r+l) to be estimated along with the others. 

It is easy to verify that the output of the filter is always a well-defined 
probability distribution with the terms nonnegative and summing to unity. 

Neftci's (1982) algorithm for dating business cycle turning points can be 
obtained as a special case of the basic filter by setting q = 1 and r = 0. 

One byproduct of the filter is evaluation of the conditional likelihood in Step 3. 
The sample conditional log likelihood is 

logf(YT YT-1S-.- YIIYo, Y-1,.- Y-r+l 
T 

=E l?gA(YtlY-1 Yt-2- - Y-r+1) 
t=1 

which can be maximized numerically with respect to the unknown parameters 
(al, a0, P, q, a, fr'1 p2-- r)j and optionally 'T-r+l as described above. Obvi- 
ously the model is unidentified in the sense that the decision of which state to call 
state 0 and which to call state 1 is arbitrary. I normalize by letting state 1 be the 
fast growth state and state 0 be the slow growth state, achieved by setting 
al + a0 > a0 or a1 > 0. 

The logic of the filter is equally valid under much more general specifications. 
With n rather than 2 states, the input to the filter is a vector consisting of nr 
elements, and the summations in Steps 3 and 5 are over (0, n - 1) rather than 
(0,1). The autoregressive parameters (4) can also be made a function of the 
regime by replacing %j in Step 2 with 4j(Sf) or 0j(S,_j). In my (1988) paper I 
applied the algorithm with the standard deviation a(S,) also a function of the 
regime, and extended the estimation theory to a multivariate context where the 
econometrician wishes to impose the cross-equation restrictions implied by 
rational expectations. Higher-order dynamics for the regime shift are also con- 
ceptually straight-forward-e.g., replace P[S,=stjS,1j=stsj] in Step 2 with 
P[St=StISt-1 =St-1 St-2=St-2]. That is, instead of multiplying each of the 16 
numbers in the input to the filter by p, q, 1 - p, or 1 - q (depending on the value 
of St and sf_1) one multiplies by one of Pll, P12, . depending on the value of 
So St- 1, and st-2 
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Such extensions are in principle straight-forward. Any problems are chiefly 
numerical. Identification of the parameters characterizing the dynamics of St 
(p, q, and a,) separately from those of the Gaussian component (41, 02 k . - Or) 
depends on nonlinearities in the data. There is a practical limit on how compli- 
cated we can permit the dynamics for both the regime shift and the Gaussian 
component to become and still have hope of obtaining useful results. 

The relation between my approach and that of Sclove (1983) should now be 
stated more precisely. Let y (Yi *... I YT)" S (s1 ..., ST), and 0 = 

(al, ao, P, q, a, 41 029*** . 9r)'. My filter evaluates f( YI8, Y-rr+l " yo) and max- 
imizes with respect to 6. The MLE B is then used in a final pass through the filter 
to draw probabilistic inference about s. Sclove, by contrast, would calculate 
( y, SIO, Y-r?+i-.., yo) and maximize with respect to both 0 and s. Thus the 
output of my algorithm is a sequence of conditional probabilities, and the output 
of Sclove's maximization is an imputed historical sequence for s. Sclove's 
empirical application also opted for the other end of the trade-off between a rich 
parameterization of the dynamics for the Gaussian component and that for the 
Markov component. He assumed no autocorrelation for the Gaussian compo- 
nent, whereas I allow four lags; Sclove tested for up to nine different regimes, 
whereas I permit only two. 

4.3. Smoothing 

Another byproduct of the basic filter is inference about the state s, based on 
currently available information, 

P[St= StjY, Yt-i,---9 Y-r+1] 
1 1 1 

= Y ... E P[St=st, St-,=St-,,. 
St-1-? Sf-2O0 St,-r+l = 

St_r+1 St-r+llYtg Yt-1, . * Y-r+?I- 

Altematively, one can obtain a more reliable inference about the lagged value 
of the state using currently available information. For example, using the output 
from Step 4 of the basic filter, one can calculate an r-lag smoother: 

P[St.r = St-rlYt' Yt-1i .. . Y-r+?] 
1 1 1 

= E ... E P[St=S, St, =st-1- 
St=0 St-,1=O St-r1=O 

St-r = St-rlYt Yt-1i' *, Y-r+1l] 

A full-sample smoother can be obtained from adapting a suggestion made by 
Cosslett and Lee (1985) in a slightly different context. Suppose that instead of 
using 

P [St-1 =St-1 St-2 = St-2 . 9 St-r = St-rlYt-1, Yt-2* Y-r+1] 
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as input into the basic filter, we used in its place 

P[S1= St-1,St2=St2, St-r St-rIST =SrT 

ST-1 =sT-1 ... ST-r+ = sT-r+r1 Yt-1' Yt-2. * Y-r+1I 

for some T < t - 1 and for some choice of (ST, ST-, ... ^ ST-r+l) to be specified 
shortly. Running through the steps of the basic filter, it is easy to verify that the 
output of the filter would in this case be 

P[St = St, St-1 = St-P St-r+1 = St-r+1I sT T~ 

ST S T-1 * * ... ST-r+1 ? 5 T-r?+1 Yt Yt-1i ** Y-r?+1 

with byproduct 

f(Y,IS T ST, ST-1 ST-1 . * ST-r?+1 5 T-r+1 Yt-1, Yt-2' ** Y-r+)- 

Bearing this in mind, the full-sample smoother can be obtained as follows. 

STEP 1: Run through the basic filter for t = 1,..., T and store the resulting 
sequences P[ST=ST, ST1=ST-P i..., ST -r+? =ST-r+?IY,T, YT, Y-r?] and 
f(YTIYT-1, YT-2' " * - Y-r+ 1) for T 1, 2, .. ., T. 

STEP 2: For each T and for each possible value of the vector 
(ST ST-1 .I ST-r+), repeat the following: 

(a) Set 

(4.) P [ST =S T' ST-1 =ST-11 .. ST-r+ 1 = T-r+ 1 ST T' 

ST-1 = T-1' .. ST-r+l= ST =-r+l? Yt-1, Yt-2' * Y-r+1] 

equal to unity if ST 
= ST, ST-1 = 

S^T-11 ... I ST-r1 = ST-r+ 1 and zero otherwise. 
(b) Repeat the basic filter using (4.4) to start the iteration and iterate over 

t = -T+ 1, Tr+ 2,..., T, storing the output from Step 3 of the basic filter as 
f(ylST. =ST ST-1 =T-1' . I ST-r?l S 5T-r+?1 Yt-1, Yt-2' *. Y-r+l). 

(c) The smoothed probabilities are given by 
P[S rA,r S Sr 1* ST-Sr+i 1Sar+1 IYT, YT-1, Y-r+l] 

P[S,r Sr SSr1 = 
* * * I S,-r+l S-r+1 Yr Yr-1. . * Y-r+1I 

f(y,r+lS,=S,r ., S.1 =K1 
, Sr-r+l Si.+i Si.r+l YTr YT-1 . Y-r+1) 

f(Yr+l IYr. Yr-1 . Y-r+l) 

f t(Yr+ 2 1Sr =r Sr-1 
= r-11 .. Sr- r+ lS Sr-r+ll Yr+l, Yri -- Y-r+l) 

ff(yYr 1 = 2 lYr +l Yr ... I Y-r Yl +1) 

X X f(YTISr Sr Sr-1 Sr Sr-+ , S.r1l, YT-1, YT-2- Y-r+l) 

f (YT IYT- 11 YT-21 .. I Y-r+ 1) 

5. MAXIMUM LIKELIHOOD ESTIMATES FOR U.S. GNP DATA 

The above technique was applied to U.S. postwar data on real GNP. The 
variable used for y, was 100 times the change in the log of real GNP for 
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TABLE I 

MAXIMUM LIKELIHOOD ESTIMATES OF PARAMETERS AND ASYMPTOTIC STANDARD ERRORS 
BASED ON DATA FOR U.S. REAL GNP, t = 1952: II TO 1984: IV 

Parameter Estimate Standard error 

a1 1.522 0.2636 
aO -0.3577 0.2651 
p 0.9049 0.03740 
q 0.7550 0.09656 
a 0.7690 0.06676 
41 0.014 0.120 
a2 -0.058 0.137 
03 -0.247 0.107 
44 -0.213 0.110 

t = 1951: II to 1984: IV.6 Numerical maximization of the conditional log likeli- 
hood function led to the maximum likelihood estimates reported in Table I. Also 
reported are asymptotic standard errors.7 

One possible outcome that might have been expected a priori would associate 
the states st = 0 and 1 with slow and fast growth rates for the U.S. economy, 
corresponding to decade-long changes in trends. In fact, however, the sample 
likelihood is maximized by a negative growth rate of - 0.4% per quarter during 
state 0 and a positive growth of (ao + a,) = + 1.2% during state 1. These values 
clearly correspond to the dynamics of business cycles as opposed to long-term 
variations in secular growth rates. Indeed, the first- and second-order serial 
correlation in logarithmic changes of real GNP seem to be better captured by 
shifts between states rather than by the leading autoregressive coefficients, as 
indicated by the fact that 41 and 42 come out remarkably close to zero. Negative 
coefficients at lags 3 and 4 suggest the possibility that the method used by the 
Bureau of Economic Analysis for deseasonalizing introduces spurious periodicity 
when applied to data generated by a nonlinear process such as this one. These 
coefficients further suggest that investigating a higher-order Markov process for 
the trend might also be a fruitful topic for future research. 

Figure 1 reports the estimated probability that the economy is in the negative 
growth state (P[St = 0]) based on currently available information (panel A) and 
information available one year later (panel B). A full sample smoother (not 
shown) was also calculated. The probabilities from the full-sample smoother 
differed very little from those of the four-lag smoother in panel B. The average 
absolute difference between these two smoothed series was .016, with the maxi- 
mum difference occurring in the second quarter of 1956; (the four-lag smoother 

6The level of GNP is measured at an annual rate in 1982 dollars. Data are from Business 
Conditions Digest, February, 1986, p. 102, Series 50. The order of lags r was set arbitrarily to 4; the 
basic filter was thus started for t = 1952: IL. 

7Maximization was achieved by a Davidon-Fletcher-Powell routine. Convergence to the global 
maximum reported in Table I proved relatively robust with respect to a broad range of start-up 
values. Second derivatives of the log likelihood were calculated numerically, from which asymptotic 
standard errors were constructed. I would like to thank Kent Wall for use of his DFP algorithm and 
Steve Stern for use of his second-derivative program. 
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FIGuRE 1.-Inferred probability that S, =0. 
Panel (A) reports the inferred probability that the economy was in the falling GNP state at date t 

using information available at the time (P[St = 0 yy,, _Y1,...]). Panel (B) reports the inferred 
probability that the economy was in the falling GNP state at date t using information available 
4 quarters later (P[SI = O Y,?+4 Yt? , 1) 

puts the probability of contraction at .40 for this quarter, whereas the full-sample 
inference was .15). This suggests that reasonably precise estimates are available 
from the four-lag smoother associated with the basic filter itself, and it may be 
unnecessary to employ the full-sample smoother for many applications. Another 
reasonable alternative to the full-sample smoother is to augment the basic filter 
with a few additional lags on s. 

6. ESTABLISHING THE DATES OF HISTORICAL BUSINESS CYCLES 

The specific inferences about the historical incidence of growth states gener- 
ated by the filter and smoother correspond extremely closely to conventional 
dating of business cycles, and indeed could be employed as an independent 
objective algorithm for generating such dating. A sensible metric might be based 
on whether the econometrician would conclude that the economy is more likely 
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TABLE II 

ALTERNATIVE DATING OF U.S. BusINEss CYCLE PEAKS AND 
TROUGHS AS DETERMINED BY (1) NBER, AND (2) PROBABILITY 

OF BEING IN RECESSION GREATER THAN 0.5 AS DETERMINED 
FROM FULL-SAMPLE SMOOTHER 

NBER Smoother 

Peak Trough Peak Trough 

1953:111 1954:11 1953:111 1954:11 
1957:111 1958:11 1957:1 1958:1 
1960:11 1961:1 1960:11 1960: IV 
1969:IV 1970:IV 1969:111 1970:IV 
1973:IV 1975:1 1974:1 1975:1 
1980:1 1980:111 1979:11 1980:111 
1981:111 1982: IV 1981:11 1982: IV 

than not to be in a recession (P[St= 0IYT9 YT-1, * Y-r+.I > 0.5). Dates for 
postwar business cycles based on this measure are compared with NBER values 
in Table 11.8 In contrast to NBER dates, my series indicates that the recessions of 
1957-58 and 1979-80 immediately followed the oil price increases of 1957: 1 
associated with the Suez Crisis and 1979: 11 associated with the Iranian revolu- 
tion, respectively.9 For the other recessions, the two dating techniques are always 
within three months of each other. 

Note that the particular decision rule P[St = 0] > 0.5 seems to be largely 
irrelevant for these data. Very few of the smoothed probabilities in panel B of 
Figure 1 lie between 0.3 and 0.7. The algorithm is usually arriving at a fairly 
strong conclusion about whether the economy is in a recession. The implicit 
histogram would also seem to suggest that the filter is not simply fitting 
parameters to an arbitrary nonlinear process, but rather reflects an underlying 
pattern in the data of dichotomous shifts between the expansion and contraction 
phase. 

Another interesting implication of the Markov framework is that one can 
calculate from the maximum likelihood parameter estimates the expected dura- 
tion of a typical recession and compare this predicted magnitude with the 
historical average. Conditional on being in state 0, the expected duration of a 
recession is 

or, 

E, k qk-1(j - q) = (1 
- 

q)-l 
k=1 

or 4.1 quarters. The historical average duration of a recession was 4.7 quarters 
during the postwar period according to the NBER figures. The expected duration 
of an expansion is likewise (1 - p) or 10.5 quarters, compared with an average 
of 14.3 quarters in NBER dating. 

8NBER business cycle dates are reported in Business Conditions Digest published by the Depart- 
ment of Commerce. 

9My (1985) paper provided a detailed discussion of these events. 
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Series: Series 

Yt 3 100 * In (GNP82,/GNP82,...i) y, - .3577 + 1.522s, + z, 
t 1952:III-1984:IV z, = .014z,- 1 -0.58z,- 2 -.247z,- 3 

-.21 3z, - 4 + e, e, - N [0, (.769)2] 

P[S,= -1S,t, = 11=.9049 

PIS,t= 0lS,-1 = 0] = .7550 

Sample A utocorrelogram: Population A utocorrelogram: 

1.0* 1.0* 
* * 
* * 
* * 
* * ** 
* * 
* * 
* * 
* * 
* * 
** * 
* * ** * * + 2/;T * * + 21/T * 

* 
* 

* * * * * * * * 

0.0 *- lag 0.0 * lag 
~~~~~~~~~~* * * 

- 2/1T 2T 

Sample Regression Coefficients for AR (4) Expected Value of Sample Regression 
(Standard Errors in Parentheses): Coefficients for A R(4): 

= .555 + .312y. - 1 + .122vt-2 yv= .589 + 293yt-1 + .069vt2 
(.129) (.089) (.093) 

- .116.,vt-3- .081.vt 4- u, U au =0.99 -.104yt-3 3-.042yv.4 + ut, a. = 0.98 
(.092) (.089) 

Sample A utocorrelogram of Residuals Expected Value of Sample A utocorrelogram 
from A R (4) Regression: of Residuals from AR(4) Regression 

1.0 * 1.0 * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 

* *+ 21VT + 21VT * * 
* * 

0.0 * * lag 0.0 * lag 
* * 

-2/1T - 2/1T 

FIGURE 2.-Comparison of actual GNP data with predictions of Markov model of trend. 

7. COMPARING LINEAR AND NONLINER MODELS OF GNP GROWTH 

The Markov model offers a nonlinear alternative to linear representations such 
as the Box-Jenkins ARIMA specification (used by Beveridge and Nelson (1981), 
and Campbell and Mankiw (1987a, b)) or the unobserved components (UC) 
models of Harvey and Todd (1983), Watson (1986), and Clark (1987). One might 
well ask why, if the Markov model were the true data-generating process, do 
parsimoniously parameterized linear models seem to have fit the data so well? 

Panel A of Figure 2 reports the sample autocorrelogram of actual postwar 
changes in the log of quarterly real GNP. Indeed this looks much like that 
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predicted for low-order ARIMA processes.'0 An AR(4) model fit to the growth 
rate of real GNP exhibits only the most modest autocorrelation of residuals 
(Figure 2, panel A). 

What would these same diagnostics be expected to reveal if the data were in 
fact generated by the Markov model? The Markov model posits that y, = als, + 
ao + z, with z, a zero-mean Gaussian AR(r) process and E(S,) = 7T. From the 
independence of S, and z, we know 

,E [yt,-Ety][yt-j -Eyt-j] = E [Zztzt-] + al2E[St - ][St-j -,r]. 

The first term is the jth autocovariance from a standard AR(r) process, and can 
be calculated using well-known formulas. Using (2.5) and the fact that Var(SO) = 

7T(I - 7T), we can evaluate the second term from 

E [St,- 7T][St-j- T] = XA7(I - 7T) 

where as before X (-1 + p + q) and r (1 - q)/(l - X). Thus the theoretical 
autocorrelogram of data generated by a Markov model is known. Panel B of 
Figure 2 plots this function for the MLE parameter values of Table I. It would 
clearly be extremely difficult to distinguish the Markov model from a simple 
linear alternative on the basis of the observed autocorrelations in a sample the 
size of postwar quarterly data. 

Figure 2 also reports some Monte Carlo results. For each of 1000 samples of 
size T = 130 generated by the Markov model, an AR(4) specification was fit by 
OLS. The average regression coefficient vector across these samples (panel B) is 
very close to that for actual postwar data (panel A). The average sample 
autocorrelogram of the residuals again would provide negligible evidence against 
the AR(4) specification, even though we know that the true model used to 
simulate the data in panel B was the nonlinear Markov process and not an 
AR(4). I conclude that the Markov model satisfies the "encompassing" criterion 
of Hendry and Richard (1982)-the apparent success (on the basis of Box-Jenkins 
diagnostics) of simple ARIMA representations is precisely what one would 
predict if the Markov model were the true data-generating process. 

There are, however, several predictions of the Markov model that are inconsis- 
tent with an ARIMA or linear UC specification. The Markov model asserts that 
forecasts of the log of GNP that are restricted to linear functions of lagged values 
will be suboptimal; additional useful information is alleged to be contained in the 
nonlinear function P[S,t- = lYt,Yt, - 2, 2'...] which summarizes the inference 
drawn the previous period about the unobserved state variable S,_ 1. The intuition 
for the sign and magnitude of the predicted effect is as follows. If the Markov 
model were true and we knew that the economy was in the expansion phase of 
the cycle last period (S,, = 1), we would forecast 

E [(ao + alsJ)ISt-, = 1] = ao + alp 

10For example, Watson (1986) settled on an ARIMA(1, 1,0) specification for the log of GNP, 
Campbell and Mankiw (1987b) preferred a (2,1,2), and Clark (1987) selected (0,1, 2). 



ECONOMIC ANALYSIS OF TIME SERIES 377 

whereas when the economy was in recession last period, 

E [(ao +a,S,)IS, 1 = 0I = ao + a,(1-q). 

The difference in the forecast growth rate of the economy knowing that the 
economy was in expansion rather than recession last period would thus be on 
the order of al(p - 1 + q), or about 1% faster GNP growth forecast when the 
economy was in expansion last period.11 The Markov model therefore predicts 
that the lagged output of the basic filter, 

Xt-1 P[St1 =1 lYt-1i Yt-2' .. I* Y-r+l] 

should enter statistically significantly with a positive coefficient when added to 
the AR(4) representation for GNP growth. The ARIMA or UC specifications 
predict that it should have coefficient zero. When one performs this regression on 
actual postwar GNP data, one finds (standard errors in parentheses) 

yt- .199 - .0721 y,_ - .00639 Y,-2 - .1815 yt_3 
(.294) (.1609) (.10088) (.0927) 

- .1639 YI-4+ 1.670 X>,+ u,. 
(.0917) (.590) 

The t statistic associated with the null hypothesis that GNP growth rates were 
truly generated by an AR(4) model is 2.83, though X>-l being a generated 
regressor, it is unclear what distribution theory is appropriate for interpreting this 
statistic.'2 The change in forecast is on the order of 1% of GNP. 

Another prediction of the Markov model that is inconsistent with an ARIMA 
or UC specification concerns the heteroskedasticity of the residuals. The intuition 
is as follows. If the data were truly generated by the Markov model and we knew 
that the economy was in expansion last period (S, - = 1) along with knowing 
past values for et-, then the expected squared error in forecasting log GNP this 
period would be given by 

E [_2] + Ert 
c 

(lt X ao _ (alp + ao12, St _ _2 + 2pt p) 

'1This discussion (which rederives eq. (2.5) from first principles) is intended purely as an aid to the 
intuition. The formula in the text does not literally give the expected value of the coefficient in 
the regression that follows. One can of course arrive at the precise effect expected by adding st_1 to 
the AR(4) regression of the Monte Carlo simulations described earlier. Its expected coefficient turns 
out to be 1.08. 

12One might think it more natural to test the AR(4) specification against the Markov alternative as 
a conventional nested hypothesis. When a, = 0, the growth rates in states 0 and 1 are the same. Thus, 
an AR(4) model for first-differences of the data obtains as a special case of the Markov specification, 
and one might think of using a likelihood ratio, Wald, or Lagrange multiplier test. Unfortunately, the 
usual regularity conditions for establishing asymptotic properties of these tests fail to apply here. 
Under the null hypothesis that a, = 0, the parameters p and q are unidentified. When p, q, and a, 
are all treated as separate parameters, the information matrix is singular under the null hypothesis 
and the MLE's p and q cannot be regarded as consistent estimates of any population values. 
Furthermore, the derivative of the log likelihood with respect to a, is also zero at the constrained 
MLE. Davies (1977), Watson and Engle (1985), and Lee and Chesher (1986) have discussions of how 
one might try to construct asymptotic test statistics that are robust to these issues. 
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By contrast, if we knew that the economy was in recession last period, 

E [Et2] + E { [(a,S, + ao) -(al(l -q) + ao)]2,Sf_, = O} 
=2 + a2q(l-q)- 

Since p > q > 1/2, the model therefore predicts that an AR(4) forecast will have 
a smaller variance when the economy was in expansion last period than when the 
economy was in recession last period, the expected difference being on the order 
of 13 

a2[p(1-p)-q(1-q)] = -.229. 

Thus, the Markov model predicts that in a regression of the square of the AR(4) 
residuals on a constant and the lagged filter output, the latter should enter 
statistically significantly and with a negative sign. The ARIMA or UC models 
predict homoskedastic errors and a coefficient of zero. In actual postwar GNP 
data one finds (standard errors in parentheses) 

u2 = 1.570 - .813 Xt 2 

(.299) (.369) 
where ui is the estimated residual from the AR(4) regression in panel B of Figure 
2. The Breusch-Pagan (1979) test of the null hypothesis of homoskedastic errors 
is 1/{2[( a2)21) times the explained sum of squares from this regression, which 
comes out to 5.17. Engle (1982, p. 1000) proposes calculating TR2 = 4.75. Again 
abstracting from the generated regressor problem, both statistics should be X2(1) 
(whose 5% critical value is 3.84) under the null hypothesis that the data were 
generated by an AR(4) model with Gaussian homoskedastic errors. The data thus 
reveal evidence of the kind of conditional heteroskedasticity predicted by the 
Markov model and inconsistent with the ARIMA or UC specifications. Again the 
heteroskedasticity is economically large; (the squared residuals from an AR(4) 
are twice as large on average when the preceding period's inference about st, 
pointed confidently to a recession). 

8. ON THE CONSEQUENCES OF BUSINESS CYCLES 
FOR THE LONG RUN LEVEL OF OUTPUT 

Much effort has recently been devoted to measuring the effect of an unantici- 
pated increase in GNP on the optimal forecast of the level of GNP at an 
arbitrarily long time horizon. This question holds interest for two reasons. The 
first concerns the nature of the business cycle and its persistence; the second 
pertains to the response of consumers and firms to changing business conditions. 
I discuss the implications of my Markov parameterization for each of these issues 
in turn. 

"3Again, this discussion is meant primarily to highlight the intuition and not to derive the precise 
magnitude expected; the innovation of the AR(4) model is not simply e, + (s, - E, 1S,). From Monte 
Carlo simulations on data truly generated by the Markov model, the expected coefficient on s _1 in 
the Breusch-Pagan regression that follows turns out to be -.345. 
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TABLE III 

PREVious ESTIMATES OF THE EFFECT OF AN UNANTICIPATED 1% INCREASE IN REAL GNP 
ON THE FUTuRE LEVEL OF GNP AT AN ARBITRARILY LONG nME HORIZON 

BASIC WOLD REPRESENTATION: (1- L)y, =A+ (L)u, 4(1) 

ARIMA( p,1, q) MODELS: p(L) = [I + 1L + +Oq Lq]/[1 - 1L - *-pLP] 

Watson (1986) ARIMA(1, 1, 0) 1.68% 
Clark (1987) ARIMA(O, 1, 2) 1.62% 
Campbell and Mankiw (1987b) ARIMA(2, 1,2) 1.49% 

LINEAR UNOBSERVED COMPONENTS MODELS: 4(L)u, = e, + (1- L)K(L)ef 

Watson (1986) 0.57% 
Clark (1987) 0.64% 

BI VA RIA TE MODEL: (univariate representation implied by bivariate process for GNP growth and 
level of unemployment) 

Evans (1987) ARIMA(6,1,3) 0.55% 

COCHRA NE 'S NONPA RA METRIC ESTIMA TE: 

Campbell and Mankiw (1987a) 0.80% to 1.27% 

8.1. On the Nature and Persistence of the Business Cycle 

Nelson and Plosser (1982) and Campbell and Mankiw (1987a, b) were inter- 
ested in the extent to which recessions represent temporary deviations from 
potential output with the shortfall largely made up during the subsequent 
recovery. Earlier approaches to this question were ultimately based on the 
standard linear representation for a nonstationary series y,: 

00 

(1-L =+ F, {ju, ji + (L)u,- 
j=O 

The permanent effect on the level of the series of a current innovation u1 is given 
by 

lim tYtd+j = = 
j oo dut j=- 

Previous researchers sought a finite-sample approximation to {(L) based on 
Box-Jenkins methods, linear unobserved components models, bivariate models, 
and nonparametric tests. A sampling of estimates based on these techniques is 
provided in Table 111.14 

By contrast, the Markov model is fundamentally nonlinear and provides an 
alternative perspective on the basic question about business cycles posed by these 
researchers. We can write this model in the form 

(1 - L)y, = (ao + alst) + [+(L)] 1Et. 

Notice that the two fundamental sources of randomness, S, and E,, are allowed to 

14See also Cochrane (1987, 1988), Campbell and Deaton (1987), and Gagnon (1988). For compari- 
son, the AR(4) model fit to GNP growth in panel 1 of Figure 2 implies A(1) = 1.31. 
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have very different implications for the future path followed by 5,. The earlier 
discussion argued that we could associate St with the business cycle directly, and 
Et with other factors contributing to changes in output. The permanent effect of 
the non-business-cycle component ?, is given by 

lim 0t?J661 
,j- de (A (1) 1- .014 + .058 + .247 + .213 

On the other hand, if at date t the economy is in a recession (St= 0) rather than 
the growth state (S, = 1), the consequences for the long-run future level of (100 
times the log of) real GNP is given by equation (3.4):15 

(5.1) lim {Et [ t+j? St = 1]-Et [ t+j1 St =0]} 

a1(-1 +p + q) 

(2 -p - q) 

1.522(-1 + .9049 + .7550) 

(2 - .9049 - .7550) 

or about a 3% drop in GNP. 
We can gauge the importance of Jensen's inequality for such calculations by 

using equation (3.16), which, in contrast to (5.1), forecasts the level rather than 
the log of GNP. Notice that for the MLE's in Table I, the term a' in equation 
(3.16) is estimated to be exp (1.522/100) = 1.01534. The eigenvalues are /I,= 
1.01138 and A2 = 0.66264. Thus from (3.16), 

lim {Et [exp (9Y+/100)I St = 1, zt] Et [exp (9,?/100)I S, = 0, zt] } 

1.01138 - (-1 + .9049 + .7550) 

1.01138 - (1.01534)(-1 + .9049 + .7550) 

virtually the identical 3% change predicted in eq. (5.1). 

8.2. Implications for the Permanent Income Hypothesis 

A conceptually separate reason for interest in the magnitudes in Table III 
arises from a desire to understand the spending habits of consumers. Here 
Deaton (1986) and Campbell and Deaton (1987) raise the issue as to whether an 
unanticipated 1% increase in income rationally signals a greater than 1% increase 
in permanent income. The magnitudes in Table III are then used to evaluate 
theories of consumption behavior as distinct from theories of the business cycle 
per se. Watson (1986) showed that different finite-parameter approximations to a 

15This calculation holds the current level of GNP constant, and calculates only the "signalling" 
consequences of the recession for future GNP. If instead one wanted a dynamic multiplier (the future 
and present consequences of a shift from S, = 1 to S, = 0 with the history of E's and all past st_j 
constant), one should add a, (or 1.522%) to the values reported in the text. 
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given process can yield strikingly different answers to this question. In this spirit 
I examine A (1) for the linear Wold representation for my Markov process, 

(8.1) Yt ao +ajSt + [(L)] -'Et 

= , + 4(L) e, 

Note from (2.3), (2.13), and (8.1) that y, has the spectrum 

(8.2) f () iw iw 
)E 

i_ iwr 
(1 01 e (Pre )(1 

- 
1 e or e ) 2[P(j~ ~ ~ a 

a,[p(1 -p) + q(l - q)(1 - 

(1 - Xe ')(1 - Xeico) 

-a2r;(eie)( (e`io) 

where our task is to calculate 4(1). From (8.2) we see 

o_ 22_p_lp_ a7[p (1-p)7+ q(l - q)(1-' w)] 

+,r) (1-_X)2 

-ae2 [1(1). 

Using the maximum likelihood estimates in Table I, we calculate 

(8.3) a2 [41(1)]2= .261 + 2.277= 2.538. 

We further know (e.g., Anderson (1971, p. 422)) 

21 e 
P2,, r g( 

which one calculates to be .9703 by numerical integration of (8.2). Thus 

1(1) = ['2. [i(1)12]l/= 1.62. 

This estimate is completely dominated by the contribution of the business cycle 
variable (see the second term in the sum on the right-hand side of (8.3)). 

It is also straightforward to calculate the effect a recession would have on 
permanent income if consumers knew with certainty that a recession had started, 
that is, calculate the effect of a recession on the cumulative discounted value of 
future output flows. From equation (3.17), the ratio of the discounted value of the 
trend term when r0o= 1 to the value when s7 = 0 is given by16 

1- (-1 ?p+q)/ -exp(ao/100) 

1-(-1 +p + q) exp [(ao + a)/100] 

16Recall that in the case of a Markov trend in logs, the stochastic specification is multiplicative, not 
additive (y' = n,z,) and so use of this formula is only strictly valid for Ez' constant. It does seem 
to offer a useful benchmark, however, for summarizing a key feature of these empirical estimates. See 
also the preceding footnote. 
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Using /8 = 0.99 for the quarterly real discount factor, this expression comes out to 
1.029 for the empirical estimates in Table I; that is, the certain knowledge that 
the economy has gone into a recession is associated with a 3% drop in permanent 
income. 

9. CONCLUSIONS 

This paper explored the possibility that growth rates of real GNP are subject to 
autocorrelated discrete shifts. Empirical estimation suggested that the business 
cycle is better characterized by a recurrent pattern of such shifts between a 
recessionary state and a growth state rather than by positive coefficients at low 
lags in an autoregressive model. Indeed, statistical estimates of the economy's 
growth state cohere remarkably well with NBER dating of postwar recessions, 
and might be used as an alternative objective method for assigning business cycle 
dates. A move from expansion into recession is associated with a 3% decrease in 
the present value of future real GNP and similarly portends a 3% drop in the 
long-run forecast level of GNP. 
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22901, U. S.A. 
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