
On the Maximum Common Embedded Subtree

Problem for Ordered Trees

Antoni Lozano� and Gabriel Valiente��

Department of Software, Technical University of Catalonia, E-08034 Barcelona

Abstract. The maximum common embedded subtree problem, which
generalizes the minor containment problem on trees, is reduced for or-
dered trees to a variant of the longest common subsequence problem.
While the maximum common embedded subtree problem is known to be
APX-hard for unordered trees, an exact solution for ordered trees can be
found in polynomial time. In this paper, the longest common balanced
sequence problem, and thus the maximum common embedded subtree
problem, are solved in O(n1n2 min(d1, �1) min(d2, �2)) time, on ordered
trees with n1 and n2 nodes, of depth d1 and d2, and with �1 and �2 leaves.

1 Introduction

An important generalization of tree and subtree isomorphism, known as minor
containment, is the problem of determining whether a tree is isomorphic to
an embedded subtree of another tree, where an embedded subtree of a tree is
obtained by contracting some of the edges in the tree. A further generalization
of minor containment on trees, known as maximum common embedded subtree,
is the problem of finding or determining the size of a largest common embedded
subtree of two trees. The latter also generalizes the maximum common subtree
isomorphism problem [1, Sect. 4.3], in which a common subtree of largest size is
contained as a subtree, not only embedded, in the two trees.

Minor containment, maximum common subtree isomorphism, and maximum
common embedded subtree are fundamental problems on trees, which find ap-
plication in various areas of computer science. Minor containment is also known
as the tree inclusion problem [2, 3], which is often formulated as a node deletion
rather than an edge contraction problem. One of the main application areas of
the tree inclusion problem is information retrieval, where queries are formulated
as trees and answers are embedded subtrees in a semi-structured database rep-
resented as a collection of trees. The tree inclusion problem can be solved on
unordered trees with n1 and n2 nodes in O(n1.5

1 n2) time [4], and the subtree iso-
morphism algorithm of [5] can be changed to solve the subtree homeomorphism
problem in O((n1.5

1 / logn1)n2) time. However, none of these algorithms can be
extended to solve the maximum common embedded subtree problem, because
knowing the sizes of maximum common embedded subtrees between all children
� Partially supported by Spanish CICYT project LOGFAC (TIC2001-1577-C03-02)

�� Partially supported by Spanish CICYT project MAVERISH (TIC2001-2476-C03-01)

nodes of one tree and all children nodes of the other tree, is not sufficient to know
the size of a maximum common embedded subtree between the trees rooted at
their parent nodes. The maximum common embedded subtree problem is known
to be NP-hard [3] and APX-hard, but approximable within log2 n, for unordered
trees [6–8], where n is the number of nodes in the trees.

Tree inclusion is a particular case of the tree edit problem [9]. In tree edit,
the edit distance between two trees is given by the shortest or the least-cost
sequence of tree edit operations (insertion, substitution, and deletion of labeled
nodes) that allow one to transform one tree to the other. The tree edit distance
problem can be solved on ordered trees with n1 and n2 nodes, of depth d1 and
d2, and with �1 and �2 leaves, in O(n1n2 min(d1, �1)min(d2, �2)) time [10, 11].
Further, it can be shown that a least-cost transformation between two trees
corresponds to a maximum common embedded subtree of the trees, as long as
the tree edit operations fulfill the constraint that the cost of inserting a node
plus the cost of deleting a node be less than the cost of substituting a node, as
shown for general graphs in [12, 13].

A particular case of the maximum common embedded subtree problem, which
is used in computational biology for finding the consensus between evolutionary
trees (or phylogenies) for the same set of species, is the maximum homeomor-
phic agreement subtree problem. Evolutionary trees are unordered trees with
each internal node having at least two children and with leaves labeled with dis-
tinct symbols (species), and an agreement subtree of two evolutionary trees is an
evolutionary tree which is included as a minor in the two given trees. The max-
imum homeomorphic agreement subtree problem can be solved in O(n1.5 log n)
time [14] and in O(n log n) time for binary trees [15], but is NP-complete for
more than two trees [16].

In this paper, the (general) maximum common embedded subtree problem
on ordered trees is reduced to a variant of the longest common subsequence
problem, for which a dynamic programming algorithm is presented which solves
the longest common balanced sequence problem, and thus the maximum common
embedded subtree problem, in O(n1n2 min(d1, �1)min(d2, �2)) time, on ordered
trees with n1 and n2 nodes, of depth d1 and d2, and with �1 and �2 leaves.
The maximum common embedded subtree problem is thus solved within the
asymptotic time bound of the fastest tree edit algorithm [10, 11], but with a
much simpler algorithm.

Similar reductions of pattern matching problems on ordered trees to string
matching problems are known. The restricted subtree isomorphism problem
(where a subtree is a whole tree rooted at a node) was reduced to a string
edit problem in [17–20], string matching with a don’t care symbol was reduced
to ordered subtree isomorphism in [21], and the tree edit distance algorithm
of [11] was reformulated as a string edit problem in [22]. The maximum common
subtree problem can also be reduced to a tree edit distance problem, as done for
general graphs in [12], and the tree edit problem on ordered trees with n1 and
n2 nodes can be solved in O(n2.5

1 n2) time [23]. These are just a few examples

of the algorithm design technique of reducing problems on trees to problems on
strings and sequences.

All trees considered in this paper will be (rooted) ordered trees, unless explic-
itly mentioned. The rest of the paper is organized as follows. A particular form
of well-formed parenthesis strings, which will be used to describe trees, is intro-
duced and their properties are studied in Section 2. The relationship between
embedded subtrees and balanced sequences is further established in Section 3,
where the longest common balanced sequence problem is introduced. A dynamic
programming algorithm for solving the longest common balanced sequence prob-
lem, and thus the maximum common embedded subtree problem, is presented
in Section 4 and extended to deal with labeled trees. Finally, some conclusions
are outlined in Section 5.

2 Balanced Sequences

Trees will be described by means of a particular form of well-formed parenthesis
strings, called balanced sequences.

Definition 1. Let T be a tree with m edges. The balanced sequence of T , denoted
by t, is a sequence over {0, 1} of 2m symbols defined as follows. The balanced
sequence of a leaf node is the empty sequence, and the balanced sequence asso-
ciated to a nonleaf node is obtained by concatenating the balanced sequences of
the children of the node, each of them preceded by an additional 0 and followed
by an additional 1. The balanced sequence of T is the balanced sequence of the
root of T . A string t over {0, 1} is a balanced sequence if there is a tree T such
that t is the balanced sequence of T .

The length of a balanced sequence x, denoted by |x|, is the number of edges
in the tree described by x, that is, the number of 0 characters or the number
of 1 characters in x. The empty balanced sequence, which describes the tree
with no nodes and no edges, is denoted by λ. Concatenation is indicated by
juxtaposition.

Example 1. The sequence shown to the right is the balanced sequence of the tree
shown to the left of the following picture. The balanced sequence is annotated
with a nested structure, corresponding to the edges of the tree.

�

�

� �

�

� �

�

�

�

� �

�

� �

� �

�

� 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1

Remark 1. Notice that there is a one-to-one correspondence between edges in a
tree and edge annotations in the balanced sequence of the tree.

The previous definition yields a recursive algorithm for obtaining the bal-
anced sequence of a tree.

Fact 1 The balanced sequence of a tree can be obtained in time linear in the size
of the tree.

Remark 2. The balanced sequence of a tree can also be obtained by performing
a preorder traversal of the tree, adding a 0 each time an edge is first traversed
and adding a 1 each time an edge is traversed in the opposite direction. That is,
by performing a leftmost depth-first traversal of the bidirected graph underlying
the tree, starting at the root, which is equivalent to finding an Euler trail through
the tree [1, Sect. 5.1.2].

A balanced sequence is contained in another balanced sequence if it can be
obtained from the latter by deleting edge annotations (character pairs), that
is, if the tree represented by the former sequence can be embedded in the tree
represented by the latter sequence.

Definition 2. A balanced sequence s is said to be contained in a balanced se-
quence t, denoted by s ⊆ t, if either s = t or there exist balanced sequences
s1, s2, s3 and t1, t2, t3 with si ⊆ ti, 1 � i � 3, such that s = s1 s2 s3 and
t = t1 0 t2 1 t3. A longest common balanced sequence of s and t is a balanced
sequence of largest length among all balanced sequences that are contained in
both s and t.

Example 2. The balanced sequence 00100100101111 contains the following bal-
anced sequences:

00100100101111 000100101111 0000101111 00001111 000111 0011 01 λ
001000101111 0001001111 00010111 001011 0101
001001001111 0001010111 00100111 010011
001001010111 0010001111 00101011 010101
001010010111 0010010111 01000111
010010010111 0010100111 01001011

0010101011 01010011
0100010111 01010101
0100100111
0100101011
0101001011

Definition 3. Let s be a nonempty balanced sequence. The head and the tail of
s, denoted respectively by head(s) and tail(s), are the unique balanced sequences
such that s = 0 head(s) 1 tail(s).

Example 3. The balanced sequence 001000101101110001000100101110111011 of
the tree from Example 4 can be partitioned into the head 010001011011 and the
tail 0001000100101110111011, both of which are balanced sequences.

0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1

head tail

Remark 3. The partition of the balanced sequence of a tree into a head and a
tail is isomorphic to the partition of a tree into the tree rooted at the first child
and the forest whose first tree is rooted at the next sibling of the first child.

Definition 4. Let s be a balanced sequence. The decomposition of s, denoted by
decomp(s), is the set of balanced sequences defined as follows:

– s ∈ decomp(s),
– for all nonempty balanced sequences t ∈ decomp(s),

• head(t) ∈ decomp(s),
• tail(t) ∈ decomp(s),
• head(t) tail(t) ∈ decomp(s),

– no other balanced sequence belongs to decomp(s).

The decomposition of a balanced sequence is thus described by the following
recurrence:

D[λ] = {λ}
D[0x1y] = {0x1y} ∪ D[x] ∪ D[y] ∪ D[xy]

Now, every sequence in the decomposition of a balanced sequence which is a
suffix of another balanced sequence, belongs to the decomposition of the latter
sequence.

Lemma 1. D[y] ⊆ D[xy] for all balanced sequences x and y.

Proof. By induction on |x|. Let x and y be balanced sequences. If |x| = 0,
D[y] = D[xy]. Otherwise, let x = 0x′1y′. Then,

D[y] ⊆ D[y′y] (by induction hypothesis)
⊆ D[xy] (by definition of D). ��

Now, the recurrences

R[λ] = {λ} S[λ] = {λ}
R[0x1y] = {0x1y} ∪ R[xy] S[0x1y] = R[x] ∪ S[xy]

will also be used in the proof of the next lemmata below.

Lemma 2. D[x] ⊆ D[xy] ∪ R[x] for all balanced sequences x and y.

Proof. By induction on |x|. Let x and y be balanced sequences. If |x| = 0,
D[x] = {λ} ⊆ D[xy] ∪ R[x]. Otherwise, let x = 0x′1y′. Note first that

D[x] = {x} ∪ D[x′] ∪ D[y′] ∪ D[x′y′] (by definition of D)
= {x} ∪ D[x′] ∪ D[x′y′] (by Lemma 1)

Moreover, {x} ∈ R[x] by definition of R, D[x′] ⊆ D[xy] by definition of D and,
further,

D[x′y′] ⊆ D[x′y′y] ∪ R[x′y′] (by induction hypothesis)
⊆ D[x′y′y] ∪ R[x] (by definition of R)
⊆ D[xy] ∪ R[x] (by definition of D)

Therefore, it holds that D[x] ⊆ D[xy] ∪ R[x]. ��
The previous lemmata combine into the following result.

Lemma 3. D[0x1y] ⊆ {0x1y}∪D[xy]∪R[x] for all balanced sequences x and y.

Proof. Let x and y be balanced sequences. Then,

D[0x1y] = {0x1y} ∪ D[x] ∪ D[y] ∪ D[xy] (by definition of D)
= {0x1y} ∪ D[x] ∪ D[xy] (by Lemma 1)
⊆ {0x1y} ∪ D[xy] ∪ R[x] (by Lemma 2). ��

The main result in this section is an upper bound on the number of sequences
in the decomposition of a balanced sequence.

Lemma 4. D[zy] ⊆ D[y] ∪ R[x]{y} ∪ S[x] for all z ∈ R[x].

Proof. By induction on |z|. Let z ∈ R[x]. If |z| = 0, D[zy] = D[y] ⊆ D[y] ∪
R[x]{y}∪S[x]. Otherwise, let z = 0x′1y′. Note first that, by Lemma 3, D[zy] ⊆
{zy} ∪ D[x′y′y] ∪ R[x′]. Now,

– {zy} ⊆ R[x]{y}, by the assumption that z ∈ R[x].
– Since |x′y′| < |z| and x′y′ ∈ R[x], it follows by induction hypothesis that

D[x′y′y] ⊆ D[y] ∪ R[x]{y} ∪ S[x].
– It can be shown by structural induction in R[x] that R[x′] ⊆ S[x]. As a

matter of fact, if z = 0x′1y′ = x, then R[x′] ⊆ S[x], by definition of S.
Otherwise, z = 0x′1y′ �= x and, by definition of R, it follows that z = x′′y′′

with 0x′′1y′′ ∈ R[x] and thus, R[x′] ⊆ S[z] ⊆ S[0x′′1y′′] ⊆ S[x], again by
definition of S.

Therefore, D[zy] ⊆ D[y] ∪ R[x]{y} ∪ S[x]. ��
The following results will also be used in the proof of the upper bound on

the cardinal of the decomposition of a balanced sequence.

Corollary 1. D[x] ⊆ R[x] ∪ S[x] for any balanced sequence x.

Proof. For all balanced sequences x, y, since x ∈ R[x], it holds by Lemma 4
that D[xy] ⊆ D[y] ∪ R[x]{y} ∪ S[x]. Then, taking y = λ, it follows that D[x] ⊆
{λ} ∪ R[x] ∪ S[x] = R[x] ∪ S[x]. ��
Lemma 5. S[xy] ⊆ S[x] ∪ S[y] for all balanced sequences x and y.

Proof. By induction on |x|. If |x| = 0, S[xy] = S[y] ⊆ S[y]. Otherwise, let
x = 0x′1y′. Then,

S[0x′1y′y] = R[x′] ∪ S[x′y′y]
⊆ R[x′] ∪ S[x′y′] ∪ S[y] (by induction hypothesis)
⊆ S[x] ∪ S[y] (by definition of S). ��

Now, a bound on the cardinal of R and S will allow one to also bound the
cardinal of D. The following fact is easy to prove by induction.

Fact 2 The cardinal of R[x] is equal to |x| + 1, for any balanced sequence x.

Now, the depth and the number of leaves of a balanced sequence t, denoted
respectively by d(t) and �(t), are just the depth and the number of leaves of the
tree represented by t. They are described by the following recurrences:

d(λ) = 1 �(λ) = 1
d(0x1y) = max(d(x) + 1, d(y)) �(0x1y) = �(x) + �(y)

Lemma 6. |S[x]| � |x|d(x) + 1 for any balanced sequence x.

Proof. By induction on |x|. If |x| = 0, |S[x]| � |λ|d(λ) + 1 = 1. Otherwise, let
x = 0x′1y′. By Lemma 5, S[x] ⊆ R[x′] ∪ S[x′] ∪ S[y′] and then,

|S[x]| � |R[x′]| + |S[x′]| + |S[y′]|
� |x′| + 1 + |x′|d(x′) + 1 + |y′|d(y′) + 1 (by induction hypothesis)
� |x′| + |x′|(d(x) − 1) + |y′|d(x) + 3 (d(y′), d(x′) + 1 � d(x))
= (|x′| + |y′|)d(x) + 3
= (|x| − 1)d(x) + 3 (|x| = |x′| + |y′| + 1)
= |x|d(x) − d(x) + 3
� |x|d(x) + 1 (x �= λ and d(x) � 2). ��

Lemma 7. |S[x]| � |x|�(x) + 1 for any balanced sequence x.

Proof. By induction on |x|. If |x| = 0, |S[x]| � |λ|�(λ) + 1 = 1. Otherwise, let
x = 0x′1y′. Then, S[x] = R[x′]∪S[x′y′] ⊆ R[x′]∪S[x′]∪S[y′], by Lemma 5, and

|S[x]| � |R[x′]| + |S[x′]| + |S[y′]|
� |x′| + 1 + |x′|�(x′) + 1 + |y′|�(y′) + 1 (by induction hypothesis)
= |x′| + |x|�(x′) + |x|�(y′) + 3

−(|x| − |x′|)�(x′) − (|x| − |y′|)�(y′)
� |x|�(x) + |x′| + 3 − 2|x| + |x′| + |y′| (�(x′), �(y′) � 1)
= |x|�(x) + |x′| + 3 − 2|x| + |x| − 1 (|x| = |x′| + |y′| + 1)
= |x|�(x) + 2 + |x′| − |x|
� |x|�(x) + 1 (|x′| + 1 � |x|). ��

Corollary 2. |S[x]| � |x|min(d(x), �(x)) + 1 for any balanced sequence x.

Now, the previous lemmata combine into the following main result.

Theorem 1. |D[x]| � |x|(min(d(x), �(x)) + 1) + 1 for any balanced sequence x.

Proof. By Corollary 1, D[x] ⊆ R[x] ∪ S[x] and then,

|D[x]| � |R[x]| + |S[x]| − 1 (λ ∈ R[x] and λ ∈ S[x])
� |x| + 1 + |x|min(d(x), �(x)) (by Corollary 2)
= |x|(min(d(x), �(x)) + 1) + 1. ��

Remark 4. Note that the previous upper bound on the cardinal of the decom-
position of a balanced sequence is asymptotically tight, because it is achieved
by an infinite number of sequences. As a matter of fact, the decomposition of
a balanced sequence that describes the leftist full binary tree with m edges,
for all even values of m, which has depth m/2 and m/2 + 1 leaves, contains
m2/8 + m/4 + 1 � m(m/2 + 1) + 1 sequences.

3 Embedded Subtrees and Balanced Sequences

Maximum common embedded subtree [6, problem GT48] is the problem of find-
ing a tree of largest size that can be embedded into two given trees.

Definition 5. Let S and T be trees. S is an embedded subtree of T if it can be
obtained from T by a series of edge contractions. A common embedded subtree
of S and T is a tree which is embedded in both S and T . A maximum common
embedded subtree of S and T is a tree of largest size among all common embedded
subtrees of S and T .

Example 4. A maximum common embedded subtree of trees S and T can be
obtained by contracting the edges highlighted with dashed lines in the following
picture of the trees. The resulting tree, shown in the middle of the picture, has
14 − 1 = 18 − 5 = 13 edges.

�

S

�

� �

� �

� �

�

�

�

� �

�

�

�

�

� �

� � �

�

�

�

� �

�

�

�

T

�

� �

�

� �

�

�

�

� �

�

� �

� �

�

�

Now, the relationship between embedded subtrees and balanced sequences
can be established as follows.

Theorem 2. A longest common balanced sequence of the balanced sequences of
two trees is the balanced sequence of a maximum common embedded subtree of
the trees.

Proof. Contraction of an edge in a tree corresponds to deletion of an edge an-
notation (one character pair) in the balanced sequence of the tree. A common
embedded subtree with the largest number of edges corresponds to a longest
common balanced sequence of the balanced sequences of the trees. ��

Example 5. A longest common balanced sequence of the balanced sequences for
the trees S and T in Exmp. 4 can be obtained by deleting the edge annotations
highlighted with dashed lines, together with their adjacent characters. The re-
sulting balanced sequence has 2(14 − 1) = 2(18 − 5) = 2 · 13 = 26 characters.

s 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1

t 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1

Remark 5. The longest common balanced sequence problem is related to the
longest common subsequence problem for sequences with nested edge anno-
tations, which is useful in the comparison of RNA secondary structures [24].
Although the latter problem is NP-hard [25], it consists in finding a longest
common subsequence that preserves all induced edges, and the former problem
is the particular case in which all characters are paired by an edge with some
other character.

4 Computing Maximum Common Embedded Subtrees

The recursive decomposition of balanced sequences, studied in Section 2, into
head, tail, and concatenation of head and tail, is motivated by a natural way
in which the maximum common embedded subtree problem can be divided in
smaller subproblems.

Lemma 8. The size of a longest common balanced sequence lcs(s, t) of two bal-
anced sequences s and t is described by the following recurrence:

lcs(s, λ) = 0
lcs(λ, t) = 0

lcs(s, t) = max

⎧⎨
⎩

lcs(head(s), head(t)) + lcs(tail(s), tail(t)) + 1,
lcs(head(s) tail(s), t),
lcs(s, head(t) tail(t))

Proof. The only common sequence of a balanced sequence and the empty se-
quence is the empty sequence, which has zero length. Given two nonempty bal-
anced sequences, if the first edge annotation of both sequences belongs to their
longest common balanced sequence, then its size is one plus the sum of the
sizes of the longest common balanced sequence of the heads and of the longest
common balanced sequence of the tails of the two sequences. Otherwise, their
longest common balanced sequence is the longest balanced sequence of one of
the sequences and the result of deleting the first edge annotation in the other
sequence (that is, contracting the first edge in the other tree). ��

Now, in order to turn the previous recurrence into an efficient dynamic pro-
gramming algorithm, a method is needed to map balanced sequences to array
positions. Actually, only those sequences resulting from the decomposition of a
given sequence need to be taken care of.

Recall from Theorem 1 that the cardinal of the decomposition of a balanced
sequence is linear in the size times the minimum of the depth and the number
of leaves of the tree represented by the sequence. Definition 4 yields a recursive
algorithm for enumerating all sequences in the decomposition of the balanced
sequence of a tree, which can be assigned unique numbers by exploiting the
idea of [26] that a procedure for dynamically maintaining a global dictionary of
unique identifiers, allows partitioning a tree into equivalence classes of restricted
subtree isomorphism in expected time linear in the size of the tree. The equivalent
problem of assigning unique identifiers to balanced sequences can thus be solved
in expected time linear in the cardinal of the decomposition, meaning expected
time linear in the size times the minimum of the depth and the number of leaves.

Theorem 3. The maximum common embedded subtree problem can be solved in
in O(n1n2 min(d1, �1)min(d2, �2)) time, on ordered trees with n1 and n2 nodes,
of depth d1 and d2 and with �1 and �2 leaves, respectively.

Proof. Given a balanced sequence s, the unique number code(t) for each sequence
t ∈ decomp(s) is set to either the number already assigned to that sequence
(looking it up in a dictionary), or to the next non-assigned number for the
decomposition (updating, in this case, the dictionary). Now, for each sequence
t ∈ decomp(s), one unsuccessful dictionary lookup of t and one insertion of
〈t, code(t)〉 in the dictionary are made. With standard hashing techniques, each
such operation takes expected O(1) time and, by Theorem 1, the number of
sequences in the decomposition of the balanced sequence of a tree with m edges,
depth d and � leaves is O(m min(d, �)).

Further, the size of a longest common balanced sequence lcs(s, t) of two se-
quences s and t is found with standard dynamic programming techniques, where
memoization is realized by storing the solution to a subproblem on sequences
x and y at entry a[code(x), code(y)] in an integer array a. The size of a longest
common balanced sequence lcs(s, t) of two sequences s and t is either looked
up at array entry a[code(s), code(t)], or computed according to Lemma 8 and
stored in that array entry. There are, by Theorem 1, O(m1 min(d1, �1)) and
O(m2 min(d2, �2)) sequences in the decomposition of the balanced sequences of
two trees with respectively m1 and m2 edges, depth d1 and d2, and �1 and �2

leaves and, for each pair of sequences, four array accesses and one array update
are made, each taking O(1) time.

The encoding of two trees with m1 and m2 edges takes thus expected O(n1

min(d1, �1) + n2 min(d2, �2)) time upon which, solving the longest common bal-
anced sequence problem takes O(n1n2 min(d1, �1)min(d2, �2)) time. ��

Maximum common labeled subtrees of labeled trees can be found by a simple
and straightforward extension of the dynamic programming algorithm. Assume,
without loss of generality, that trees have labels on edges. Trees with labels on
nodes can be dealt with by shifting node labels to the edge joining the parent
with the node, for all nonroot nodes.

Now, for each edge annotation in the balanced sequence of a tree, the edge
label can be associated with the corresponding 0 character in the balanced se-
quence. Then, when computing the size lcs(s, t) of a largest common balanced se-
quence of sequences s and t, or when mapping the first edge annotation in s to the
first edge annotation in t, the case lcs(head(s), head(t))+ lcs(tail(s), tail(t))+1
of the recurrence in Lemma 8 applies only if the edge labels associated to these
first edge annotations are identical, or if they satisfy some predefined criteria,
depending on the intended application.

5 Conclusions

The maximum common embedded subtree problem, a generalization of the mi-
nor containment problem on trees, is solved in this paper for ordered trees
based on a reduction to a variant of the longest common subsequence prob-
lem, called the longest common balanced sequence problem. A dynamic pro-
gramming algorithm is given that solves the longest common balanced sequence
problem, and thus the maximum common embedded subtree problem, in O(n1n2

min(d1, �1)min(d2, �2)) time, on ordered trees with n1 and n2 nodes, of depth
d1 and d2 and with �1 and �2 leaves, respectively. The maximum common em-
bedded subtree problem is thus solved within the asymptotic time bound of the
fastest tree edit algorithm [10, 11], but with a much simpler algorithm.

References

1. Valiente, G.: Algorithms on Trees and Graphs. Springer-Verlag, Berlin (2002)

2. Chen, W.: More efficient algorithm for ordered tree inclusion. Journal of Algo-
rithms 26 (1998) 370–385

3. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal
on Computing 24 (1995) 340–356

4. Chung, M.J.: O(n2.5) time algorithms for the subgraph homeomorphism problem
on trees. Journal of Algorithms 8 (1987) 106–112

5. Shamir, R., Tsur, D.: Faster subtree isomorphism. Journal of Algorithms 33 (1999)
267–280

6. Ausiello, G., Crescenzi, P., Gambosi, G., Kahn, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and their Approximability Properties. Springer-Verlag (1999)

7. Halldórsson, M.M., Tanaka, K.: Approximation and special cases of common sub-
trees and editing distance. In: Proc. 7th Ann. Int. Symp. on Algorithms and Com-
putation. Volume 1178 of Lecture Notes in Computer Science., Springer-Verlag
(1996) 75–84

8. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled
trees. Information Processing Letters 49 (1994) 249–254

9. Valiente, G.: Constrained tree inclusion. In: Proc. 14th Annual Symp. on Combi-
natorial Pattern Matching. Volume 2676 of Lecture Notes in Computer Science.,
Springer-Verlag (2003) 361–371

10. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between
trees. Journal of Algorithms 11 (1990) 581–621

11. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18 (1989) 1245–1262

12. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18 (1997) 689–694

13. Bunke, H.: Error-correcting graph matching: On the influence of the underlying
cost function. IEEE Transactions on Pattern Analysis and Machine Intelligence
21 (1999) 917–922

14. Farach, M., Thorup, M.: Sparse dynamic programming for evolutionary-tree com-
parison. SIAM Journal on Computing 26 (1997) 210–230

15. Cole, R., Farach, M., Hariharan, R., Przytycka, T.M., Thorup, M.: An O(n log n)
algorithm for the maximum agreement subtree problem for binary trees. SIAM
Journal on Computing 30 (2000) 1385–1404

16. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM Journal on Computing 26 (1997)
1656–1669

17. Dublish, P.: Some comments on the subtree isomorphism problem for ordered
trees. Information Processing Letters 36 (1990) 273–275

18. Grossi, R.: Further comments on the subtree isomorphism for ordered trees. In-
formation Processing Letters 40 (1991) 255–256

19. Grossi, R.: A note on the subtree isomorphism for ordered trees and related prob-
lems. Information Processing Letters 39 (1991) 81–84

20. Mäkinen, E.: On the subtree isomorphism problem for ordered trees. Information
Processing Letters 32 (1989) 271–273

21. Verma, R.M.: Strings, trees, and patterns. Information Processing Letters 41
(1992) 157–161

22. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In:
Proc. 6th Annual European Symp. on Algorithms. Volume 1461 of Lecture Notes
in Computer Science., Berlin Heidelberg, Springer-Verlag (1998) 91–102

23. Chen, W.: New algorithm for ordered tree-to-tree correction problem. Journal of
Algorithms 40 (2001) 135–158

24. Jiang, T., Lin, G.H., Ma, B., Zhang, K.: The longest common subsequence prob-
lem for arc-annotated sequences. In: Proc. 11th Annual Symp. on Combinatorial
Pattern Matching. Volume 1848 of Lecture Notes in Computer Science., Springer-
Verlag (2000) 154–165

25. Lin, G.H., Chen, Z.Z., Jiang, T., Wen, J.: The longest common subsequence prob-
lem for sequences with nested arc annotations. In: Proc. 28th Int. Colloquium on
Automata, Languages and Programming. Volume 2076 of Lecture Notes in Com-
puter Science., Berlin Heidelberg, Springer-Verlag (2001) 444–455

26. Flajolet, P., Sipala, P., Steyaert, J.M.: Analytic variations on the common subex-
pression problem. In: Proc. 17th Int. Colloquium on Automata, Languages, and
Programming. Volume 443 of Lecture Notes in Computer Science., Springer-Verlag
(1990) 220–234

