
Adding an Optimisation Passto the Glasgow Haskell CompilerOlaf ChitilLehrstuhl f�ur Informatik II, Aachen University of Technology, Germanychitil@informatik.rwth-aachen.dehttp://www-i2.informatik.RWTH-Aachen.de/~chitilNovember 4, 1997AbstractThe Glasgow Haskell compiler (GHC) with its over 40.000 lines of code is quitedaunting for a newcomer. Here we give a short practical introduction based on ourexperiences in how to add an optimisation pass to GHC. Thus we hope to encourageother developers of optimisations to implement them in GHC.These notes are meant to be extended and updated from time to time. Hence observethe date shown above.

1

Contents1 The Glasgow Haskell Compiler 32 Literate Style 33 Structure of GHC 43.1 The Main Call Structure . 43.2 Directory Structure of Source Files . 43.3 Structure of the Source for hsc . 44 Adding an Optimisation Pass 54.1 Modi�cation of Files and Rebuilding of the modi�ed GHC 64.2 Modi�cation of main/CmdLineOpts . 64.3 Modi�cation of simplCore/SimplCore . 64.4 Modifying the Make�le . 74.5 Further Hints . 84.5.1 Sharing Object Files . 84.5.2 Argument List Too Long . 84.6 Calling the New Optimisation Pass . 95 The Intermediate Language Core 95.1 The Data Types for the Intermediate Language Core 105.2 Reading Core . 106 Some Thoughts on Designing a New Transformation 127 Measuring the E�ects of a Transformation 127.1 Without Special Compilation . 147.2 Pro�ling and Ticky-Ticky Pro�ling . 148 Recommended Reading 15
2

1 The Glasgow Haskell CompilerThese notes give a short introduction into adding a program transformation to the GlasgowHaskell compiler (GHC) and demonstrates that | despite its size | extending GHC is notthat di�cult. Adding a transformation requires only very few modi�cations of the sourcecode. For writing new transformations just a limited knowledge of GHC's internal structureis necessary.Currently there exist two major versions of GHC. Version 2.08 implements Haskell 1.4,and version 0.29 implements Haskell 1.2 For future compatibility we extend version 2.08, butas recommended still use version 0.29 for compilation. The compiler consists of a front endwhich translates Haskell into a simpler intermediate language named Core, the transformationswhich optimise Core programs, and a back end which produces C-code.The compiler is written in Haskell and contains already much documentation which | incontrast to most separate documentation | is up-to-date. This documentation should alwaysbe studied, because most papers about GHC are no longer correct in all aspects. The compilerproper is build from 216 Haskell modules and several yacc and lex �les which are distributedover 22 directories. Fortunately, most of these are not relevant to program transformations,since they are either concerned with the front end or the back end. Several directories containprogram transformations which may serve as examples.2 Literate StyleMost of the source code is written in the literate style of the Glasgow literate programmingsystem. Literate documents are LATEX like �les, with the compilable/executable code markedo� by a \begin{code} : : : end{code} pair. These documents can be both compiled/executedand turned into various formats for printing and viewing. The extensions of �les written inliterate style usually start with an l, for example, .lhs for Haskell programs and .lprl forPerl scripts.Unfortunately, the literate programming tools currently do not work properly, especiallyindexes and thus (Html) links are not created correctly. Nonetheless, literate programmingsupports integration of documentation and program code and thus up-to-date documentation.The existing source code contains much documentation that should always be studied,because most papers about GHC are no longer correct in all aspects. Similarly it makes senseto write your own extensions in literate style.For pretty printing a literate �le you can transform it into LATEX:lit2latex -S file.l*latex file.texFor browsing you may also transform literate �les into Html:lit2html file.l*For more information about the literate programming system see [GLit92].3

3 Structure of GHC3.1 The Main Call StructureGHC is invoked by calling ghc, which is a Perl script. This script processes the command lineoptions and environment variables and then calls the components of the compiler:unlit: which transforms literate Haskell programs into "illiterate" Haskellprogramshscpp: a modi�ed C-preprocessor; used e.g. for conditional compilation andhiding the incompatibilities of Haskell 1.2 and Haskell 1.3.hsc: the actual Haskell compilergcc: the C-compileras: the assembler (called via gcc)ld: the linker (called via gcc)3.2 Directory Structure of Source FilesThe compiler is in the directory fptools/ghc which has the following subdirectories:compiler: the source code for the actual compiler hscdocs: The user guide and notes on monadic-style programmingdriver: Perl scripts for driving the whole compiler (ghc)includes: C header �les, mostly for the run-time systemlib: source code for the standard library hslib which contains the pre-ludemiscmk: con�guration �les for the gnu make system to make ghcruntime: C code for the run-time systemutils: several utility programs like mkdepndHS and hscpp (mostly writtenin Perl)3.3 Structure of the Source for hscThe source in fptools/ghc/compiler is organised into one level of directories.� General parts{ the module Main that calls all phases and some top level modules: main{ wired-in knowledge about the Prelude: prelude� Compiler phases{ Reading of the source of a module 4

readerparser (the most messy part, uses lex and yacc){ Renaming and dependency analysis passes: rename{ Type checker: typecheck{ Desugarer: deSugar{ Core-to-core optimisations:simplCore: drives all core-to-core transformationsdeforest: normally not part of hscspecialisestranal{ Translation of Core into Stg: stgSyn/CoreToStg{ Stg-to-Stg optimisations: simplStg{ Code generation:codeGen/CodeGen: translation of Stg into abstract CnativeGen: native code generators� Abstract data types{ Haskell abstract syntax de�nition: hsSyn{ abstract syntax of types, used in both Haskell and Core: types{ abstract syntax of the intermediate language Core: coreSyn{ cost centre for pro�ling: profiling{ abstract syntax of the STG language: stgSyn{ abstract C: absCSyn{ declarations of abstract data types that are used in many parts of the compiler:basicTypes{ abstract data types that are of general utility, not just for GHC: utils� an include �le for the pre-processor to make the Haskell source compatible to eitherHaskell 1.2 or Haskell 1.4: HsVersions.h4 Adding an Optimisation PassHere we identify those parts of the compiler that need to be modi�ed for adding a newoptimisation pass. Starting point of the modi�cations described here is an existing build treeof GHC (see [GInstall]) in a directory named mybuild.5

4.1 Modi�cation of Files and Rebuilding of the modi�ed GHCTo simplify �le management do not modify any �les in mybuild but put all modi�ed and new�les into separate directories and just change the respective link in mybuild.You have to modify main/CmdLineOpts.lhs, simplCore/SimplCore.lhs, and mybuild/ghc/compiler/Makefile as is described in the following subsections in detail. Probably youwrite your own mybuild/mk/build.mk as well.Then just follow the standard making routine in the directory mybuild:1. ./configure (not necessary if you already executed it before the modi�cations)2. make boot (important because of the new dependencies)3. make allNote that even if the build tree had already been built before, many object �les are now rebuilt,because they directly or indirectly import the changed source �les main/CmdLineOpts.lhs orsimplCore/SimplCore.lhs.While testing your optimisation pass do not forget to execute make boot after each modi-�cation of imported modules. Finally is a good idea to test this setup by extending GHC �rstwith the empty transformation, that is the identity transformation.4.2 Modi�cation of main/CmdLineOptsThe command line options of the actual Haskell compiler hsc are processed by the modulemain/CmdLineOpts. Here a new data constructor has to be added to the data type for theoptimisation options, and the function which parses the command line has to be extended:data CoreToDo = ... | CoreDoNewTrans: : :sep : : := case (: : :) of: : :"-fmy-new-trans" -> CORE_TD(CoreDoNewTrans)4.3 Modi�cation of simplCore/SimplCoreThe main function of hsc invokes the various phases of the compiler. It calls the func-tion core2core of module simplCore/SimplCore with the list of all optimisations (of typeCoreToDo) to perform. This function again calls for every optimisation the module's functiondo core pass.For adding a new transformation function doNewTrans we have to import it in the modulesimplCore/SimplCore. The function do core pass has to be extended to call doNewTranswhen it is called with the option CoreDoNewTrans:6

: : :import MyNewTrans (myNewTrans): : : do_core_pass info@(binds, us, spec_data, simpl_stats) to_do =: : : CoreDoNewTrans-> _scc_ "My new transformation"begin_pass "New transformation" >>case (myNewTrans binds) of (binds2, statsText) ->hPutStr stderr statsText >>end_pass us2 binds2 spec_data simpl_stats"My new transformation"The new program transformation takes as input a value binds of type [CoreBinding],which represents the Core program. It may also take an argument us of type UniqSupply,which provides an arbitrary number of di�erent labels and serves for creating new names forthe Core program. The transformation returns a new program of type [CoreBinding]. Ourtransformations also return a string with statistical data on the transformation for evaluationpurposes. Since do core pass returns an IO monad, these statistics can be directly out-putted.4.4 Modifying the Make�leFinally the make�le in mybuild/ghc/compiler has to know about the new modules. Weassume here that these modules all have the extension *.lhs or *.hs and reside in a directoryfull-path /Transformation. Change the make�le as follows:# ---# Set SRCS, LOOPS, HCS, OBJS## First figure out DIRS, the source sub-directories# Then derive SRCS by looking in them#NEW_DIR = full-path /TransformationDIRS = \utils basicTypes types hsSyn prelude rename typecheck deSugar coreSyn \specialise simplCore stranal stgSyn simplStg codeGen absCSyn main \reader profiling parser $(NEW_DIR) 7

4.5 Further Hints4.5.1 Sharing Object FilesAdding an optimising transformation to GHC leaves the major part of the compiler untouched.Hence when several persons write independent extensions it may make sense to share object�les to save disc space. Already when building GHC from source you normally make a copyof the source tree, such that all each �le is a symbolic link to the source �le, and build thesystem in this build tree ([GInstall]). Thus the source tree can be shared by several di�erentinstallations.Similarly, you can make a copy of the existing build tree shared-build:mkdir mybuildcd mybuildlndir full-path /shared-buildHowever, as mentioned before, many object �les have to be rebuild, because they directly orindirectly import the changed source �les main/CmdLineOpts.lhs or simplCore/SimplCore.lhs.Hence these two source �les have to be shared as well by all other persons sharing the objectcode.Beware that only �les that are newly constructed in your build tree are yours. Changinga �le that is shared implies changing the shared �le, not replacing the link by a new �le!To avoid such a modi�cation to happen accidentially the shared build tree should be writeprotected. All �les that are not meant to be shared have to be deleted in your build tree.Among these are� mybuild/ghc/compiler/.depend, because it includes the dependencies of the individualextensions� mybuild/ghc/driver/ghc, because it contains an absolute path to the build treeYou do not rerun configure on mybuild, because that changes several important �lesand thus implies loosing much sharing. However, therefore your individual build.mk has tocontain the lineFPTOOLS_TOP_ABS = full-path /mybuildFinally, for showing the di�erence between the original build tree and your build tree it isuseful to know that the commanddircomp -s dir1 dir2compares two directories.4.5.2 Argument List Too LongOn some machines (e.g. Solaris 2.5) there is the problem that the size of the argument list forlinking hsc is at the very limit and any extension leads to it being beyond the limit. We canresolve this problem by adding our own rule for linking hsc which does not use the -i option(it is for �nding interface �les and thus not necessary for linking).Two changes are necessary in the make�le. First, at the beginning replace8

HS_PROG=hscby MY_HS_PROG=hscSecond, append to the end of the make�le:# Addition:# linking without the -i options# they are just removed to make the argument list shorterMY_HC_OPTS = $(filter-out -i%, $(HC_OPTS))all :: (MY_HS_PROG)(MY_HS_PROG) :: (HS_OBJS)(HC) -o $@ $(MY_HC_OPTS) $(LD_OPTS) $(HS_OBJS) $(LIBS)Do not forget that the indentation in front of $(HC) has to be made by the tabulator.4.6 Calling the New Optimisation PassThe the driver script mybuild/ghc/driver/ghc translates optimisation options like -O or -O2into a series of command line options for hsc which name the individual transformations toperform. Since arbitrary transformations can be invoked by using the -Ofile �le option, �lelisting the desired transformations, ghc needs only to be modi�ed when the new transformationshall �nally become part of the standard optimisation options. See Figure 1 for an exampleof an option �le. The list of individual optimisation passes of the standard optimisations(without any, -O and -O2) can most easily be obtained by compiling a program with option-v. Note that every option in �le and even every single bracket (for the sub-options of thesimpli�er) has to be in a separate line and the last option has to be terminated by a newline.Note furthermore, that after the execution of all optimisations given in the options �le thesimpli�er is run a last time for cleaning up the code. Hence a -fprint-core at the end of the�le and -ddump-simpl show di�erent Core code.The native code generators cannot cope with code produced by some optmisations. There-fore, when optimisations are used, Haskell source has to be compiled via the C compiler. Donot forget that core lint is your dear friend! Thus testing your new optimisation should lookas follows:correct-path /ghc -fvia-C -dcore-lint -Ofileyour-options-file file.hsNote that there is no space between -Ofile and your-options-�le. It is convenient to make alink in your working directory pointing to the driver script mybuild/ghc/driver/ghc.5 The Intermediate Language CoreThe intermediate language of GHC, Core, is essentially the second-order �-calculus augmen-ted with let(rec), case, data constructors, constants and primitive operations. A detaileddescription of Core and the objectives of its design is given in [PeySan97].9

list of core2core optimisations# first simplifier to clean code of desugarer# (especially to do dependency analysis)-fignore-interface-pragmas-fomit-interface-pragmas-fsimplify[-ffloat-lets-exposing-whnf-ffloat-primops-ok-fcase-of-case-freuse-con-fpedantic-bottoms-fsimpl-uf-use-threshold3-fmax-simplifier-iterations4]-fprint-core-fmy-new-trans-fprint-coreFigure 1: Example �le of optimisations for the -ofile option5.1 The Data Types for the Intermediate Language CoreThe main data types that represent the language inside GHC are given in Figure 2. Alllanguage constructs are parameterised with respect to the di�erent kinds of occurring variables:binding and bound occurrences of value variables, type variables and use variables. Comparedto the �-calculus the syntax is restricted in that arguments of applications have to be literalsor variables. The Coerce constructor implements a type coercion to support the newtypeconstruct. The SCC constructor annotates an expression with a CostCentre. These costcentres are added when a program is compiled for subsequent pro�ling. They are essentiallynames under which all evaluation costs of the respective annotated expressions are recorded.Figure 3 shows an example of a pretty printed Core program.5.2 Reading CoreSeveral options permit outputting Core programs between phases. The options dppr-fuser,debug, allg in
uence the detail of the printed information (doesn't work correctly in 2.08;-dppr-all shows the least).See the explanations in [GHCUser] and [Par94]. Information about identi�ers is given asfollows (see module basicTypes/IdInfo):� U : update info exists� strictness 10

type CoreBinding = GenCoreBinding Id Id TyVar UVartype CoreExpr = GenCoreExpr Id Id TyVar UVartype CoreBinder = GenCoreBinder Id TyVar UVartype CoreArg = GenCoreArg Id TyVar UVartype CoreCaseAlts = GenCoreCaseAlts Id Id TyVar UVartype CoreCaseDefault = GenCoreCaseDefault Id Id TyVar UVardata GenCoreBinding val_bdr val_occ tyvar uvar= NonRec val_bdr (GenCoreExpr val_bdr val_occ tyvar uvar)non-recursive variable binding| Rec [(val_bdr, GenCoreExpr val_bdr val_occ tyvar uvar)]mutually recursive bindingsdata GenCoreExpr val_bdr val_occ tyvar uvar= Var val_occ variable| Lit Literal unboxed object| Con Id [GenCoreArg val_occ : : :] saturated constructor application| Prim PrimOp [GenCoreArg val_occ : : :] saturated primitive operation application| Lam (GenCoreBinder : : :) (GenCoreExpr : : :) �-abstraction| App (GenCoreExpr : : :) (GenCoreArg : : :) application| Case (GenCoreExpr : : :) (GenCoreCaseAlts : : :) case expression| Let (GenCoreBinding : : :) (GenCoreExpr : : :) let binding| SCC CostCentre (GenCoreExpr : : :) cost centre expression| Coerce Coercion (GenType tyvar uvar) (GenCoreExpr : : :) type coerciondata GenCoreBinder val_bdr tyvar uvar= ValBinder val_bdr binding value variable| TyBinder tyvar binding type variable| UsageBinder uvar binding use variabledata GenCoreArg val_occ tyvar uvar= LitArg Literal| VarArg val_occ| TyArg (GenType tyvar uvar)| UsageArg (GenUsage uvar)data GenCoreCaseAlts val_bdr val_occ tyvar uvar= AlgAlts [(Id, alternatives: data constructor,[val_bdr], constructor's parameters,GenCoreExpr val_bdr val_occ tyvar uvar)] rhs.(GenCoreCaseDefault val_bdr val_occ tyvar uvar)| PrimAlts [(Literal, alternatives: unboxed literal,GenCoreExpr val_bdr val_occ tyvar uvar)] rhs.(GenCoreCaseDefault val_bdr val_occ tyvar uvar)data GenCoreCaseDefault val_bdr val_occ tyvar uvar= NoDefault| BindDefault val_bdr the form: var � > expr.(GenCoreExpr val_bdr val_occ tyvar uvar)Figure 2: Data types of the Core language11

bot : bottom guaranteedS : strictness info� demand info (only internal to strictness analysis)f-# L #-g: no infof-# : : : #-g: the info� arity infoA n: arity is nA> n: arity is n or greater6 Some Thoughts on Designing a New TransformationFirst, a new optimisation has to be de�ned precisely. The principal problem is often tospecify, when the transformation is applied exactly. The trigger for an optimisation may bean undecidable semantic property, for example strictness. Then a computable approximationof this property has to be found. This approximation may not just miss some admissibleapplications of the transformation but sometimes even permit a transformation when thesemantic property would not. In the second case the transformation must obviously still becorrect and at least not worsen the quality of the program.The key feature of a transformation is naturally correctness, that is that it preserves thesemantics of the transformed program.Because the whole purpose of the transformation is optimisation, its e�ectiveness, that isits e�ect on the evaluation cost of the program, has to be determined. For lazy functionallanguages the costs of major interest are run-time of the program, total heap allocation, heapresidency, that is the maximal space required by life objects on the heap at one time, and sizeof the program code.Also the interaction between various transformations has to be studied. Transformationsmay both improve and worsen the e�ectiveness of later transformations. Finally, although atransformation may not be applied in every compilation, the cost of the transformation hasto be determined and to be related to its e�ectiveness.For examples of transformations implemented in GHC see [Chi97, PeySan97, San95].7 Measuring the E�ects of a TransformationGHC has a large number of options for observing various aspects of a running program.12

: : : (De�nitions of constants and functions extracted from dictionaries)f_aHT :: PrelBase.Intf-3g,p-gf-# L #-gf_aHT =let f ds_dP6 :: PrelBase.Intf-3g,p-gf-# L #-gds_dP6 =let fds_dPi :: [PrelBase.Intf-3g,p-g]f-# L #-gds_dPi =enumFromTo_aM5lit_aM8 lit_aM6g insum_aMads_dPig inlet f ds_dPa :: PrelBase.Intf-3g,p-gf-# L #-gds_dPa =let f ds_dPA :: [PrelBase.Intf-3g,p-g]f-# L #-gds_dPA =let fds_dPI :: PrelBase.Intf-3g,p-gf-# L #-gds_dPI =negate_aM4lit_aMeg inenumFromTo_aMcds_dPI lit_aMdg insum_aMfds_dPAg in+_aMbds_dP6 ds_dPaff-rP,x-g :: PrelBase.Intf-3g,p-gf-# L #-gff-rP,x-g =f_aHTFigure 3: Desugared: f = sum [1..100] + sum [-100..1]13

7.1 Without Special CompilationFor measuring the general e�ects of a transformation on a whole program no special compil-ation is necessary.Just running a program with the option +RTS -s -RTS (+RTS -S -RTS) generates a �leprogram.stat with a summary (detailed information) about garbage collection and run-time.The program mybuild/glafp-utils/runstdtest/runstdtest has many options for test-ing and measuring programs systematically. Let input, output and error be �les that containthe required input and expected output on stdin and stderr respectively. Those that are emptymay be omitted. Running a program withrunstdtest -ghc-timing -iinput -o1output -o2error programgives the following kind of output (-i, -o1, -o2 may be omitted if the input/output is empty):<<ghc: 31819776 bytes, 126 GCs, 5645/15436 avg/max bytes residency (63samples), 0.01 INIT (0.00 elapsed), 10.14 MUT (10.25 elapsed), 0.09 GC(0.11 elapsed) :ghc>>The numbers are� the sum of all bytes allocated on the heap� the number of garbage collections (minor and major for the standard generationalgarbage collector)� the average and maximal heap residency, that is that part of the heap that is life; theseare determined at every major garbage collection, hence the number of samples is thenumber of major garbage collections.� the time for initialising the run-time system in seconds� the time for the actual computation� the time spent on garbage collectionFor all times both user time and real time (that includes time spent on other processes) aregiven.When times are very short just use a slower machine for measurements. The residencyinformation is normally very inaccurate, because only very few samples are taken. The numberof major garbage collections can easily be increased by using +RTS -jnumber -RTS. Thisoption forces a major garbage collection after every allocation of number bytes. Be aware thatusing this option increases run-time and even total heap allocation.7.2 Pro�ling and Ticky-Ticky Pro�lingFor pro�ling individual parts of a program for space and time see [GHCUser].14

8 Recommended ReadingWhat you should read when adding a new optimisation pass:[GHCUser] Glasgow Haskell compiler user's guide[GInstall] Glasgow Haskell compiler installation guide; especially to learnabout the make�le architecture[PeySan97] a comprehensive overview of the compiler; to learn about Coreand some optimisations[San95] if you want more detailed knowledge about some transformations[Par94] although dated and partially obsolete still useful informationabout how to add an optimisation[Pey92] if you want to know about the STG-machine to have a betterunderstanding of the operational semantics of CoreThe GHC web page [GHC] is a good starting point for �nding more documentation aboutvarious aspects of the compiler.AcknowledgementThe author thanks all members of the program transformation group at Aachen for numerousdiscussions and Simon Peyton Jones for answering many questions about GHC.References[Chi97] Olaf Chitil: Common Subexpression Elimination in a Lazy Functional Language;Implementation of Functional Languages, 9th International Workshop, 1997.[GHC] The Glasgow Haskell compiler ; http://www.dcs.gla.ac.uk/fp/software/ghc/.[GHCUser] Glasgow Haskell Compiler User's Guide; part of the Glasgow Haskell compilerdistribution.[GInstall] Building and installing the Glasgow Functional Programming Tools Suite; part ofthe Glasgow Haskell compiler distribution.[GLit92] The GRASP team: Glasgow literate programming user's guide ; part of the Glas-gow Functional Programming Tools distribution.[MTW95] Christian Mossin, David N. Turner, and Philip Wadler: Once upon a type ; Tech-nical Report TR-1995-8, University of Glasgow, 1995. Extended version of Onceupon a type in 7'th International Conference on Functional Programming Lan-guages and Computer Architecture, June 1995.15

[Par93] Will Partain: The no�b benchmark suite of Haskell programs ; part of the GHCdistribution.[Par94] Will Partain: How to add an optimisation pass to the Glasgow Haskell compiler(two months before version 0.23) ; part of the GHC 0.29 distribution, October1994.[Pey87] Simon L Peyton Jones: The Implementation of Functional Programming Lan-guages Prentice-Hall, 1987.[PeyLau91] Simon L Peyton Jones and John Launchbury: Unboxed values as �rst class citizensin a non-strict functional language ; Conf. on Functional Programming Languagesand Computer Architecture, 1991, pp 636{666.[Pey92] Simon L Peyton Jones: Implementing lazy functional languages on stock hard-ware: the Spineless Tagless G-machine ; J. Functional Programming, 2 (2):127{202, 1992.[PeySan97] Simon L Peyton Jones and Andr�e L M Santos: A transformation-based optimiserfor Haskell ; submitted to Science of Computer Programming, 1997.[SanPey95] Patrick M Sansom and Simon L Peyton Jones: Time and space pro�ling for non-strict, higher-order functional languages ; 22nd ACM Symposium on Principles ofProgramming Languages, January 1995.[San95] Andr�e L M Santos: Compilation by transformation in non-strict functional lan-guages ; PhD Thesis, University of Glasgow, July 1995.

16

