
Measuring the e�ectiveness of a simple strictness analyserSimon Peyton JonesDepartment of Computing Science, University of Glasgowsimonpj@dcs.glasgow.ac.ukWill PartainDepartment of Computing Science, University of Glasgowpartain@dcs.glasgow.ac.ukAbstractWe describe a simple strictness analyser for purely-functional programs, show how itsresults are used to improve programs, and provide measurements of the e�ects of theseimprovements. These measurements are given both in terms of overall run-time, and interms of internal operations such as allocations, updates, etc.Despite its simplicity, the analyser handles higher-order functions, and non-at do-mains provided they are non-recursive.Ths paper appears in Functional Programming, Glasgow 1993, ed Hammond andO'Donnell, Springer Workshops in Computer Science, 1993, pp201-220.1 IntroductionA lot has been written about strictness analysis for non-strict functional programs, usuallyin the hope that the results of the analysis can be used to reduce run-time. On the otherhand, few papers present measurements of how well it works in practice. Usually, all thatis presented are the run-times of a variety of (usually small) programs, with and withoutstrictness analysis enabled (eg Smetsers et al. [1991]). The goal of this paper is to providedetailed quantitative insight about the e�ectiveness of a simple strictness analyser, in thecontext of a state-of-the art compiler, running serious application programs.2 What might we hope to gainBefore going further, we need a clear model of what one might hope to gain from strictnessanalysis. The discussion of this section is intended to be generic, applying equally to anyimplementation technology. Accordingly, we refrain from introducing details about how weimplement anything; instead we concentrate on what gains are possible.

2.1 The classic case: integersLet's start with the standard example, a strict function with an Int argument. Suppose f isstrict, and has typef :: Int -> IntConsider what happens for the call (f (x+1)). Without the knowledge that f is strict, wewould have to build in the heap a thunk1 for (x+1) and pass it to f.If f is known to be strict, we can instead evaluate (x+1) before the call. Better still, we canpass the argument unboxed, since it is by now certainly an evaluated Int. We need a di�erentversion of f, which we call fw to abbreviate \f's worker", with typefw :: Int# -> Intwhere Int# is the type of unboxed integers. Operationally, an Int is represented by a pointerto a heap object, which contains either an evaluated integer, or possibly an unevaluated thunk.An Int# is represented by the integer itself, not a pointer at all.The big gain is that no thunk for (x+1) is ever created, which means that:� We may save a heap-overow check.� We save the costs of writing the thunk into the heap memory.� We save the costs of reading it back in again when it is evaluated in f.� We save the costs of updating the thunk with its �nal value, and of the stack manipu-lations associated with updates2 .� We save the amortised garbage collection costs of the thunk.To give an idea of scale, these additional costs amount to around 25 instructions per argument,most of which are memory references. It is clearly a big win to replace these instructions witha single instruction to place the argument in a suitable register! The gains are compoundedif f is recursive, because we save all these costs every time around the loop.Is there always a gain, though? Suppose the argument to f is itself just an argument to theenclosing function. For example:foo False x = 0foo True x = f x + 1(Here, foo isn't strict in x, so x has to be passed boxed to foo.) In this case there is actuallyno gain from evaluating x before calling f, but there is no harm either. Even in cases likethis we may still gain by avoiding redundant evaluations. Suppose instead that the secondequation for foo was:1We use the term \thunk" for an as-yet unevaluated closure; when evaluated it will usually be overwrittenby its (weak) head normal form.2A separate analysis might be able to discover that f would evaluate its argument at most once. In thiscase, the caller can mark the thunk as non-updatable, thus saving the cost of performing the update. Butthat's another story, and the costs of writing the thunk into the heap, and reading it back out, are unchanged.2

foo True x = f x + f xNow, it is possible to evaluate x just once, and pass the unboxed value to each of the twocalls to f. Exactly the same number of thunks are built, but there is one fewer evaluation:we say that we have \eliminated a redundant EVAL".To summarise, we may exploit strictness analysis in three ways:1. by avoiding the creation and updating of thunks;2. by manipulating unboxed values, instead of heap-allocated boxed values;3. by eliminating redundant evaluations.2.2 Other single-constructor typesThe same idea extends to unboxing any algebraic data type with just one constructor3 . Aparticularly common family of such data types is the tuple types. For example, if g is strict,and has typeg :: (a,a) -> athen g's worker, gw will take the components of the constructor:gw :: a -> a -> aAs before, the pair is passed unboxed, as its two separate components. In a call (g <arg>),where <arg> is an arbitrary expression, we can evaluate <arg> before the call, and pass thecomponents to gw rather than building a thunk for <arg> which is later evaluated by g.If we �nd a call with an explicit tuple argument, eg (g (<arg1>,<arg2>)), then we arelaughing: we can just transform the call to (gw <arg1> <arg2>).Our implementation of Haskell adds extra dictionary arguments to overloaded functions. Adictionary is just a tuple of values, so many more functions end up with tuple arguments thanthose written explicitly by the programmer. (A separate pass, which specialises overloadedfunctions, may eliminate these dictionaries, however.)2.3 Unboxing multi-constructor typesWith multi-constructor types, such as lists, matters are rather murkier. Suppose we knowthat a function h is strict in its list argument, where h has type:h :: [Int] -> BoolHow could we use this information? One possibility would be to have two workers for h, withtypes: hwNil :: Bool -- The Nil casehwCons :: Int -> [Int] -> Bool -- The Cons case3As we'll see later, Int is an example of such a type.3

Given a call (h e) we can evaluate e and call hwNil or hwCons depending on what it turns outto be. Unfortunately this scheme turns sour on us if the function has several arguments withmulti-constructor types, because there's an exponential blowup in the number of versions ofh required. We have not tried this option at all.Another possibility would be to have some way of passing a variable-sized argument, alongwith a tag to say which constructor is meant. This is tricky territory for the code generator,and again we have not tried it.In any case, it is far from clear what gains might be expected from either approach. If the datatype is recursive, and h is recursive, then all we are doing is moving the topmost evaluationof the argument from h to the call site.In short, unboxing strict arguments of multi-constructor type seems complex and the returnsare debatable. There is one obvious exception to this pessimistic conclusion: enumerationtypes, such as Bool, have several constructors but all of them are nullary. Enumeration typeshave an obvious unboxed representation as a small integer tag. We plan to exploit this, buthave not yet done so.2.4 Early evaluation of multi-constructor typesEven if we have to pass a multi-constructor typed argument in boxed form, there might stillbe gains from evaluating it early. In particular, consider the call (h <arg>) where <arg> isnot a variable or literal. Without strictness analysis, we have to build a thunk for <arg> andpass it to h. Knowing that h is strict, we could evaluate <arg> in-line, allocate a suitable listcell (cons or nil), and pass that to h. The saving here is that we don't need to write the thunkinto the heap, read it back and then perform the update; instead we simply write the �nalvalue into the heap. Howe's paper in this proceedings concentrates on precisely this point(Howe & Burn [1993]).If the argument of a call is a variable, eg (h x), it depends on �ne details of the implementationwhether it is worth evaluating x before the call. Recall that in the case of single-constructortypes the bene�t was that the evaluation might be shared across two calls. In the multi-constructor case this bene�t might also accrue if evaluation and unpacking are two separateoperations, as they are in the G-machine. Then evaluation can be moved to the call site, whileunpacking remains in the called function. In the STG-machine, evaluation and unpacking areperformed simultaneously, so there is no bene�t.2.5 Improving let bindingsConsider the expressionlet x = <x-rhs> in <body>and suppose that strictness analysis tells us that <body> is sure to evaluate x. Can we makeuse of this information? Yes, of course. Just as in the case of a strict function, we evaluatex immediately instead of building a thunk for it, and waiting for <body> to evaluate it. Forreasons which will become apparent, we call this the let-to-case transformation.4

2.6 Non-at domainsSo far we have concentrated exclusively on \at" strictness, which answers the question as towhether a function is strict in a particular argument position or not. Much work has beendone on non-at domains: can we take advantage of it? This question splits into three:1. For non-recursive types with just one constructor, such as tuples, we should certainly beable to \see" inside the constructor to the strictness of its components. For example,we can do more with the functionf (x,y) = x+1than to say that it is strict in its argument; it is obviously strict in the �rst componentof the tuple.2. For non-recursive types with more than one constructor it might be possible to dosomething similar, but it seems quite a bit more complicated. In our analyser we makeno attempt to discover strictness in the components of multi-constructor types.3. For recursive types, much theoretical work has been done relating the degree of evalua-tion performed on the result of a function to the degree of evaluation of its arguments(Burn [1990]; Wadler & Hughes [1987]). For example, the append function is strict inthe spine of its arguments if it is called in a context which requires the spine of its result.We make no attempt to compute or exploit such information, for two reasons. First,it is a lot more work to compute the information. Second, the results of exploiting itare not always bene�cial. For example, the version of the append function suitable fora spine-strict context will compute the whole of the result before returning any of it,which might have a terrible e�ect on the peak space requirement of the program.There is very little published work which attempts to measure the e�ects of exploitingstrictness in recursive data types. Finne & Burn [1993] use \evaluation transformers"to evaluate lists more strictly (in the same spirit as the work described here), but forsequential implementations they �nd few performance bene�ts, and occasional largecosts. In contrast, Hall [1993] uses strictness information over list types to guide anew transformation which uses a more e�cient list representation where possible. Thetransformation gives substantial performance bene�ts where it is applicable.3 A simple strictness analyserNow that we know how we can exploit strictness analysis, we will describe our simple strictnessanalyser itself. Our general approach has been to try to gain a large fraction of the possiblewinnings with a small fraction of the e�ort. To this end, our strictness analyser is simple, butapparently quite e�ective. (It is of course hard to be quantitative about such a claim, sincewe have not implemented a more sophisticated one with which to compare it.)The process of detecting and exploiting strictness is split into three stages:5

S [[x]]� = (� x ; x 2 dom(�)> otherwiseS [[e1 e2]]� = (S [[e1]] �)(S [[e2]]�)S [[\x :e]]� = �y :S [[e]]�[x 7! y]S [[let x=e in b]]� = S [[b]]�[x 7! S [[e]]�]S 26666642666664 letrecx1=e1: : :xn=enin b 37777753777775� = S [[b]]�0where�0 = �x(��0:�[: : : ; xi 7! r(S [[ei]] �0); : : :])S [[C e1 : : :en]]� = ((S [[e1]]�; : : :;S [[en]]�); C is mono>; otherwiseS 2666426664 case e of: : :Ci x1 ::xn -> ri: : : 3777537775� = 8>>>>><>>>>>: ?; v = ?S [[r1]] �264 x1 7! v1 ;: : : ;xn 7! vn 375 ; v = (v1 ; ::; vn)FS [[ri]] �; otherwisewherev = S [[e]]�Figure 1: The abstract interpretation1. First, a simple abstract interpretation is used to annotate the binding occurrence ofeach variable with (a) an indication of whether or not it is sure to be evaluated, and(b) in the case of let(rec) bound variables, an indication of its strictness properties.2. Next, a simple pass uses these annotations to make local transformations of the program.3. Finally, a general program-transformation system is applied to the resulting program,to propagate the e�ects globally.The �rst stage is described in the rest of this section, while the second two stages are describedsubsequently, in Section 4.3.1 The abstract interpretation 6

Our strictness analyser uses abstract interpretation. The abstract domain contains top, bot-tom, functions, and �nite products:D = 1 + (D ! D) + Xi D i(Here, 1 is the one-point domain, + is lifted sum, and D i is ordinary (non-lifted) product.)The abstract interpretation itself is given in Figure 1. The syntax of the language is conven-tional: lambda calculus together with let, letrec, case, and constructors from algebraicdata types. We assume that the source program is well typed by the time it reaches thestrictness analyser.There are several features worthy of note:� The abstract interpretation is higher order, along the lines of Burn, Hankin & Abramsky[1986].� The product space in the abstract domain is used only for constructors from data typeswith just one constructor (Figure 1 calls such constructors \mono"). For constructorsfrom multi-constructor types we use the simple two point domain only.� The interpretation of case expressions takes advantage of a product-space value. (Inthis case there can be only one alternative, of course.)� let expressions are handled with no approximation at all, including the case where thevariable has a functional type.� The interpretation of letrec uses the �xpoint operator, of course, but it also uses awidening operator, w , which is the subject of the next section.Using this abstract interpretation it is straightforward to annotate each let-bound or lambda-bound variable with its strictness properties.3.2 Finding �xpointsOur analyser uses a crude but fast approximation technique for �nding �xpoints. The mainpayo� is that it converges in worst case time O(N 2), where N is the number of arguments tothe function being �xpointed. The square law comes from the fact that at most N iterationsare required, each of which requires N evaluations to compute.Suppose we want to �nd the �xpoint of a functional F . The usual idea is to compute thechain of approximations ?;F (?);F 2(?); : : :, and stop when F k(?) = F k+1 (?), at whichpoint F k(?) is the least �xpoint of F . The trouble is that computing equality betweensuccessive approximations is horribly expensive; a variety of solutions have been proposed,for example Hughes [1992], Peyton Jones & Clack [1986].Our approach is simple. Instead of �nding the �xpoint of F , we will �nd the �xpoint of rF ,where rF (x) = r(F (x)), and r is a widening operator. A widening operator makes things7

bigger4 ; formally, r is a widening operator i�8x : x v r(x)The key idea is this: we choose r so that it is easy to compare successive iterations, (rF)k(?)and (rF)k+1(?) for equality. Why does this do us any good? Because of this theorem:Theorem 1: �x F v �x rFThat is, the �xpoint of rF is a safe approximation (from the point of view of strictnessanalysis) to the �xpoint of F . The proof is in the Appendix.3.2.1 Choosing a widening operatorNow, how do we choose the widening operator r? There are a variety of choices, but the onewe use is to characterise a widened function by giving a \demand" for each argument, sayinghow much evaluation the function guarantees to perform on that argument. A \demand" isone of the following: L Lazy; no evaluation of this argument isguaranteed.S Strict; the function is strict in this argument,but its type is a multi-constructor type, func-tion, or type variable.U(d1 : : :dn) Unpack; a strict argument of a single-constructor type, to be passed unboxed. Thedemands which can be guaranteed for thecomponents are given by d1 : : :dn .For example, if f is de�ned like this:f x y z = if z then x else ythen f's \strictness signature", which gives s safe demand for each argument, is \LLS". Wethink of f's strictness signature as specifying r(f), a very crude uppper (and hence safe)approximation to the true abstract value of f:r(f) x y ? = ?r(f) x y z = >; if z 6= ?Notice that the \joint strictness" between x and y is lost by the widening process.In general, suppose f is a function of n arguments. A safe demand, di , for argument i hasthe property that: 8x 2 �(di):f >1 >2 : : : x : : : >n�1 >n = ?4The cognoscenti will know that widening operators have a slightly tighter de�nition than this, but thisone is su�cient for our purposes. 8

where �(di) is de�ned as follows:�(L) = ;�(S) = f?g�(U (d1 ; : : : ; dn)) = f?g [f(t1 ; : : : ; tn) j t1 2 �(d1) _ : : :_ tn 2 �(dn)gInformally, if di is a safe demand for argument i , then �(di) is a set of values of argument iwhich are certain to make the function diverge.A strictness signature for f is a sequence of safe demands d1d2 : : :dn . Then r(f) is easy tode�ne: r(f) = �x1 : : :xn :if (x1 2 �(d1)) _ : : : _ (xn 2 �(dn)) then ? else >It is an easy theorem that r is indeed a widening operator.Given the abstract version of a function, it is easy to �nd a safe demand for each argument,by \probing". First, evaluate the function with that argument bound to ? and all theothers bound to >; if it returns ? then S is a safe demand, otherwise U is. If S is a safedemand and the argument is of a single-contructor type we can try probing with (?;>; : : : ;>),(>;?;>; : : : ;>), and so on, to �nd a safe demand for each component. The strictness analysercan then widen a function by (a) probing it to compute its strictness signature and then (b)using the strictness signature to de�ne the widened function.So, �nally, to �nd the �xpoint of a function, compute a chain of widened approximations,and stop when two iterations have the same strictness signature.Working through this theory, which was done subsequent to the implementation, actuallyrevealed several bugs in the implementation, one of which was in the widening process. Theoryactually helps!4 Exploiting the results of strictness analysisThe results of strictness analysis are often exploited by deeply mysterious processes withinthe code generator of the compiler. Our approach is instead:� to express the results of strictness analysis by means of simple, local program transfor-mations, and� to propagate the e�ects of these transformations using the compiler's general program-transformation system which is required in any case.To do this requires a language in which the evaluation of (for example) integers is explicit.We do this by making use of unboxed types; the ideas are sketched below, but full details canbe found in Peyton Jones & Launchbury [1991].9

4.1 Unboxed typesIn Glasgow Haskell, unboxed types like Int# are (nearly) �rst-class citizens5 . Indeed, the Inttype is built from Int#, using an ordinary data type declaration:data Int = I# Int#Consider again the call f (x+1). The idea of evaluating the (x+1) before the call, and passingit unboxed, can now be expressed like this:case x ofI# x# -> case x# +# 1# ofa# -> fw a#The outer case evaluates x, and extracts its unboxed component x#. The inner case is theSTG language's way of saying6 \add x# to 1# and call the result a#". Then a# is passed tofw.4.2 Workers and wrappersSuppose that the strictness analyser found that f is strict in its Int argument x, where f isde�ned like this:f x = <rhs-of-f>To express this fact, a local program transformation is made which splits f into two functions:a wrapper and a worker, thus:f x = case x ofI# x# -> fw x#fw x# = let x = I# x#in <rhs-of-f>Now, the global program-transformation phase can unfold all calls to f, but not fw, whichhas precisely the e�ect of moving the argument evaluation to the call site.Notice the somewhat curious re-construction of x from x# in the body of fw. Does this meanthat the argument is taken apart by the wrapper only to be reconstructed by the worker?The answer is that such reconstruction does not usually take place. To see the common case,suppose <rhs-of-f> was x+x. Substituting this into fw, and unfolding the de�nition of +,gives fw x# = let x = I# x#in case x ofI# x1# -> case x ofI# x2# -> case x1# +# x2# ofa# -> I# a#5The only respect in which they are not �rst-class is that unboxed types cannot instantiate polymorphictype variables (Peyton Jones & Launchbury [1991]).6We use 1# rather than just 1, and +# rather than + because the values and operations involved are theunboxed ones. 10

Now, both case expressions are scrutinising a variable which is directly bound to a I# con-structor, so they can be eliminated in favour of binding x1# and x2# to x#. Now x is notmentioned at all, so it can be dropped, giving the satisfactory result:fw x# = case x# +# x# ofa# -> I# a#4.3 The let to case transformationAs remarked in Section 2.5 it should be possible to generate better code for a let bindingwhich binds a variable which is sure to be evaluated in the body of the let. To express this,we can make the transformation:let x = <rhs-of-x> ===> case <rhs-of-x> ofin <body> x -> <body>This is called the let-to-case transformation. In our implementation, the original let wouldbuild a thunk for <rhs-of-x> while the case will instead evaluate it in-line7 . A heap alloca-tion does still take place: if <rhs-of-x> was a pair, for example, the pair would be allocatedin the heap, and bound to x8 . The gain is that the thunk does not need to be written out,read back in later, and updated.The let-to-case transformation implements the optimisation discussed in Section 2.4. Givena function application (h <arg>), for some non-atomic expression <arg>, we �rst transformto let a = <arg> in h aand then use let-to-case to obtaincase <arg> ofa -> h aHowever, in the case of single-constructor types we can do better. For example, if x is a pairwe can transform like this:let x = <rhs-of-x> ===> case <rhs-of-x> ofin <body> (p,q) -> let x = (p,q) in <body>Why is this better? Because the construction of x as a pair is then visible in <body> whichoften results in the elimination of one or more case expressions. A particularly importantexample of this case-elimination concerns lazy pattern matching. Suppose we start with theHaskell de�nitionf x y = if x then p else qwhere7 In Haskell, case e of x -> b is the same as let x = e in b, but not in our compiler's internal language,in which case is always strict.8 Incidentally, precisely because it needs to heap-allocate the value returned by <rhs-of-x>, our implemen-tation will only handle a case with a single-variable alternative if the type of x is a statically determinabledata type. 11

(p,q) = h yThis translates naively to:f x y = let t = h yp = case t of (p,q) -> pq = case t of (p,q) -> qin if x then p else qThe pattern binding for (p,q) gives rise to three thunks, one for each of t, p and q, which ishorribly ine�cient. Now, the strictness analyser will discover that t is sure to be evaluated,even though neither of p and q are. Using the let-to-case transformation gives:f x y = case (h y) of(p1,q1) -> let p = case t of (p,q) -> pq = case t of (p,q) -> qin if x then p else qVery simple automatic transformations can now eliminate the inner case expressions to give:f x y = case (h y) of(p1,q1) -> if x then p1 else q1In e�ect, this composition of simple transformations implements the more complex rule \ifany variable in a pattern binding is sure to be evaluated, then the pattern binding can betaken apart using case rather than the full lazy-pattern-binding mechanism". Using a caseexpression allocates no thunks, and (in our implementation) does not even build the pair(p1,q1) in the heap | the two components are simply returned in registers.4.4 Floating case out of letThere is yet another way in which we can exploit strictness information to reduce the con-struction of thunks and remove repeated evaluation. Consider the expressionlet x = case y of<pat> -> <rhs>in <body>Furthermore, suppose that x is used strictly by <body>; that is, if x is bottom then so is<body>. Then x is sure to be evaluated, and hence so is y. This means that it is safe totransform to:case y of<pat> -> let x = <rhs>in <body>Notice that the transformation works regardless of the type of x | for example, it does nothave to be a single-constructor type, or even a data type. (If x were a single-constructor type,then the let to case transformation would be used.) Floating the case out of the let is aGood Thing to do for two reasons: 12

� It widens the scope of the case. For example, it may be that y is evaluated somewhereelse in <body> (that is, there is a case y of ... in <body>). Now that <body> appearsinside the case y, the second case y can be eliminated, saving an evaluation.� It may be that <rhs> is a simple variable, in which case the let expression can nowbe eliminated entirely. Alternatively, <rhs> might be a constructor application, so nowthe let expression would allocate an immutable constructor, rather than a thunk whichlater has to be updated.4.5 AbsenceConsider this de�nition:f t = case t of (a,b,c,d) -> bThe strictness of f is U(LLSL), which leads to the following worker/wrapper split (after somesimpli�cation):f t = case t of (a,b,c,d) -> fw a b c dfw a b c d = bThis is a bit silly, because the components of the tuple are passed to fw even though onlyone is used. It would be better if we could �gure out when an argument is guaranteed not tobe evaluated, so that we needn't pass it to the worker at all! Using \A" (absent) to indicatethis, we would like f's strictness to be U(AASA). In the absence of product types absenceis rare, because programmers seldom write functions which ignore one of their arguments,but once products are added absence becomes quite common (notably in the form of selectorfunctions).The property of \guaranteed not to be evaluated" (that is, absence) is dual to that of \guar-anteed to be evaluated" (that is, strictness), and a second abstract interpretation is neededto gather absence information. Why is a full abstract interpretation needed? Can we notsimply use a syntactic criterion? Consider:g x = fst (fst x)We would like to get the strictness property U(U(SA)A) for g, even though the absence of thearguments is not syntactically apparent.We have implemented absence analysis, using the same infrastructure as for the strictnessanalysis (abstract interpreter, �xpointing, etc), but the details are beyond the scope of thispaper.4.6 ModulesIt is absolutely essential to convey strictness information across module boundaries. Likemost compilers, we do this by adding strictness annotations to the module's interface �le,which is imported by other modules using this one's resources. For example, the followingmight appear in an interface �le: 13

f :: Int -> [Int] -> Bool -> Bool{-# GHC_PRAGMA ... _S_ "U(LL)SL" ... #-}In order to keep the strictness annotations small, they only encode widened functions, usingthe demand notation described in Section 3.2.1. The strictness of non-recursive functions isexpressed in this way, as well as recursive ones; some details of their full abstract value istherefore lost across module boundaries.5 ResultsWe exercised our strictness analyser on each of 17 programs, from the \Real" part of the(still-unreleased) nofib suite of Haskell programs. They cover a broad spread of applicationdomains, including theorem proving, RSA encoding, geometric modelling, type inference, anddata compression. They vary from 70 to 11,000 lines of Haskell source, with 500 lines beingtypical.Each programwas compiled with and without strictness analysis enabled, using a developmentversion of GHC from November, 1993. All the other transformations used were identical, andin each case, the programs were linked with a standard Prelude which was compiled in thesame way as they were.All programs were compiled with \ticky-ticky" pro�ling: when run, they collect many dynamiccounts, e.g., the number of three-word closures allocated, the number of updates, etc.All the �gures presented in the next section refer to dynamic counts. For example, the numberof function calls which managed to call the worker of a strict function is the dynamic count,not the static number of such calls in the program text. The dynamic counts are what a�ectsrun-time.There is one main caveat: too many programs have input data which leads to a runtimewhich is too small to measure reliably. This is partly a problem of success (the compiler hasimproved) and partly that they are run on a fast machine.5.1 Run timesIn a sense the runtime is the result that \really matters", although it doesn't give muchinsight in itself. Table 1 shows the change in runtime for each of the programs withoutstrictness analysis (\None" column) and the percentage change when strictness analysis isenabled (\Strictly" column). \R" is real, wall-clock time, presented for completeness; \U+S"is user+system time, which is more informative. A dash (|) means \no discernible change".Each was run on a Sun SparcStation 10 with 48Mbytes of memory.The performance gains are modest but consistent, ranging from near-zero to an improvementof 30% or more. maillist, whose execution time actually increases, is an unusual program,being totally dominated by input/output. We believe it is amplifying a small infelicity in thetransformation system. 14

None StrictlyR U+S R U+Sanna 8.4 8.2 {3.6% {3.8%veritas 4.4 0.6 +18.2% {16.7%gg 7.3 4.3 {2.7% {7.0%hidden 412.0 395.1 {31.3% {32.1%maillist 94.2 15.2 +7.3% +5.9%bspt 6.1 3.6 {13.1% {19.4%compress 83.1 81.1 {21.7% {21.7%infer 18.8 16.7 {9.6% {9.6%lift 2.2 0.3 +13.6% |parser 15.2 12.0 {13.8% {14.2%prolog 2.3 0.7 {8.7% |reptile 5.9 3.7 +23.7% {2.7%rsa 27.3 25.6 {9.2% {9.0%uid 7.5 3.5 {1.3% {22.9%gamteb 64.2 61.1 {33.0% {33.7%pic 13.0 9.6 {37.7% {44.8%fulsom 129.7 126.0 {10.3% {10.6%Table 1: Run times (in seconds [real; user+system])5.2 Allocations savedIn Section 2 we identi�ed the main saving from strictness analysis as the reduction in thenumber of thunks allocated. Table 2 quanti�es this by counting how many thunks are allocatedin a run of each program under each build. Just to reassure ourselves that we aren't makingsavings in one place only to incur costs in another, the \Others" column counts all allocationother than thunks; mostly allocation of head normal forms, such as data constructors andpartial function applications. As before, the \Strictly" columns are given as percentagechanges from the corresponding \None" column.The number of thunks allocated always decreases, sometimes dramatically so (eg hidden).There are, unsurprisingly, more non-thunks allocated, but the total allocation is usually re-duced. We would expect the total allocation to always be reduced; the cases where it is not(maillist, bspt, pic) show a rather large increase in non-thunk allocation). This deservesfurther investigation.5.3 Updates savedAs well as reducing the number of thunks, we hope also to reduce the number of updates.Indeed, since every one of the thunks we do not allocate is one which would be entered, onemight expect approximately one update to be saved for every thunk saved. This is con�rmedby comparing the �rst two columns in Table 3. The �gures are not exactly the same becauseother transformations are enabled or disabled by the e�ects of strictness analysis.15

None StrictlyThunks Others Total Thunks Others Totalanna 622,624 175,511 798,135 {15.9% +25.6% {6.8%veritas 29,101 3,635 32,736 {4.8% +4.1% {3.8%gg 335,104 151,972 487,076 {14.9% +18.8% {4.4%hidden 61,178,224 6,449,232 67,627,456 {46.4% +13.1% {40.7%maillist 144,555 313,380 457,935 {19.0% +69.9% +41.8%bspt 390,280 48,979 439,259 {26.9% +246.3% +3.6%compress 1,623,431 8,209,918 9,833,349 {5.8% | {1.0%infer 619,273 274,155 893,428 {5.7% +7.9% {1.5%lift 20,099 9,646 29,745 {9.1% +15.1% {1.2%parser 1,276,925 614,789 1,891,714 {34.8% +26.4% {14.9%prolog 44,189 22,426 66,615 {30.4% +43.0% {5.7%reptile 474,845 82,681 557,526 {22.2% +29.7% {14.5%rsa 553,934 414,186 968,120 {91.6% {47.7% {72.8%uid 268,514 83,288 351,802 {30.3% +58.6% {9.2%gamteb 4,333,275 2,015,412 6,348,687 {49.8% +74.1% {10.4%pic 599,024 369,784 968,808 {72.9% +139.6% +8.2%fulsom 16,305,421 7,937,428 24,242,849 {6.0% {28.1% {13.2%Table 2: Thunks (and other objects) allocatedThunks Updates None Strictlyeliminated by without with without withstrictness analysis update analysis update analysisanna 99,010 90,096 535,148 {11.5% 445,052 {5.5%veritas 1,397 1,366 28,466 {3.2% 27,100 {0.4%gg 49,858 49,566 330,051 {3.8% 280,485 {0.5%hidden 28,362,677 14,034,948 39,774,327 {6.9% 25,739,379 {5.2%maillist 27,509 27,509 104,139 {8.7% 76,630 |bspt 104,889 102,461 382,558 {9.4% 280,097 {1.5%compress 94,872 94,872 1,623,318 | 1,528,446 |infer 35,389 35,370 443,570 {9.0% 408,200 {1.5%lift 1,821 1,871 19,228 {7.6% 17,357 {1.8%parser 443,965 290,793 720,170 {1.5% 429,377 {1.9%prolog 13,448 13,423 36,908 {32.4% 23,485 {1.3%reptile 105,313 105,900 474,142 {16.9% 368,242 {2.1%rsa 507,463 455,299 501,469 {38.5% 46,170 |uid 81,310 78,438 238,861 {6.2% 160,423 {0.7%gamteb 2,156,738 2,053,226 4,175,334 {2.3% 2,122,108 {0.9%pic 436,633 427,670 578,972 {0.2% 151,302 |fulsom 970,177 859,845 12,191,166 {7.1% 11,331,321 {6.6%Table 3: Updates16

None Strictlydata-vals thunks others data-vals thunks othersanna 1,875,349 522k 2,187k {5.1% {16.9% {20.8%veritas 11,293 27k 37k {6.2% {3.7% {8.1%gg 657,597 322k 1,144k {33.3% {15.2% {23.8%hidden 79,661,596 38,842k 104,354k {21.3% {35.3% {37.1%maillist 1,072,984 101k 1,077k {26.6% {26.7% {41.3%bspt 475,832 373k 799k {20.5% {26.8% {32.5%compress 36,689,810 1,585k 24,311k {5.7% {5.9% {64.3%infer 7,177,846 433k 6,339k | {8.1% {38.1%lift 22,368 18k 37k {2.7% {11.1% {10.8%parser 2,041,658 703k 3,347k {4.0% {40.4% {14.6%prolog 98,091 36k 157k {6.6% {38.9% {29.9%reptile 449,386 463k 929k {50.3% {22.5% {33.2%rsa 1,032,357 489k 1,678k {63.6% {90.8% {40.9%uid 589,827 233k 864k {42.9% {33.0% {49.8%gamteb 11,096,188 4,077k 15,683k {59.1% {49.2% {54.6%pic 2,281,123 565k 2,915k {50.1% {74.0% {65.4%fulsom 13,816,368 11,905k 26,017k {24.6% {7.1% {32.3%Table 4: Number of entersThe picture is complicated slightly by update analysis, which tries to infer when a thunk canonly be entered at most once, and hence does not need to be updated (Marlow [1993]). Aninteresting question is: does strictness analysis eliminate exactly those thunks which updateanalysis identi�es as single-entry, or does update analysis �nd some more beside? The \with"columns on the right side of Table 3 quantify the answer. It says how many updates happenedeven with the update analyser. On some numerically-intensive programs (rsa, compress) theupdate analyser can't �nd much to do after the strictness analyser has done its stu�. However,there are often handy winnings still to be had (eg anna, hidden).5.4 Evaluations savedA side bene�t of strictness analysis is that sometimes a thunk may be evaluated just onceinstead of twice (cf Section 2.1). The second enter will encounter an evaluated data value, sowith strictness analysis one would expect the number of data-value enters to drop. And so itdoes (Table 4). The reduction in the number of data-value enters is often modest (veritas,infer) but sometimes very substantial (reptile, gamteb) | the numerical programs seemto be the ones which work well, unsurprisingly.The number of thunks entered also drops, which is unsurprising since fewer thunks are allo-cated.5.5 Function callsHow many function calls are able to exploit strictness at all? Table 5 gives the answers.It splits all function calls into three groups: the \non-wrapperised" ones, which have no17

Non-wrapperised Workers Wrappersanna 1,309,080 76,303 7,964veritas 31,292 1,394 128gg 472,077 158,189 67,687hidden 47,582,515 11,840,378 3,796,296maillist 452,020 150,096 12,129bspt 322,805 143,250 19,290compress 8,535,426 126,507 8infer 2,963,582 12,763 2,630lift 23,875 3,455 1,902parser 2,398,474 100,531 28,363prolog 98,359 6,253 191reptile 518,598 96,612 12,454rsa 67,227 729,738 18,882uid 279,668 83,186 22,691gamteb 2,350,999 2,977,282 805,196pic 267,546 442,348 167,144fulsom 11,054,384 2,308,330 318,209Table 5: Number of function calls to... (\Strictly" build)exploitable strict arguments; the \workers" which are the function calls to a strict functionwhere the worker was called directly; and the \wrappers" which are the calls to strict functionswhere the wrapper was called. Why are there any calls in the last category? Because dataabstraction means that (currently) we may not be able to unpack the argument(s) at the callsite even though they are known to be strict.5.6 Argument distributionIn the discussion of Section 2 we distinguished between various argument types: Int, single-constructor, tuples, multi-constructor, and so on. Table 6 tells the distribution of theseargument types over all calls. The proportions are given as percentages of all strict argumentpositions, so that non-strict arguments don't appear at all.The �rst group of columns are all single-constructor types that could \unpack" e�ectively:c=Char, i=Int, j=Integer, f=Float, d=Double, t=tuple, s=other single-constructor type.Column U gives the percentage of single-constructor arguments that we failed to unpack,because of data abstraction.The most unexpected measurement is the prevalence of the \s" column, indicating that gen-eralising the unboxery to types other than numeric ones and tuples is quite worth while.Lastly, Table 7 addresses the question of the number of arguments which are passed to workers.In principle, a worker might take very many more arguments than its wrapper, since severalarguments may be unpacked. In extreme cases this might be quite counter-productive. Table 7is reassuring: a worker seldom takes many more arguments than its wrapper.18

c i j f d t s Uanna 17.39 32.73 6.38 28.85 9.35veritas 1.39 7.37 73.35 4.03 8.38gg 6.60 16.62 38.37 0.01 0.18 7.54 0.27 29.99hidden 0.33 1.27 1.98 0.01 0.00 1.44 71.68 23.29maillist 41.59 41.08 6.54 6.54bspt 36.61 5.94 44.31 11.69compress 99.98 0.01 0.00 0.00infer 24.13 43.34 0.18 17.29 15.00lift 21.47 19.05 2.14 9.37 13.11 34.77parser 60.38 7.86 4.99 0.20 20.51prolog 76.49 14.75 1.16 0.54 2.96reptile 1.46 90.11 0.03 0.00 8.33rsa 0.22 96.90 0.47 0.00 2.40uid 8.61 33.01 25.06 5.07 0.14 4.20 0.01 18.85gamteb 0.00 35.67 33.04 0.87 8.39 0.24 21.79pic 0.00 40.70 1.69 1.65 27.67 0.00 28.29fulsom 0.00 28.06 1.34 28.03 24.86 0.37 14.77Table 6: Wrappers' strict arguments were...{3 {2 {1 0 +1 +2 +3 +4 +5anna 0.00 0.30 86.78 8.29 4.32 0.00 0.31veritas 0.14 1.43 2.08 25.90 42.97 25.61 0.36 1.51gg 41.72 0.31 19.72 0.26 37.86 0.14hidden 0.02 93.97 1.42 2.35 0.02 2.22 0.00maillist 7.18 88.78 4.03bspt 48.60 8.91 39.06 1.14 2.29compress 99.99 0.01infer 0.01 99.74 0.23 0.02lift 81.22 16.12 0.61 2.00 0.06parser 0.10 92.77 0.04 0.28 6.82prolog 98.74 1.23 0.03reptile 0.10 99.85 0.02 0.03rsa 1.25 0.00 22.86 75.89 0.00uid 1.15 63.88 7.01 3.92 0.40 23.62 0.01gamteb 0.00 46.72 14.24 4.94 0.17 33.40 0.52pic 0.00 26.31 70.95 1.05 0.01 1.67 0.00fulsom 0.00 0.00 55.88 0.00 0.98 41.69 1.45 0.00Table 7: Worker functions' # of arguments vs. their wrappers' # (percentages)19

6 ConclusionOur main conclusion is this: strictness analysis on large, realistic programs leads to solid butmodest improvements in execution speed. The best speedup we observed was about 30%(ie the runtime dropped to about 70% of its previous value), but 10{20% is more typical.This contrasts with other papers which describe dramatic speedups, but these are usuallymeasured on small programs which spend a lot of time in an optimisable loop.A second general conclusion is that program behaviours really do vary widely, even in largeprograms | see, for example, the distribution of strict argument types in Table 6. There is no\silver bullet" | a good compiler has to be more like a shotgun, with many transformationstargetted at many situations.A third conclusion is that making detailed quantitative measurements of the internal be-haviour of programs, as we have done, often shows up compiler \performance bugs"; that is,places where the compiler generates signi�cantly (but not drastically) less good code than itcould. These can lie (and in our experience have lain) undiscovered for a very long time, sincethey do not cause programs to fail, until uncovered by making measurements.There is plenty of scope for re�ning our measurements. In particular, each outcome (egnumber of thunks allocated) is the e�ect of a combination of causes (eg let-to-case, unboxing,etc); it would be nice to isolate the e�ect of each of these causes.AcknowledgementsMany thanks to John Launchbury for keeping us honest with the maths; to Andr�e Santoswhose transformation system exploits and propagates the results of strictness analysis; andto Andy Gill, who wrote the �rst version of this strictness analyser.Appendix: proofsOur theorem was:Theorem 1: If w is a widening operator, then �x F v �x wFThat is, the �xpoint of wF is a safe approximation (from the point of view of strictnessanalysis) to the �xpoint of F . The proof is in two steps.F (�x wF) v wF (�x wF) Since w is a widening operator= �x wF By de�nition of �xIn the jargon, �x wF is a post-�xpoint of F . In general, z is a post-�xpoint of F if F (z) v z .The following theorem holds for post-�xpoints:Theorem 2: a post-�xpoint of F is greater than F n(?) for all n. More precisely, if z is apost-�xpoint of F , then F n(?) v z . 20

The proof is a simple induction on n. Certainly ? v z , which is the base case. AssumingF n(?) v z , applying F to both sides gives F n+1(?) v F (z); but since z is a post-�xpoint ofF , F (z) v z , and hence F n+1 (?) v z .2Corollary 3: if z is a post-�xpoint of F , then �x F v z . This follows immediately fromTheorem 2.2Corollary 4: since F (�x wF) v �x wF , once we have found �x wF we can get a better (or atleast no worse) approximation to �x F by computing F n(�x wF), for some arbitrarily chosenn. No tests for equality are required here, because �x F v F n(�x wF) for any n.ReferencesGL Burn [April 1990], \The evaluation transformer model of reduction and its correctness,"in TAPSOFT 91, Brighton.GL Burn, CL Hankin & S Abramsky [Nov 1986], \Strictness analysis for higher order func-tions," Science of Computer Programming 7, 249{278.S Finne & G Burn [June 1993], \Assessing the evaluation transformer model of reduction onthe spineless G-machine," in Proc Functional Programming Languages and ComputerArchitecture, Copenhagen, ACM, 331{340.CV Hall [1993], \A framework for optimising abstract data types," in Functional Program-ming, Glasgow 1993 , K Hammond & JT O'Donnell, eds., Workshops in Computing,Springer Verlag.DB Howe & GL Burn [1993], \Using strictness in the STG machine," in Functional Program-ming, Glasgow 1993 , K Hammond & JT O'Donnell, eds., Workshops in Computing,Springer Verlag.RJM Hughes [Sept 1992], \A loop-detecting interpreter for lazy higher-order programs," De-partment of Computer Science, Chalmers University.S Marlow [1993], \Update avoidance analysis using abstract interpretation," in FunctionalProgramming, Glasgow 1993 , K Hammond & JT O'Donnell, eds., Workshops in Com-puting, Springer Verlag.SL Peyton Jones & CD Clack [1986], \Finding �xpoints in abstract interpretation," in Ab-stract Interpretation of Declarative Languages, C Hankin & S Abramsky, eds., EllisHorwood, Chichester, 246{265.SL Peyton Jones & J Launchbury [Sept 1991], \Unboxed values as �rst class citizens," inFunctional Programming Languages and Computer Architecture, Boston, Hughes,ed., LNCS 523, Springer Verlag, 636{666.21

S Smetsers, E Nocker, J van Groningen & R Plasmeijer [Sept 1991], \Generating e�cient codefor lazy functional languages," in Functional Programming Languages and ComputerArchitecture, Boston, Hughes, ed., LNCS 523, Springer Verlag.PL Wadler & John Hughes [Sept 1987], \Projections for strictness analysis," in FunctionalProgramming Languages and Computer Architecture, G Kahn, ed., Springer VerlagLNCS 274.

22

