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Abstract

A new class of kernels for object recognition based on local
image feature representations are introduced in this paper.
These kernels satisfy the Mercer condition and incorporate
multiple types of local features and semilocal constraints
between them. Experimental results of SVM classifiers cou-
pled with the proposed kernels are reported on recognition
tasks with the COIL-100 database and compared with ex-
isting methods. The proposed kernels achieved competitive
performance and were robust to changes in object configu-
rations and image degradations.

1. Introduction

Kernel methods received attention originally as a “trick”
to introduce non-linearity into support vector machines
(SVM) [21]. Evaluating a kernel function between two data
is equivalent to computing the scalar product of their im-
ages in a non-linearly mapped space (usually termed as fea-
ture space). It is realized later that kernel methods are more
general. Similar to SVM, many linear algorithms (e.g., PCA
and Fisher linear discriminant) depend on data through their
scalar products. By substituting the scalar products with
kernel evaluations, these algorithms can discover non-linear
patterns in data. At the same time, they are still computa-
tionally efficient, as the kernel function is evaluated in the
input space [20]. Instead of using general-purpose kernels
(e.g., Gaussians), recent effort has been focused on design-
ing kernels tailored to the requirements of a specific appli-
cation. Such kernels better reflect the similarities between
data and thus incorporate more domain knowledge.

One important application of kernel method in com-
puter vision is appearance based object recognition. Object
recognition remains one of the most challenging problems
in computer vision. Changes in illumination, pose, viewing
angle, occlusion, clutters and non-rigid deformations are
just a few of the complicated problems a recognition system
has to face. Many applications of kernel methods to object
recognition are based on global image features (e.g., global
grayvalue histograms) [14, 4, 15]. Though promising per-
formance has been reported, these methods are plagued by
the deficiencies of the global features, such as being sensi-

tive to image degradations (e.g., noise, occlusion and back-
ground clutters) and not robust under changes in object con-
figurations (e.g., translation and scaling).

Recent years have seen impressive developments in us-
ing local features computed at interest points for matching
and recognition [8, 17, 16, 10, 2]. Such approaches lead to
robust and compact image representations that lend them-
selves to powerful pattern analysis algorithms. However,
the local feature representations pose several challenges to
kernel design. First, it requires the kernel to work efficiently
on inputs of variable lengths, as images may have a different
number of local features. Secondly, the kernel should mea-
sure similarity of two unordered sets of local features with
no explicit correspondence available. Furthermore, several
types of local features are usually collected and they need to
be fused into the kernel. For better performance, semilocal
spatial and geometrical constraints between interest points
should also be incorporated. Finally, to guarantee unique
global optimal solutions for the SVM algorithm, the kernel
must also satisfy the Mercer condition. Unfortunately, ex-
isting methods (e.g., [1, 22, 23, 12, 7]) are not satisfactory
in that they do not meet all of these requirements.

The major contribution of this paper is the definition of
a new class of kernels for object recognition, based on lo-
cal feature representations. It can be shown formally that
this class of kernels satisfy the Mercer condition and re-
flect similarities between sets of local features. In addition,
multiple local feature types and semilocal constraints are
incorporated to reduce mismatches between local features,
thus further improve the classification performance. Results
are shown on testing the proposed kernels, coupled with
SVM classification, on recognition tasks with the COIL-100
database.

2. Methods

In this section, after a brief review of Mercer kernels and
local features, the proposed kernel is described and com-
pared with previous approaches. Then kernels using multi-
ple types of local features and semilocal constraints are in-
troduced, followed by a summary of the overall algorithm.



2.1. Mercer kernel

For an input space X , if there is a mapping φ : X → H
that maps any x, z ∈ X into a Hilbert space H, then a
kernel, K : X × X → R, is constructed as K(x, z) =
〈φ(x), φ(z)〉H, where 〈·, ·〉H is the scalar product operator
in H. Such kernel function K satisfy the Mercer condi-
tion: the kernel matrix formed by restricting K to any fi-
nite subset of X is positive semi-definite, and hence K is
usually termed as Mercer kernels. The Mercer condition
is essential to kernel design, as it is the key requirement
for a unique global optimal solution to the kernel-extended
pattern analysis algorithms based on convex optimization
(e.g., SVM) [20]. Besides satisfying the Mercer condition,
many applications also require the designed kernel to re-
flect similarities between the data being studied. As kernels
are elicited from scalar products, they are expected to have
larger values for data that are more similar to each other.1

2.2. Local feature representation

Local features are localized descriptors that provide distinct
information about a specific location of an image. Many
local features (e.g., [8, 17, 16, 10, 2]) are designed to be
invariant under certain image transformations, such as rota-
tion and scaling, so that they are relatively stable to changes
in object configurations. Local features have proved to be
very successful in appearance based object matching and
recognition, as they are distinctive, robust to image degrada-
tion and transformation, and require no segmentation [11].

Local features are usually collected at or in the neigh-
boring region around interest points, which are specific po-
sitions in an image that carry distinctive features of the
object being studied. Interest points are found by an in-
terest point detector, popular choices are the Harris detec-
tor [6] and multi-resolution based detectors [19]. In this
paper, we denote pi = (xi, yi) as the coordinate (in the im-
age plane) of the i-th interest point detected in the image,
and vector Fi as the local feature computed at or around
pi. An image Ia is represented by the set of local fea-
tures corresponding to all interest points detected, denoted
as Fa = {F (a)

1 , · · · , F (a)

|Fa|}.

2.3. Related work

With local feature representation, an image is concisely rep-
resented by a set of local feature vectors. Accordingly, ker-
nels that match images could be defined between two sets
of local feature vectors. We start by enumerating some de-
sirable properties of such kernels:

• The kernel should satisfy the Mercer condition;

1Strictly speaking, normalized kernel evaluates the cosine similarity of
two mapped data in the feature space.

• The computation of the kernel should be efficient in
both time and space;

• The kernel should be able to handle inputs with vari-
able lengths, as the number of interest points may vary
across different images;

• The kernel should reflect similarities between two sets
of local feature vectors.

It should be noted that the local feature representation does
not provide correspondence between local features of two
images, while only the correctly matched local features
carry meaningful discriminant information. However, find-
ing the optimal matching of local features is not always fea-
sible in practice and many algorithms are based on heuris-
tics. One important assumption common to most matching
algorithms is that the correctly matched local features are
more similar to each other than otherwise.

These properties void the use of off-the-shelf kernels,
such as Gaussian and polynomial kernels, as the underlying
data (sets of vectors) are not from a vector space. One can
normalize the length of inputs by padding zeros. Whereas
the inputs can be assumed in a vector space now, the com-
puted quantity is of little interest to recognition. Notice,
however, that it is relatively easy to build a Mercer kernel
KF on the local features, as they are usually vectors with
identical dimensions. A natural idea is to construct com-
posite kernels on the basis of such kernels, which work with
sets of local features.

One simple example of such an approach is the sum-
mation kernel. On two local feature sets, Fa =
{F (a)

1 , · · · , F (a)

|Fa|} and Fb = {F (b)
1 , · · · , F (b)

|Fb|}, of two im-
ages, Ia and Ib, the summation kernel is defined as

KS(Fa,Fb) =
1

|Fa|
1

|Fb|
|Fa|∑
i=1

|Fb|∑
j=1

KF (F (a)
i , F (b)

j ). (1)

With properties of the constructing Mercer kernels KF ,
it is not hard to show that the summation kernel satis-
fies the Mercer condition [9]. However, its discriminative
ability is compromised by the fact that all possible match-
ings between local features are combined with equal bias.
The good matchings, highly out-numbered, could be easily
swamped by the bad ones.

In [22], a kernel function based on matching local fea-
tures was proposed

KM (Fa,Fb) =
1
2

1
|Fa|

|Fa|∑
i=1

max
j=1,··· ,|Fb|

KF (F (a)
i , F (b)

j )

+
1
2

1
|Fb|

|Fb|∑
j=1

max
i=1,··· ,|Fa|

KF (F (b)
j , F (a)

i ). (2)

Function KM has the desired property of reflecting similar-
ities of two sets of local feature vectors, as it only consid-
ers the similarities of the best matched local features. Un-
fortunately, despite the claim in [22], KM is not a Mercer



kernel, for which a detailed proof is given in [9]. In [1], a
similar non-Mercer kernel based on a sub-optimal matching
between local features is used but measures are provided so
that the probability of the kernel not being positive semi-
definite is bounded. However, as pointed out earlier, the
Mercer condition is essential to reliable recognition, Mer-
cer kernels are still preferable in practice.

In [23], a Mercer kernel is proposed for sets of vectors
based on the concept of principal angles between two linear
subspaces. However, this kernel showed poor recognition
performance as reported in [5]. In [7], the Bhattacharyya
kernel is introduced where a set of vectors is represented
as a multivariate Gaussian. Though provably satisfying the
Mercer condition, evaluating this kernel is cubic in the num-
ber of local features. Furthermore, good matchings do not
necessarily distinguish themselves in such a setting. In [12],
a kernel based on Kullback-Leibler divergence is proposed.
However, as the authors pointed out, it is not clear if such a
kernel satisfies the Mercer condition.

2.4. A Mercer kernel between local feature sets
As discussed earlier, only the correctly matched local fea-
tures with large similarity measures provide meaningful dis-
criminant information for recognition. This indicates that
such matched pairs should dominate in the kernel evalua-
tion, if we expect the kernel to measure similarities between
two sets of local feature vectors. However, directly sum-
ming the maximum similarities as in the case of KM results
in inadmissible kernels that violate the Mercer condition.

In this paper, a new class of kernels are proposed that
measure similarity between local feature sets and that prov-
ably satisfy the Mercer condition. The proposed kernel
function is defined as

KF(Fa,Fb) =
1

|Fa|
1

|Fb|
|Fa|∑
i=1

|Fb|∑
j=1

[
KF (F (a)

i , F (b)
j )

]p

,
(3)

where integer p ≥ 1 is the kernel parameter. This kernel sat-
isfies the Mercer condition, a proof of which is given in [9].
With p = 1, the proposed kernel includes the summation
kernel as a special case. Similar to the summation kernel,
all possible matchings between local features in the two sets
are considered in KF , but with different bias.

It is through the kernel parameter p that the correct
matched local features are given dominant bias in KF . First
note that KF has a similar form as KM : both are sums
of some similarity measures over each local feature vec-
tor. Only the max function in KM is replaced with a sum-
mation of monomials. Consider a local feature F (a)

i of
Fa (though the following results are also true for mem-
bers of Fb), and its |Fb| kernel evaluations with each mem-
ber of Fb, KF (F (a)

i , F (b)
1 ), · · · , KF (F (a)

i , F (b)

|Fb|). Without

loss of generality, let us assume KF (F (a)
i , F (b)

1 ) ≥ · · · ≥

KF (F (a)
i , F (b)

|Fb|). The contribution of the best matched lo-

cal feature in Fb with F (a)
i in the sum of Equation (3) is:

κ =
[
KF (F (a)

i , F (b)
1 )

]p
/
∑|Fb|

j=1

[
KF (F (a)

i , F (b)
j )

]p

.
(4)

The larger the value of p is, the more dominant is the best
matched pair. As p approaches infinity, all but the maximal
values will have a negligible fraction in the sum, making
kernel KF behave like KM . Furthermore, if we require
that the similarity of the best matched pair in the sum has
a fraction above a given threshold ρ, a lower bound of p

can be computed as p ≥ log 1−ρ
(|Fb|−1)ρ/ log

KF

“
F

(a)
i ,F

(b)
2

”

KF

“
F

(a)
i ,F

(b)
1

” ,

where F (b)
2 is the second best matching local feature in Fb

for F (a)
i (see [9] for details). A proper p can be chosen as

the maximum of such lower bounds over all training data.

2.5. Multiple local feature types
So far, in constructing kernels on local feature sets, only one
type of local feature is considered . However, it is usually
possible to compute multiple types of local features at an
interest point. As each individual type of local feature may
carry distinctive information about the underlying object,
it is desirable to have them fused into the designed kernel.
Hereafter, we will refer to each type of local feature as a
base local feature.

Assume L different base local features are employed,
and denote f (a)

l ∈ Rdl as the dl-dimensional vector of the
l-th base local feature computed at an interest point pa, for
l = 1, · · · , L. Also assume that the similarity of the l-th
base local feature is properly measured by a Mercer ker-
nel, K

(l)
f . Such kernels are termed as minor kernels in [5].

In [22], several minor kernels for some state-of-the-art local
feature representations are listed. The local feature of pa is
a vector of dimension

∑L
l=1 dl, formed by stacking all f (a)

l s

as Fa = (f (a)
1

T
, · · · , f (a)

L

T )T . A kernel between two such
local features, Fa and Fb, is define as

KF (Fa, Fb) =
∏L

l=1K
(l)
f (f (a)

l , f (b)

l ). (5)

The function KF satisfies the Mercer condition [9]. It can
then be substituted into the definition of KF , Equation (3)
to incorporate multiple types of local features.

2.6. Semilocal constraints
One problem of representing an image as an unordered set
of local feature vectors is the assumption of independence
of interest points, with which different objects with similar
local feature vectors laid out differently in the image plane
are indistinguishable by their local feature sets. On the other
hand, as supported by the experimental results in [17], there
are strong spatial correlations between the interest points
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Figure 1: An example of semilocal group formed by an in-
terest point (central filled dot) and its five nearest neighbors,
p′1, · · · , p′5. Hypothetical lines are added to show the neigh-
boring angles.

and their corresponding local features in an image. Such
correlations are termed semilocal constraints in [17]. For
better recognition performance, it may be desirable to en-
force such semilocal constraints in kernel design.

Following the method in [17], we use the local shape
configuration to enforce semilocal constraints.2 Specifi-
cally, an image is represented as a set of semilocal groups,
which bundle together image information around spatially
close interest points. One semilocal group is formed around
each interest point (its central interest point) detected in an
image. Each semilocal group is defined as a two compo-
nent tuple, denoted as g = {F , Θ}. The first component,
F = {F0, F1, · · · , Fk}, is a set of local features collected at
the central interest point as well as its k-nearest neighbors,
p′1, · · · , p′k. The second component, Θ = (θ1, · · · , θk), is
a vector containing neighboring angles in the constellation
spanned by the central interest point and its k-nearest neigh-
bors, Figure 1. These neighboring angles convey the lo-
cal geometrical constraints within the semilocal group. As
pointed out in [17], if we suppose that the transformations
of objects can be locally approximated by a similarity trans-
formation, then these angles have to be locally consistent.

An image Ia is now represented by a set of semilocal
groups, Ga = {g(a)

1 , · · · , g(a)

|Ga|}. Correspondingly, the ker-
nel matching images are now defined on two sets of semilo-
cal groups. Similar to the approach taken in constructing
kernel KF , we define a kernel between two sets of semilo-
cal groups as

KG(Ga, Gb) =
1

|Ga|
1

|Gb|
|Ga|∑
i=1

|Gb|∑
j=1

[
Kg(g

(a)
i , g(b)

j )
]p

,
(6)

where Kg is a Mercer kernel between two semilocal groups
to be specified later, and integer p is the kernel parame-
ter. Kernel KG satisfies the Mercer condition, as shown
in [9]. Correct correspondence is still an important issue, as
in the case of local features, only correctly matched semilo-
cal groups are meaningful for recognition. The kernel pa-
rameter p in KG has a similar role as its counterpart in ker-

2We are reluctant to use positions of interest points directly in the ker-
nel, as in [22]. Such a setting makes the kernel vulnerable to changes in
the spatial configurations of the object (e.g., translation).

nel KF , which gives preference to good matchings between
semilocal groups.

2.7. A circular-shift invariant kernel
In constructing KG, Equation (6), kernel Kg between two
semilocal groups is left unspecified. As a semilocal group
consists of two parts, a natural way to design Kg is to use
the product of two kernels individually defined on the two
composing parts of g as:

Kg(ga, gb) = KF(Fa,Fb)KG(Θa, Θb), (7)

where KF is defined as in Equation (3). Kernel
KG is defined between two vectors of neighboring an-
gles in the semilocal constellation. Special care is re-
quired to design such a kernel, as Θ is invariant under
circular-shifts. For instance, consider again the exam-
ple shown in Figure 1. A vector of neighboring angles
as (θ3, θ4, θ5, θ1, θ2) represents the same geometrical con-
figuration as (θ1, θ2, θ3, θ4, θ5). For this reason, kernel
KG , which measures the similarity between two vectors of
neighboring angles, should not treat such two vectors as dif-
ferent (i.e., it should also be invariant under circular-shifts).

In the most general setting, for two n-dimensional
vectors x = (x0, · · · , xn−1)T ∈ Rn and y =
(y0, · · · , yn−1)T ∈ Rn, formally we define function c :
Rn × {0, · · · , n − 1} → Rn to be the circular-shift op-
erator as (c(y, l))i = (y)(i+l)mod n, where (y)i is the i-th
component of y and 0 ≤ l, i ≤ n − 1. Now consider func-
tion

KG(x, y) =
∑n−1

l=0 [K(x, c(y, l))]q, (8)

where K : Rn × Rn → R is a Mercer kernel and satis-
fies that K(x, y) = K(c(x, d), c(y, d)) for 0 ≤ d ≤ n − 1.
Many commonly used kernel functions such as Gaussian
and polynomial are valid candidates for K . A proof to show
that KG satifies the Mercer condition and invariant to circu-
lar shift is given in [9].

Notice that in constructing kernel KG , we again employ
a kernel parameter q to give dominant bias to good match-
ings. Finally, as both KF and KG satisfy the Mercer condi-
tion, it can be shown that their product Kg, Equation (7), is
also a Mercer kernel [9].

2.8. Summary
The process of constructing a Mercer kernel for object
recognition, built with multiple types of local features and
semilocal constraints, is summarized in the following algo-
rithm:

1. With minor kernels Kf defined on base local fea-
tures, construct kernel KF on local features with Equa-
tion (5);

2. Construct kernel KF on local feature sets with Equa-
tion (3);



3. Obtain a vector of neighboring angles in a semilocal
group, and construct kernel KG with Equation (8);

4. Combine kernels KF and KG into kernel Kg with
Equation (7);

5. Compute kernel KG between two sets of semilocal
groups with Equation (6);

3. Experiments
In this section, we present experimental results on recog-
nition tasks using local features and SVM classification,
bridged together by the proposed kernels. In principle, the
proposed kernels can work with any pattern analysis algo-
rithm that is able to be “kernelized”, i.e., depending on data
through their scalar products. SVM was chosen for its per-
formance and generalization ability.

3.1. Experimental setup
We performed our experiments on the COIL-100
database [13], a standard test benchmark for object
recognition. The COIL-100 database contains 7200 color
images of 100 different objects. All images are 128 × 128
pixels in size. They were obtained by placing the objects on
a turntable and taking a picture every 5◦ of viewing angle
of a 360◦ rotation.

In our experiments, the training set of all SVM classifiers
consisted of 3600 images, 36 for each of the 100 objects
that correspond to a 10◦ difference in the viewing angles.
Shown in the top row of Figure 2 are five images from the
training set. From the remaining images, five different test-
ing sets were formed:

• Set 1: 3600 images with viewing angles other than
those used in the training set.

• Set 2: 3600 images generated by randomly scaling,
rotating and translating images in set 1.

• Set 3: 3600 images generated by adding Gaussian
noise of average 12 dB to the images in set 1.

• Set 4: 3600 images generated by embedding the im-
ages in set 1 into randomly chosen backgrounds.3

• Set 5: 3600 images generated by artificially adding
partial occlusions (stripes from randomly chosen im-
ages) to the images in set 1.

Set 1 and 2 test the generalization ability of the kernels
and classifiers to changes in viewing angles and object
positions. Set 3-5 are devised to test their resilience to
common image degradations, namely additive noise, back-
ground clutters and partial occlusions.

On each image, three types of local features along with
their corresponding minor kernels were computed:

3Images used for backgrounds and partial occlusions in set 4 and set 5
are downloaded from http://www.freefoto.com.

train

set 1

set 2

set 3

set 4

set 5

Figure 2: Examples of images used in our experiments. The
first row are images from the training set. The remaining
rows are examples from each of the five testing sets.

1. Local jets [17] are differential grayvalue invari-
ants computed around an interest point. Each lo-
cal jet is a vector of dimension 9 containing up to
the third order derivatives. A Mercer kernel be-
tween two local jet features, x and z, is K(x, z) =
exp

(
− (x−z)T Λ−1(x−z)

2σ2

)
, where Λ is the covariance

matrix and
√

(x − z)T Λ−1(x − z) is the Mahalanobis
distance between x and z.

2. Local histograms [16] are local features consisting
of histogram at different scales around interest points.
Using 32 bins in computing the histogram and con-
sidering up to 3 scales, each feature is a 96 dimen-
sional vector. A kernel based on the χ2-similarity
between two feature vectors, x and z, K(x, z) =
exp

(
−χ2(x,z)

2σ2

)
, is introduced in [22] and proved to

satisfy the Mercer condition [4].

3. Local phase-based features [2] are comprised by lo-
cal phases of a complex pyramid decomposition of
the image. The features are 36-dimensional complex-
valued vectors, and their similarity is measured by

C(x, z) =
∣∣∣ xz∗
1+|x||z|

∣∣∣, from which a Mercer kernel is

constructed as K(x, z) = (C(x, z) + 1)q.

For each of these local features, interest points were found
by a Harris corner detector, showed to have high repeatabil-
ity and robust performance [18]. Interest points too close



to the boundary were ignored to avoid image border ef-
fects. The parameters of the interest point detector were
set so that, on average, approximately 100 interest points
were found in an image. Semilocal groups, as described
in section 2.6, were formed on each interest point using
its five nearest neighbors. To have a basis of comparison,
we also collected a global feature from each image. The
global feature we used is the raw pixel representation [15],
which was obtained by first converting a 128 × 128 color
image into grayscale and resizing it to 32 × 32 pixels. A
1024-dimensional feature vector was formed by stacking
the grayvalues of the resized image.

For the local feature representations, composite kernels
as described in Section 2.8 were formed from the local fea-
tures and their kernels. The kernel parameter, p, was set
to 9 in all cases. For the global features, a Gaussian ker-
nel was employed. The SVM classifiers were implemented
with package LIBSVM [3], which was enhanced to work
with kernels on local feature representations. As a stan-
dard preprocessing step in the literature, we used the nor-
malized kernel evaluation in building the SVM classifier,
as K(x, y) ← K(x,y)√

K(x,x)
√

K(y,y)
. We employed a simple

multi-class protocol for classification, namely a one-versus-
the-rest scheme in training and a winner-takes-all strategy
in testing. The regularization parameter of SVM was set to
103 in all classifiers.

3.2. Results

Shown in Table 1 is the performance of different types of
kernels with the local jets on all testing sets. For compari-
son, the performance of the global feature (raw pixel repre-
sentation) with a Gaussian kernel is also included. Perfor-
mance is evaluated in error rates, which is the percentage
of all misclassification cases in all testing examples. Sev-
eral points are worth noting about this set of results. First,
the local jet features out-performed the global features on
all testing sets. The difference is more significant with the
presence of image transformations and degradations (set
2-5). Furthermore, notice that the proposed kernel, KF ,
achieved competitive performance to that of the matching
kernel KM . As KM is less sensitive to mismatches in local
features, it had lowest error rate in some cases (set 3,4).
However, its drawback is that there is no guarantee of a
unique global optimal solution to the SVM training.

Shown in Figure 3 is a plot of the contribution of the best
matched local feature pairs in the evaluation of kernel KF ,
Equation (4), with regards to the kernel parameter p. For
stability, we reported here the average over kernel evalua-
tions of all training image pairs. Notice that after p ≥ 9,
this ratio is plateaued to be more than 99%, indicating that
the best matched pairs of local features has dominated in
the kernel evaluation. This fact is further supported by the

set 1 set 2 set 3 set 4 set 5
KR 11.3 53.9 38.4 57.3 49.6
KS 10.9 29.4 23.9 39.7 36.4
KM 1.8 27.2 16.9 20.5 28.8
KF 1.4 23.8 17.7 25.3 24.6

Table 1: Error rates (in percentage) of the Gaussian kernel
with a global feature (raw pixels) and different kernels, KR

(Equation (1)),KS (Equation (2)) and KM (Equation (3)),
with the local jet features.

set 1 set 2 set 3 set 4 set 5
local jets 1.4 23.8 17.7 25.3 24.6
local histograms 7.6 34.1 22.8 28.6 21.2
local phases 10.2 39.4 28.5 29.1 27.9

Table 2: Error rates (in percentage) of different local fea-
tures with kernel KF , Equation (3).

set 1 set 2 set 3 set 4 set 5
KF 6.1 23.5 14.4 19.9 21.2
KG 1.2 17.6 8.3 12.7 10.9

Table 3: Error rates (in percentage) of kernels using multi-
ple types of local features Equation (5) and semilocal con-
straints, Equation (6).

corresponding classification error rates of KF on test set 1,
Figure 4. With p chosen greater than 9, the performance
does not improved significantly.

In the second series of experiments, we tested the pro-
posed kernel combined with different types of local fea-
tures. Shown in Table 2 are the results of this experiment.
Note that the local jets work well under noise, but suf-
fer from background clutter and occlusion. The local his-
tograms, on the other hand, are more robust in the face of
partial occlusions. The local phase-based features perform
worst in all the experiments. We further combined all types
of local features as in Equation (5), and reported its per-
formance in the first row of Table 3. It seems that fusion
of local features does not necessarily improve the perfor-
mance (set 1). However, in cases of image degradations,
this approach achieved better results, possibly because mul-
tiple types of local features provide complementary infor-
mation that helps to reduce ambiguity in classification.

Finally, we constructed an SVM classifier using the
kernel defined in Equation (6), to further incorporate the
semilocal constraints. Such a kernel, equipped with the
most comprehensive domain knowledge, was expected to
work best. Shown in the second row of Table 3 is the perfor-
mance of this kernel on all testing sets. Compared to other
kernels, it indeed achieved the lowest error rate, which sug-
gests the efficacy of semilocal constraints.
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Figure 3: Contribution of the best matched local feature
pairs, κ, Equation (4), in kernel KF with local jet features
as a function of the kernel parameter p.
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Figure 4: Classification performance of kernel KF with lo-
cal jets on set 1 as a function of the kernel parameter p.
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