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Abstract 
This paper provides background on record linkage methods that can be used in combining data 
from a variety of sources such as person lists business lists.  It also gives some areas of current 
research. 
 
1.  Introduction 
 
   Record linkage is the means of combining information from a variety of computerized files.  It 
is also referred to as data cleaning (McCallum and Wellner 2003) or object identification (Tejada 
et al. 2002).  The basic methods compare name and address information across pairs of files to 
determine those pairs of records that are associated with the same entity.  An entity might be a 
business, a person, or some other type of unit that is listed. Based on economic relationships, 
straightforward extensions of methods might create functions and associated metrics for 
comparing information such as receipts or taxable income.  The most sophisticated methods use 
information from multiple lists (Winkler 1999b), create new functional relationships between 
variables in two files that can be associated with new metrics for identifying corresponding 
entities (Scheuren and Winkler 1997), or use graph theoretic ideas for representing linkage 
relationships as conditional random fields that be partitioned into clusters representing individual 
entities (McCallum and Wellner 2003, Wei 2004). 
    The most basic application is identifying duplicates within a file or identifying duplicates 
across two files.  If a single large file is considered, then the record linkage or matching 
procedures may be intended to identify duplicates.  The duplicates can have the effect of 
erroneously inflating estimates of the number of entities in different categories.  For instance, in a 
list of business, duplicates would inflate estimates in different industrial categories.  The 
duplicates could also cause the number of individuals employed in a set of different firms to be 
overestimated.  If a larger file is being updated using information from a more current but smaller 
file, then the smaller file is used to obtain records of new entities.  The smaller file may contain 
information about firms or businesses in various categories such as finance or services that may 
be underrepresented in the larger file.  In some situations, a combination of a large amount of 
duplication and undercoverage may cause severe errors in any uses of the list and the quantitative 
data that is associated with the list.   
   If a number of files are combined into a data warehouse, then Fayad and Uthurusamy (1996, 
2002) and Fayad et al. (1996) have stated that the majority (possibly above 90%) of the work is 
associated with cleaning up the duplicates.  Winkler (1995) has shown that computerized record 
linkage procedures can significantly reduce the resources needed for identifying duplicates in 
comparison with methods that are primarily manual.  Newcombe and Smith (1975) have 
demonstrated the purely computerized duplicate detection in high quality person lists can often 
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identify duplicates at greater level of accuracy than duplicate detection that involves a 
combination of computerized procedures and review by highly trained clerks.  The reason is that 
the computerized procedures can make use of overall information from large parts of a list.  For 
instance, the purely computerized procedure can make use of the relative rarity of various names 
and combinations of information in identifying duplicates.  The relative rarity is computed as the 
files are being matched.  Winkler (1995, 1999a) observed that the automated frequency-based (or 
value-specific) procedures could account for the relative rarity of a name such as ‘Martinez’ in 
cities such as Minneapolis, Minnesota in the US in comparison with the relatively high frequency 
of “Martinez’ in Los Angeles, California.   
   In a very large 1990 Decennial Census application, the computerized procedures were able to 
reduce the need for clerks and field follow-up from an estimated 3000 individuals over 3 months 
to 200 individuals over 6 weeks (Winkler 1995).  The reason for the need for 200 clerks is that 
both first name and age were missing from a small proportion of Census forms and Post 
Enumeration Survey forms.   If the clerks cannot supply the missing data from auxiliary 
information, then a field visit is often needed to get the missing information.  The Post 
Enumeration Survey (PES) provided an independent re-enumeration of a large number of blocks 
(small Census regions) that corresponded to approximately 70 individuals.  The PES was matched 
to the Census so that a capture-recapture methodology could be used to estimate both 
undercoverage and overcoverage to improve Census estimates.  In the 1992 U.S. Census of 
Agriculture, the computerized procedures were able to reduce the clerical review from 75 clerks 
over 3 months to 6500 hours of review (Winkler 1995).  The entities in the Census of Agriculture 
lists are farms corresponding to individuals, various types of partnerships of individuals, and 
corporations.  Based on a large validation follow-up of the matching, the computerized 
procedures identified more duplicates automatically than the clerks were able to identify in the 
previous Census of Agriculture.  The duplication in the final file was 2% in contrast to 10% in the 
previous final file from five years earlier.  
   In some situations, computerized record linkage can help preserve the confidentiality of 
information in a particular file or in a group of files.  The record linkage procedures can delineate 
records that are at risk of disclosure.  To deal with the disclosure risk, Sweeney (1999) has 
methods for reducing the identifying information in a group of records such as might be available 
in a hospital or large health network.  Individuals with the highest access levels might have nearly 
full access to information in files.  Individuals with lower access levels might automatically have 
only their access reduced to certain aggregate quantities associated with individual entities.  In 
addition to removing identifiers such as name, social security number, doctor’s name, health plan 
name, all address information, quantities and values associated with certain types of treatments 
might also be aggregated.  Iyengar (2002) provides disclosure-risk-reduction procedures that 
reduce identifying information in an optimal manner while still preserving specific analytic 
properties of the files.  
    Abowd and Woodcock (2002, 2004) have built large files of business entities that are 
combined with persons for the purpose of studying employment and labor dynamics.  To allow 
use of the files by other economists, they used a combination of record linkage and micro-data 
confidentiality procedures to identify at risk records and mask data associated with them.  Other 
economists can use the semi-confidential files to develop models and software that are used on 
the original confidential data.  The results of the analyses such as tables and regression 
coefficients on the confidential data are given an additional review before publication.  Abowd 
and Vilhuber (2005) have observed that the effect of very small amounts of error in identifiers 
can have small effects of some estimates and relatively large effects on other estimates.  For 
instance, in a file of a billion (109) records representing quarterly employment in the State of 
California for twenty years, the number of erroneous social security numbers (SSNs) is 
approximately 1-2% per quarter.  If the SSNs are not corrected using record linkage methods, 
then there would be approximately two breaks in every time-series associated with an individual.  



The breaks in the time-series can drastically affect the estimates of job creation, job loss, and 
employment rates that are based on the files. 
    The outline of this paper is as follows.  The second section gives more background on the types 
of record linkage that are currently being applied.  The third section provides details of the record 
linkage model that was introduced by Newcombe (1959, 1962) and given a formal mathematical 
foundation by Fellegi and Sunter (1969).  The basic ideas are based on statistical concepts such as 
odds ratios, hypothesis testing, and relative frequency.  Because much of the data is based on 
textual information such as names and addresses, most of the advances in record linkage methods 
have been in the computer science literature.  In particular, methods of string comparison for 
accounting for typographical error (Winkler 1990a, Cohen et al. 2003a,b), methods of parsing 
names and addresses into components that correspond and can be more readily compared (e.g., 
Winkler 1995, Borkar et al. 2001, Christen et al. 2002, Churches et al. 2002), and automated 
methods of obtained optimal record linkage without training data (Winkler 1989a, 1993b) and 
with training data (Bilenko et al. 2003).  The fourth section covers a number of methods of 
research for improving matching efficacy.  Many of the ideas are being applied in particular 
settings.  The combination of methods is likely to yield significant improvements in matching 
business lists.  Business lists are typically more difficult to match than other types of lists such as 
person lists or agriculture lists because of the variants of names and the variants of addresses 
(Winkler 1995).  The fifth section is concluding remarks. 
 
2.  Background 
 
   Record linkage of files (Fellegi and Sunter 1969) is used to identify duplicates when unique 
identifiers are unavailable. It relies primarily on matching of names, addresses, and other fields 
that are typically not unique identifiers of entities.  Matching businesses using business names 
and other information can be particularly difficult (Winkler 1995).   Record linkage is also called 
object identification (Tejada et al. 2001, 2002), datacleaning (Do and Rahm 2000), approximate 
matching or approximate joins (Gravanao et al. 2001, Guha et al.2004), fuzzy matching 
(Ananthakrisha et al. 2002), and entity resolution (Benjelloun et al. 2005).   
    Rahm and Do (2000) provided an overview of datacleaning and some resesearch problems.  
Tejada et al. (2001, 2002) showed how to define linkage rules in a database environment.  
Hernandez and Stolfo (1995) gave merge/purge methods for matching in a database situation.  
Sarawagi and Bhamidipaty (2002) and Winkler (2002) demonstrated how machine-learning 
methods could be applied in record linkage situations where training data (possibly small 
amounts) were available.  Ananthakrishna et al. (2002) and Jin et al. (2002, 2003) provided 
methods for linkage in very large files in the database environment.  Cohen and Richman (2002) 
showed how to cluster and match entity names using methods that are scalable and adaptive.  
Cohen et al. (2003a,b) provide new methods of adaptive string comparators based on hidden 
Markov models that improve on the non-adaptive string comparators in a number of situations.  
Bilenko and Mooney (2003) provide adaptive, Hidden Markov methods that both standardize and 
parse names and addresses while comparing and matching components of them.  Borkar et al. 
(2001), Christen et al. (2002), and Churches et al. (2002) use Hidden Markov models for adaptive 
name and address standardization.  Wei (2004) provides new Markov edit algorithms that should 
improve over the algorithms that apply basic Hidden Markov models for string comparison.  
Lafferty et al. (2001), McCallum and Wellner (2003), and Culotta and Mcallum (2005) used 
conditional random fields for representing an exceptionally large number of linkage relationships 
in which the likelihoods are optimized via Markov Chain Monte Carlo (MCMC) and graph 
partitioning methods.  Ishikawa (2003) provides on a more general characterization of Markov 
random fields, graph partitioning, and optimization of likelihoods that may yield faster 
computational algorithms.  Chaudhuri et al. (2005) provide a theoretic characterization of 



matching in terms of generalized distances and certain aggregates.  Benjelloun et al. (2005) 
provide a characterization of how pairs are brought together during a matching process. 
  In a substantial number of situations, the files are too big to consider every pair in the cross 
product space of all pairs from two files.  Newcombe (1962, 1988) showed how to reduce the 
number of pairs considered by only considering pairs that agreed on a characteristic such as 
surname or date-of-birth.  Such reduction in the number of pairs is called blocking.  Hernandez 
and Stolfo (1995) also showed how to use multiple passes on a database to bring together pairs.  
Each pass corresponds to a different sort ordering of the files and pairs are only considered in a 
sliding window of fixed size.  After the pairs are brought together more advanced, compute-
intensive methods are used for comparing them.  McCallum et al. (2000) showed that the first 
step should be a clustering step that is performed with an easily computable, fast method (referred 
to as canopies) and the second step can use more expensive computational methods.  Chaudhuri 
et al (2003) showed how to create index structures that allow for certain types of typographical 
error in matching within a database.  In their application, their methods reduced computation by a 
factor of three in comparison with naïve methods that compare every pair of records in two files.  
Baxter et al. (2003) used a more easily applied method based on q-grams (described later).  Still 
more advanced methods rely of embedding the files and associated string comparators for 
approximate string comparison in versions of d-dimensional Euclidean space and using 
sophisticated R-tree bi-comparison searches (Jin et al. 2003).  With the possibility of significant 
computation associated with the embedding algorithms, the methods are intended to reduce 
computation associated with comparing pairs from O(N2) to O(N) or O(NlogN) where N is the 
size of the file being searched.  Yancey and Winkler (2004) developed BigMatch technology for 
matching moderate size lists of 100 million records against large administrative files having 
upwards of 4 billion records.  The methods are faster than the other methods because they rely on 
models of typographical error corresponding to actual names and addresses that are not always 
explicitly used in some of the other new methods.   
   We illustrate some of the issues of record linkage with a straightforward example.  The 
following three pairs represent three individuals.  In the first two cases, a human being could 
generally determine that the pairs are the same.  In both situations, the individuals have 
reasonably similar names, addresses, and ages.  We would like software that automates the 
determination of match status.  In the third situation, we may know that the first record of the pair 
was a medical student at the university twenty years ago.  The second record is from a current list 
of physicians in Detroit who are known to have attended the University of Michigan.  It is 
associated with a doctor in a different city who is known to have attended medical school at the  
 
 
Table 1. Elementary Examples of Matching Pairs  
  Of Records (Dependent on Context) 
___________________________________________________ 

Name              Address                Age 
___________________________________________________ 
John A Smith         16 Main Street             16 
J H Smith            16 Main St                 17 
 
Javier Martinez      49 E Applecross Road       33 
Haveir Marteenez     49 Aplecross Raod          36 
 
Gillian Jones        645 Reading Aev            24 
Jilliam Brown    123 Norcross Blvd       43_  
  



university.  With good automatic methods, we could determine that the first two pairs 
represent the same person.  With a combination of automatic methods and human 
understanding, we might determine the third pair is the same person.   
   The following example describes a situation of survey frame deficiencies that might occur in a 
list of small businesses or of farms.  The two components of a survey frame are the list of entities 
to be surveyed and the quantitative and other data associated with the list that may be used for 
sampling.  The list may consist of names and addresses with additional information such as 
contact person and source of the name and address.  It is quite possible that there is 
undercoverage and duplication in the list.  For instance, if the list of businesses consists of entities 
selling petroleum products, then there may be turnover of 20% per year in the names and 
addresses.  In some situations, a small company such as a gasoline station (retailer) may have 
gone out of business.  In many other situations, the company may have changed its address to that 
of its accountant or changed from a location address to an owner address.  The owner and 
accountant addresses can change from year to year.  In a set of situations, the name and address 
associated with the entity may have changed.  In the situation of a company going out of 
business, a source of entities doing the same type of business such as a gasoline station is needed.  
If the survey frame is not updated with new entities, then it is possible that the list of companies 
miss upwards of 30-40% of the universe of gasoline stations if the turnover rate is 20% per year.  
If a survey is intended to collect total sales of different products and uses the list that is missing a 
sizeable portion of the universe, then it will yield survey estimates that are biased much lower 
than the truth. 
    A second set of situations is illustrated in Table 2.  The first name refers to the business name 
and its physical location.  The second is the name of the owner of the business with his home 
address.  The third is the address of the accountant who does the books for the company.   The 
name ‘J A S, Inc’ is an abbreviation of the actual name of the business ‘John A Smith, Inc’ that 
owns the gasoline station.  It is possible that different lists associated with the set of businesses 
may have entries corresponding to anyone of the listed forms of the entity that is the gasoline 
station.  In situations where different source lists are used in updating the survey frame that all 
three addresses may be on the frame.  In some situations, all three forms of the address may be 
surveyed.  Some duplication may be corrected when individuals return the survey form as being a  
 
 
 Table 2     Examples of Names and Addresses  
                   Referring to the Same Business Entity  
_______________________________________________ 
Correspondence                           Description 
   Address_______________________________________  
Main Street Philips Service        Physical location of 
1623 Main Street                         business 
Anytown, OH 
 
John A Smith                              Owner of small 
761 Maple Drive                         business, lives in 
SuburbTown1, OH                      suburb on Anytown, OH 
 
J A S, Inc                                      Incorporated name of   
c/o Robert Jones, CPA                 business, accountant does 
1434 Lee Highway, Suite 16        business’ books and  
SuburbTown2, OH                       government forms______ 
 
 



duplicate.  In the case of a sample survey, very little of the duplication can be corrected through 
the survey operation (e.g., Winkler 1995).  An organization such as a federal government may 
have the resources to maintain a complete survey frame or population file with name and 
addresses variants with appropriate dates associate with the variants.  In that type of situation, the 
large population file might be used in correcting smaller lists.   
   The second component of the survey frame is the quantitative and other information associated 
with the lists of entities.  For instance, total sales might be the quantitative field associated with a 
list of gasoline stations.  If a sizeable portion (say 5%) of the quantities is in error by a factor of 
ten (either low or high), then it would be very difficult to use the list and quantities as a sampling 
frame.  The total sales in the frame would be used in creating strata and associated sampling 
weights.  If the total sales returned on the survey form were correct, then any estimates could be 
severely in error.  We can derive two fundamental points from the example.  If all of the 
quantitative data associated with a survey frame is correct and the survey frame has substantial 
undercoverage and overcoverage, then the errors in any estimates due to frame errors can exceed 
all other sources combined.  If the frame is correct and 5% of the quantitative items are in error 
(possibly substantially), then the errors in estimates due to the deviation of the quantitative fields 
in the survey frame may exceed all other sources of error such as sampling.  Winkler (2003a) 
presents an overview of edit/imputation methods that might be used in correcting discrete data 
from demographic surveys.  Bruni (2004, 2005) provides methods for dividing continuous data 
into discrete ranges into which discrete-data methods can be applied.  We can use relatively clean 
quantitative data associated with a group of entities to clean-up the duplication and coverage in 
the basic list. We note that the issues of undercoverage, overcoverage, and errors in the 
information associated with a list can occur with an administrative list or a group of files that 
interact or co-operate in a manner to allow analyses. 
 
3.  Record linkage 
 
   In the section, we provide background on the Fellegi-Sunter model of record linkage, name and 
address standardization, string comparators for approximate string comparison, methods of 
parameter estimation, and search and retrieval mechanisms. 
 
3.1  The Fellegi-Sunter model of record linkage 
 
      Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had been 
introduced by Newcombe (1959, 1962, see also 1988).  They provided many ways of estimating 
key parameters.  The methods have been rediscovered in the computer science literature (Cooper 
and Maron 1978) but without proofs of optimality.  To begin, notation is needed.  Two files A 
and B are matched.  The idea is to classify pairs in a product space A × B from two files A and B 
into M, the set of true matches, and U, the set of true nonmatches.  Fellegi and Sunter, making 
rigorous concepts introduced by Newcombe (1959), considered ratios of probabilities of the form: 
 
      R =  P( γ ∈ Γ | M) / P( γ ∈ Γ | U)                                                                                         (1)   
 
where γ is an arbitrary agreement pattern in a comparison space Γ.  For instance, Γ might consist 
of eight patterns representing simple agreement or not on the largest name component, street 
name, and street number.  Alternatively, each γ ∈ Γ might additionally account for the relative 
frequency with which specific values of name components such as "Smith", "Zabrinsky", "AAA", 
and "Capitol" occur.  The ratio R or any monotonely increasing function of it such as the natural 
log is referred to as a matching weight (or score). 
 



Figure 1.  Plot of Weight versus Log Frequency for Nonmatches and Matches 

 
    
 
The decision rule is given by: 
 
   If R  > Tμ, then designate pair as a match. 
 



   If Tλ ≤ R ≤ Tμ, then designate pair as a possible match 
        and hold for clerical review.                                                                                                 (2) 
 
   If  R < Tλ, then designate pair as a nonmatch. 
 
 
The cutoff thresholds Tμ and Tλ are determined by a priori error bounds on false matches and 
false nonmatches.  Rule (2) agrees with intuition.  If γ∈ Γ consists primarily of agreements, then 
it is intuitive that γ∈ Γ would be more likely to occur among matches than nonmatches and ratio 
(1) would be large.  On the other hand, if γ∈ Γ consists primarily of disagreements, then ratio (1) 
would be small.  Rule (2) partitions the set γ ∈ Γ into three disjoint subregions.  The region Tλ ≤ R 
≤ Tμ is referred to as the no-decision region or clerical review region.  In some situations, 
resources are available to review pairs clerically.  Figure 1 provides an illustration of the curves 
of log frequency versus log weight for matches and nonmatches, respectively.  The two vertical 
lines represent the lower and upper cutoffs thresholds Tλ and Tμ, respectively. 
 
3.2  Name and address standardization 
 
   Standardization consists of replacing various spelling of words with a single spelling.  For 
instance, different spellings and abbreviations of ‘Incorporated’ might be replaced with the single 
standardized spelling ‘Inc.’  The standardization component of software might separate a general 
string such as a complete name or address into words (i.e., sets of characters that are separated by 
spaces and other delimiters).  Each word is then compared lookup tables to get standard spelling.  
The first half of the following table shows various commonly occurring words that are replaced 
by standardized spellings (given in capital letters).  After standardization, the name string is 
parsed into components (second half of the following table) that can be compared.  The examples 
are produced by general name standardization software (Winkler 1993a) for the US Census of 
Agriculture matching system.   Because the software does well with business lists and person 
matching, it has been used for other matching applications at the Census Bureau and other 
agencies.  At present, it is not clear that there is any commercial software for name 
standardization.  Promising new methods based on Hidden Markov models (Borkar et al. 2001, 
Churches et al. 2002, Christen et al. 2002) may improve over the rule-based name standardization 
in Winkler (1993a).  Although the methods clearly improve over more conventional address 
standardization methods for difficult situations such as Asian or Indian addresses, they did not 
perform as well as more conventional methods of name standardization. 
 
 
Table 3. Examples of Name Parsing 
                           
       Standardized____         
 
 1.  DR John J Smith MD    
 2.  Smith DRY FRM 
 3.  Smith & Son ENTP__      
 
 
                 Parsed_________________ ____   
    PRE FIRST MID LAST  POST1 POST2 BUS1 BUS2  
 1. DR  John    J Smith  MD 
 2.               Smith             DRY  FRM 
 3.               Smith       Son   ENTP_____ 



 
 
 
   The following table illustrates address standardization with a proprietary package developed by 
the Geography Division at the U. S. Census Bureau.  In testing in 1994, the software significantly 
outperformed the best U. S. commercial packages in terms of standardization rates while 
producing comparably accurate standardizations.  The first half of the table shows a few 
addresses that have been standardized.  In standardization, commonly occurring words such as 
‘Street’ are replaced by an appropriate abbreviation such as ‘St’ that can be considered a standard 
spelling that may account for some spelling errors.  The second half of the table represents 
components of addresses produced by the parsing.  The general software produces approximately 
fifty components.  The general name and address standardization software that we make available 
with the matching software only outputs the most important components of the addresses. 
 
 
Table 4.  Examples of Address Parsing 
             
       Standardized_______  
 _________________________ 
 1.  16 W Main ST APT 16   
 2.  RR 2 BX 215 
 3.  Fuller BLDG SUITE 405 
 4.  14588 HWY 16 W_______ 
                                                              
                                    
                             Parsed________________      _____ 
     Pre2 Hsnm  Stnm   RR Box  Post1 Post2 Unit1 Unit2  Bldg__  
 
 1.  W    16    Main             ST          16                 
 2.                     2  215 
 3.                                              405    Fuller 
 4.       14588 HWY 16                 W______________________  
 
 
3.3  String comparators 
 
   In many matching situations, it is not possible to compare two strings exactly (character-by-
character) because of typographical error.  Dealing with typographical error via approximate 
string comparison has been a major research project in computer science (see e.g., Hall and 
Dowling 1980, Navarro 2001).  In record linkage, one needs to have a function that represents 
approximate agreement, with agreement being represented by 1 and degrees of partial agreement 
being represented by numbers between 0 and 1.  One also needs to adjust the likelihood ratios (3) 
according to the partial agreement values.  Having such methods is crucial to matching.  For 
instance, in a major census application for measuring undercount, more than 25% of matches 
would not have been found via exact character-by-character matching.   Three geographic regions 
are considered in Table 5.  The function Φ represents exact agreement when it takes value one 
and represents partial agreement when it takes values less than one.  In the St Louis region, for 
instance, 25% of first names and 15% of last names did not agree character-by-character among 
pairs that are matches. 
   Jaro (1989) introduced a string comparator that accounts for insertions, deletions, and 
transpositions.  The basic Jaro algorithm has three components: (1) compute the string lengths, 
(2) find the number of common characters in the two strings, and (3) find the number of 



transpositions.  The definition of common is that the agreeing character must be within half the 
length of the shorter string.  The definition of transposition is that the character from one string is 
out of order with the corresponding common character from the other string.  The string 
comparator value (rescaled for consistency with the practice in computer science) is: 
 
  Φj(s1, s2) = 1/3( NC/lens1 + NC/lens2 + 0.5Nt/NC),  
 
where s1 and s2 are the strings with lengths lens1 and lens2, respectively, NC is the number of 
common characters between strings s1 and s2 where the distance for common is half of the 
minimum length of s1 and s2, and Nt is the number of transpositions.  The number of 
transpositions Nt is computed somewhat differently from the obvious manner. 
  
 
   Table 5.  Proportional Agreement   
           By String Comparator Values 
           Among Matches 
           Key Fields by Geography 
                                                    
     __________StL      Col     Wash 
     First   
      Φ = 1.0      0.75     0.82     0.75 
      Φ ≥ 0.6      0.93     0.94     0.93 
 
     Last  
      Φ = 1.0      0.85     0.88     0.86 
      Φ ≥ 0.6      0.95     0.96     0.96     
 
 
    Using truth data sets, Winkler (1990a) introduced methods for modeling how the different 
values of the string comparator affect the likelihood (1) in the Fellegi-Sunter decision rule.  
Winkler (1990a) also showed how a variant of the Jaro string comparator Φ dramatically 
improves matching efficacy in comparison to situations when string comparators are not used.  
The variant employs some ideas of Pollock and Zamora (1984) in a large study for the Chemical 
Abstracts Service.  They provided empirical evidence that quantified how the probability of 
keypunch errors increased as the character position in a string moved from the left to the right.   
   More recent work by Sarawagi and Bhamidipaty (2002) and Cohen et al. (2003a,b) provides 
empirical evidence that the new string comparators can perform favorably in comparison to 
Bigrams and Edit Distance.  Edit Distance uses dynamic programming to determine the minimum 
number of insertions, deletions, and substitutions to get from one string to another.  The Bigram 
metric counts the number of consecutive pairs of characters that agree between two strings.  A 
generalization of bigrams is q-grams where q can be greater than 3.   The recent hybrid string 
comparator of Cohen et al. (2003b) uses variants of the TFIDF metrics from the Information 
Retrieval literature.  The basic TFIDF makes uses of the frequency of terms in the entire 
collections of records and the inverse frequency of a specific term in a record.  The metric TFIDF 
has some relationship to value-specific or frequency-based matching of Newcombe (1959, 1962).  
Cohen et al. (2003a,b) generalize TFIDF to soft TFIDF with a heuristic that partially accounts for 
certain kinds of typographical error.  Alternate methods of accounting for relative frequency that 
also account for certain kinds of typographical error are due to Fellegi and Sunter (1969), Winkler 
(1989b), and Chaudhuri et al. (2003).  The soft TFIDF metric of Cohen et al. (2003a,b) will likely 
outperform the Jaro-Winkler comparator in some types of lists in terms of distinguishing power 
while being slower to compute.  Yancey (2003, 2005), however, has demonstrated that the newer 



string comparators do not outperform the original Jaro-Winkler string comparator on typical large 
Census applications.  McCallum et al. (2005) apply conditional random fields to the problem of 
modeling string comparator distances. 
    Table 6 compares the values of the Jaro, Winkler, Bigram, and Edit-Distance values for 
selected first names and last names.  Bigram and Edit Distance are normalized to be between 0 
and 1.  All string comparators take value 1 when the strings agree character-by-character.  The 
renormalization is consistent with the approach of Bertolazzi et al. (2003) or Cohen et al. 
(2003a,b). 
 
 
Table 6.  Comparison of String Comparators Using 
         Last Names and First Names 
 ______________________________________________________________  
        Two strings                 String comparator  
                                         Values__________ 
                               Jaro  Winkler Bigram  Edit 
  _______________________________________________________ 
  SHACKLEFORD   SHACKELFORD    0.970  0.982  0.925  0.818 
  DUNNINGHAM    CUNNIGHAM      0.896  0.896  0.917  0.889 
  NICHLESON     NICHULSON      0.926  0.956  0.906  0.889 
  JONES         JOHNSON        0.790  0.832  0.000  0.667 
  MASSEY        MASSIE         0.889  0.933  0.845  0.667 
  ABROMS        ABRAMS         0.889  0.922  0.906  0.833 
  HARDIN        MARTINEZ       0.000  0.000  0.000  0.143 
  ITMAN         SMITH          0.000  0.000  0.000  0.000 
 
  JERALDINE     GERALDINE      0.926  0.926  0.972  0.889 
  MARHTA        MARTHA         0.944  0.961  0.845  0.667 
  MICHELLE      MICHAEL        0.869  0.921  0.845  0.625 
  JULIES        JULIUS         0.889  0.933  0.906  0.833 
  TANYA         TONYA          0.867  0.880  0.883  0.800 
  DWAYNE        DUANE          0.822  0.840  0.000  0.500 
  SEAN          SUSAN          0.783  0.805  0.800  0.400 
  JON           JOHN           0.917  0.933  0.847  0.750 
  JON           JAN            0.000  0.000  0.000  0.667 
 
 
3.4   Heuristic improvement by forcing 1-1 matching 
 
   In a number of situations, matching can be improved by forcing 1-1 matching.  In 1-1 matching, 
a record in one file can be matched with at most one record in another file.  Some early matching 
systems applied a greedy algorithm in which a record is always associated with the corresponding 
available record having the highest agreement weight.  Subsequent records are only compared 
with available remaining records that have not been assigned.    Jaro (1989) provided a linear sum 
assignment procedure (lsap) to force 1-1 matching because he observed that greedy algorithms 
often made a greater number of erroneous assignments.  In the following (Table 7), the two 
households are assumed to be the same, individuals have substantial identifying information, and 
the ordering is as shown.  An lsap algorithm causes the wife-wife, son-son, and daughter-
daughter assignments correctly because it optimizes the set of assignments globally over the 
household.  Other algorithms such as greedy algorithms can make erroneous assignments such as 
husband-wife, wife-daughter, and daughter-son. 
 
 



Table 7.  Representation of  
               A Household 
  _________________ 
  HouseH1     HouseH2 
 
 husband      
 wife              wife 
 daughter       daughter 
 son                son____ 
 
 
   Table 8 illustrates the assignment procedure using matrix notation.  cij is the (total agreement) 
weight from matching the ith person from the first file with the jth person in the second file.  
Winkler (1994) introduced a modified assignment algorithm that uses 1/500 as much storage as 
the original algorithm and is of equivalent speed.  The modified assignment algorithm does not 
induce a very small proportion of matching error (0.1-0.2%) that is caused by the original 
assignment algorithm.  The modified algorithm is useful because many applications consist of 
situations where a small list is matched against a much larger list.  In the situation where one list 
consists of a set of US Postal ZIP codes containing 50-60,000 entries in each ZIP code, the 
conventional lsap needed 40-1000 Megabytes of memory that was often not available on smaller 
machines.   
 
   
Table 8.  Weights (Matching Scores) Associated  
                With Inidividuals Across Two Households 
______________________________________________ 
    c11    c12  c13                          4 rows, 3 columns 
    c21    c22  c23                                           Take at most one in each 
    c31    c32  c33                           row and column 
    c41   c42  c43  
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
 
3.5    Automatic and semi-automatic parameter and error-rate estimation 
 
  Fellegi and Sunter (1969) introduced methods for estimating optimal parameters (probabilities) 
in the likelihood ratio (1).  They observed that 
 
    P(γ) = P(γ | M) P(M) + P(γ | U) P(U)                                                                          (3) 
 
where γ ∈ Γ is an arbitrary agreement pattern and M and U are two classes of matches and 
nonmatches.  If the agreement pattern γ ∈ Γ is from three fields that satisfy a conditional 
independence assumption, then the system of seven equations and seven unknowns can be used to 
estimate the m-probabilities P(γ | M), the u-probabilities P(γ | U), and the proportion P(M).  The 
conditional independence assumption corresponds exactly to the naïve Bayes assumption in 
machine learning (Winkler 2000, Mitchell 1997).  Winkler (1988) showed how to estimate the 
probabilities using the EM-Algorithm (Dempster et al. 1977).  Although this is a method of 
unsupervised learning (e.g., Mitchell 1997, Winkler 1993b) that will not generally find two 
classes C1 and C2 that correspond to M and U, Winkler (1989a) demonstrated that a properly 
applied EM algorithm provides suitable estimates of optimal parameters in a number of 
situations.  The best situations are when the observed proportion of matches P(γ) are computed 



over suitably chosen sets of pairs that includes the matches, clerical pairs and upper portion of the 
nonmatches given in decision rule (2).  Because the EM algorithm is an unsupervised learning 
method for latent classes, the proportion of matched pairs in the set of pairs to which the EM is 
applied should be above 5%.  Recent extensions of the methods for choosing the pairs above a 
cutoff weight with initial guesses at the parameters are due to Yancey (2002) and Efelkey et al. 
(2002).  The problem is particularly difficult because the optimal m- and u-probabilities can vary 
substantially from one region of the U.S. to another (Winkler (1989a).  In particular, the 
conditional probability P(agreement on first name | M) can differ significantly from an urban 
region to an adjacent suburban region.  A large portion of the variation is due to the different 
typographical error rates in different files. 
   Belin and Rubin (1995) introduced methods of automatic-error rate estimation that used 
information from the basic matching situations of Winkler (1989a).  Their error rate estimates 
were sufficiently accurate with certain types of high quality population files. Scheuren and 
Winkler (1993) could use the estimated error rates in a statistical model that adjusts regression 
analyses for linkage errors.  Lahiri and Larsen (2005) extended the Scheuren-Winkler model with 
a more complete theoretical development of the bias-adjustment procedures.  After attempting to 
apply the Belin-Rubin methods to business files, agriculture files, and certain types of poor 
quality person files, Winkler (1999a) observed, however, that the Belin-Rubin methods only 
worked well in a narrow range of situations where the curves associated with matches M and 
nonmatches U were well-separated and had several other desirable properties.  Using simulation 
with artificial data, Belin and Rubin (1995) had observed a similar lack of applicability in some 
situations.   
   Extensions of the basic parameter estimation (unsupervised learning) have been to situations 
where the different fields used in the EM-algorithm can have dependencies upon one another and 
when various convex constraints force the parameters into subregions of the parameter space 
(Winkler 1993b, 1990b).  The general fitting algorithm of Winkler (1990b) generalizes the 
iterative scaling algorithm of Della Pietra et al. (1997).  Recent unsupervised learning methods of 
Ravikumar and Cohen (2004) improve on the methods of Winkler with certain kinds of files and 
are even competitive with supervised learning methods in some situations.  Wang et al. (2003) 
apply maximum entropy models in contrast to the maximum likelihood models to learn the 
mixtures of distributions.  Although maximum entropy yields the same set of local maxima as 
maximum likelihood, the global maximum from entropy can differ.  Wang et al. (2003) claim that 
the parameters produced by the global entropy procedure can outperform maximum likelihood-
estimated parameters in many situations. 
  Additional extensions are where small amounts of unlabelled data are combined with the 
unlabelled data used in the original algorithms (Winkler 2000, 2002, Larsen and Rubin 2001, 
Elfekey et al. 2002).  The general methods (Winkler 2002) can be used for data mining to 
determine what interaction patterns and variants of string comparators and other metrics affect the 
decision rules.  Winkler (2002) suggested the use of very small amounts of training data that are 
obtained from a sample of pairs representing the clerical review region of equation (3).  This 
small amount of training data is needed because the amount of typographical error in fields varies 
across different pairs of files.  The amount of typographical error cannot be predicted with 
unlabeled data and significantly affects optimal estimates of matching parameters. The variant 
that uses unlabelled data with small amounts of labeled data can yield semi-automatic estimates 
of classification error rates (Winkler 2002).  The general problem of error rate estimation is very 
difficult.  It is known as the regression problem (Vapnik 2000, Hastie et al. 2001).  
   Winkler and Yancey  (2006) provide a method for estimating false match rates that does not 
require training data and is closely related to the semi-supervised training methods of Winkler 
(2000, 2002).  In the application of semi-supervised learning to record linkage (Winkler 2002), a 
small amount (less than 0.5%) of training data from pairs in the clerical review region of decision 
rule (2) is combined with the unlabeled data of the ordinary EM procedure (Winkler 1988, 1993).  



 
 
In the newer procedure, all pairs above a certain point of the matching score (or weight) given by 
equation (1) are designated as a pseudo-true match set of pairs and all pairs below a certain 
matching score are designated as a pseudo-true nonmatch set of pairs.  The unlabelled set of pairs 
and the ‘labeled’ set of pairs are then combined in a manner analogous to Winkler (2002).  The 



plots in Figure 2 illustrate the situation with three test sets for which true match status is known.  
The cumulative bottom 10% tails of the estimated matches and the cumulative upper 10% tails 
estimated nonmatches are plotted against the truth that is represented by the 45-degree line.  The 
correspondence between the estimated curves and the truth is better than Winkler (2002) and far 
better than Belin and Rubin (1995).  As Winkler and Yancey (2006) note, the false-match rate 
estimation procedure is likely only to work effectively in situations where name, address, and 
other information in two files can effectively be used in bringing together pairs and designating 
matches accurately.  In a number of business-list situations, many (possibly 40-60%) of truly 
matching pairs have both names and address that differ significantly.  In the business-list 
situations, it is unlikely that the new error-rate estimation procedure will provide suitably accurate 
estimates. 
  
3.6  Advanced search and retrieval mechanisms 
 
   In this section, we consider the situation where we must match a moderate size file A of 100 
million records with a large file having upwards of 4 billion records.  An example of large files 
might be a Social Security Administrative Numident file having 600 million records, a U.S. 
Decennial Census file having 300 million records, or a California quarterly employment file for 
20 years that contains 1 billion records.  If the California employment data has 2-3% percent 
typographical error in the Social Security Number (SSN) in each quarter, then it is possible that 
most individuals have two breaks in their 20-year time series.  The main ways of correcting the 
SSNs are by using a combination of name, date-of-birth, and address information.  The primary 
time-independent information is name and date-of-birth because address varies considerably over 
time.  Name variations such as maiden names are sometimes available in the main files or in 
auxiliary files.  Name, date-of-birth, and address can also contain significant typographical error.  
If first name has 10% typographical error rate and last name, day-of-birth, month-of-birth, 
andyear-of-birth have 5% typographical error rates, then exact character-by-character matching 
across quarters could miss 25% of matches. 
   With classical matching, 10 blocking passes might be performed on the pair of files.  For each 
matching pass, the two files are sorted according to the blocking criteria and then passed through 
the matching software.  To complete the matching, 20 passes would need to be made on each file.  
BigMatch technology alleviates the limitations of the classical matching situation (Yancey and 
Winkler 2004, Yancey 2004).  Only the smaller B file and appropriate indexes are held in 
memory.  In addition to a copy of the B-file, two sets of indexes are created for each set of 
blocking criteria.  The first index corresponds to the quick sort method of Bentley and Sedgewick 
(1996).  In testing, we found the Bentley and Sedgewick sort to be slightly faster than three other 
quick sort algorithms.  The second index gives a very fast method of retrieving and comparing the 
records information from the B-file with individual records from the A-file.  A B-file of 33 
million records with associated sets of indexes can reside in 4 gigabytes of memory.  Only one 
pass is made on the B-file and on the A-file.  The pass on the A-file is input/output pass only.  
The possibly very large A-file is never sorted.   Several output streams are created for each set (or 
group) of blocking criteria.  Each individual B-record is compared to all of the appropriate A-
records according to the set of blocking criteria.  No pair is compared more than once.  If the B-
file contains 1 billion records, then the BigMatch technology may need only 4 terabytes of disk 
storage in contrast with 16 or more terabytes using conventional matching.  Although the 
BigMatch software effectively makes 10-blocking passes simultaneously, it is nearly as fast as a 
classical matching program that only makes a single pass against a pair of files.  It processes 
approximately 100,000 pairs per second.    It saves the cpu-time of multiple sorts of the large file 
that may contain a billion or more records.  A single sort of a billion-record file on a fast machine 
may take 12+ hours.  The biggest savings is often from the reduction in the amount of skilled 



intervention by programmers who must track a large number of files, make multiple runs, and put 
together information across multiple runs. 
    There are several important issues with matching very large files.  The first is whether a 
procedure that brings together all pairs is superior to a procedure in BigMatch that only brings 
together a much smaller subset of pairs corresponding to a set of blocking criteria.  Guha et al. 
(2004) and Koudas et al. (2004) have procedures that provably bring together all pairs in a pair of 
files.  Both Benjelloun et al. (2005) and Chaudhuri et al. (2003) have alternative procedures for 
bringing together pairs in a relatively efficient manner.  Winkler (2004) examined the issue with 
2000 Decennial Census containing 300 million records that also have true matching status for a 
large subset of regions containing approximately 600,000 matched pairs.  Winkler considered the 
1017 pairs (300 million × 300 million) and demonstrates that 99.5% of the true matches can be 
located in a subset of 1012 pairs determined by 11 blocking criteria.  Some of the most difficult 
missed matches were children in a household headed by a single or separated mother (Table 9). 
The information associated with the individuals was represented in significantly different form: 
the children were listed under two different last names, date-of-birth was missing in one 
representation of the household, and the street address was missing in the other representation of 
the household.  It is interesting to observe the high rate of typographical error that may, at least 
partially, be due to scanning error.  The matching children have no 3-grams in common.  Two 
records have a 3-gram in common if any three consecutive characters from one record can be 
located in another record.  It is unlikely that these most difficult-to-match record pairs could be 
identified through any computerized procedure that uses only the information in the Census files.  
Duplicate pairs similar to those represented in Table 9 are typically found during a field follow-
up.  
 
 
Table 9.  Example of missed matches (artificial data) 
                          _______________________________________ 
             Household 1           Household 2______ 
             First     Last        First       Last_  
HeadH        Julia     Smoth       Julia       Smith 
Child1       Jerome    Jones       Gerone      Smlth 
Child2       Shyline   Jones       Shayleene   Smith 
Child3       Chrstal   Jcnes       Magret      Smith 
 
 
4.  Current research 
 
   This section considers thirteen areas of current research.  The first area consists of methods for 
automatically or semi-automatically estimating error rates.  The second area consists of methods 
for using information from additional files to improve the matching in two files A and B.  The 
third area covers mechanisms for bringing together pairs in very large files in the presence of 
moderate or significant typographical error in individual fields.  The fourth area is methods for 
constructing functions y = f(x) where x in A and y in B and associated comparison metrics so that 
that additional information can be used in improving matching.  The fifth area provides methods 
of creating large linkage graphs of information from multiple files in which the linkage 
information and the information in fields are compared.  In the sixth area, we consider methods of 
analysis of merged data that partially compensate for linkage error.  The seventh area considers 
the effects of relative frequency of weakly identifying strings, methods for estimating 
typographical error rates, and situations where lists have low overlap rates.  In the eighth area, we 
consider where additional fields, lack of independence, and typographical error rates can affect 
matching.  The ninth area covers existing classification algorithms that are used for record 



linkage.  The tenth area provides an overview of methods of string comparison and closely related 
extensions for longer fields.  In the eleventh area, we consider methods of standardization and 
data extraction.  The twelfth area provides methods for maintaining population registers and other 
large files.  In the thirteenth area, we consider how multiple addresses (and other fields tracked 
over time) can significantly improve matching. 
 
4.1  Automatic estimation of error rates 
 
   The first step in estimating the quality of linked files A and B is the estimation of rates of false 
matches and false nonmatches.  Winkler (1989a) observed that the optimal parameters P( Af1 | M) 
where Af1 is agreement or disagreement of field f1 can vary significantly from one pair of files to 
another and can greatly affect the shape and separation of the aggregate weighting curves in 
Figure 1 (section 3.1).  This is true even if the two pairs of files have the same matching fields 
and represent adjacent urban and suburban regions.  The probability P( Af1 | M) depends on 
typographical error rates that are often difficult to determine without training data.  In a few 
easier situations, Fellegi and Sunter (1969) and Winkler (1989b) have provided some intuition on 
how to get crude estimates of typographical error rates. 
   In obtaining estimates of error rates, Belin and Rubin (1995) assumed that the curves associated 
with matches and nonmatches were each unimodal and quite well separated.  Unlike some high-
quality population files in which the curves separate, Winkler (1999a) observed that the curves 
associated with pairs of business and agriculture lists overlap significantly and are not unimodal.  
If there is name or address standardization failure, the curves associated with matches can be 
multi-modal.  This situation of multi-modality can occur if one of the source lists is created from 
several different lists.  It can even occur if different keypunchers have varying skills or learn to 
override some of the edits in the keypunch software.  The basic research problem is 
characterizing under which conditions errors can be estimated automatically.  Alternatively, 
Larsen and Rubin (2001) and Winkler (2002) haves shown that error rates can be estimated if 
combinations of labeled training data and unlabelled data are used in the estimation.  The labeled 
training data can be a very small proportion of the pairs for which the true match status is known.  
Typically, the sampled set of labeled pairs is concentrated in the clerical review region given by 
classification rule (2).  In many situations it may be infeasible to obtain a subset of the pairs for 
training data. 
   If there are no training data, then Winkler and Yancey (2006) have demonstrated that accurate 
estimates of error rates can be achieved in a narrow range of situations where non-1-1-matching 
methods are used.  The situations primarily include those where two curves are reasonably 
separated.  One curve is based on a reasonably pure subset of matches that separates from a curve 
that is based on the the remaining pairs.  By labeling the pairs above a given matching score as 
matches and pairs below a given score as nonmatches, pseudo-training data can be obtained that 
can be combined with all of the remaining data (which is unlabelled) in a procedure that mimics 
semi-supervised learning.  One reason that this procedure does not work in general is that it is not 
always possible to easily separate a large subset of pairs that almost exclusively contains matches.  
This non-separate-curve situation can occur with many files of individuals and typically occurs 
with files of businesses or agricultural entities.  It occurs because of different ways of 
representing the names and addresses.  A research problem is whether it is possible to having a 
scoring mechanism for matching that yields (somewhat) accurate estimates of false match rates?   
   Larsen (2005) has developed theory for estimating error rates in 1-1 matching situations.  
Accuracy of 1-1 matching is often better than in non-1-1-matching situations (Winkler 1994).  
Matching with 1-1 methods often will quickly obtain many matches with high matching scores 
and get other residual matches with lower scores automatically.  It is known to improve in 
comparison with non-1-1 matching.  If the 1-1 matching is forced via certain types of linear sum 



assignment procedures that are applied to the weights of pairs, then the restraint situation is very 
complicated.  The matching weights need to vary according to a very complicated restraint 
structure rather than the simplistic restraint structure of non-1-1 matching.  In an appropriately 
parameterized 1-1 matching situation (Larsen 2005), the weight of each pair depends on the 
weights of a large number of other pairs.  Larsen proposes a non-trivial Metropolis-Hastings 
procedure to solve the problem optimally.  Empirical testing based on the full theory is in 
progress.  
   In some of the database literature (e.g., Jin et al. 2003; Koudas et al. 2004), the assumption 
appears to be that the main goal of matching two files A and B is to obtain the set of pairs that are 
within epsilon using a nearest-neighbor metric or above a certain matching score cutoff.  
Although it is one of the fundamental issues in matching pairs of large files, it ignores how many 
true matches are within the set of pairs above a certain matching score and how many true 
matches are missed by the procedures for bringing together pairs.  The discussion in this section 
deals with estimating false match rates within a set of pairs (or somewhat analogously precision) 
that is most easily accomplished with suitable training data in which the true matching status of a 
pair has been labeled.  Precision is defined as )ˆ|( MMP where M̂ are the designated matches.  

The false match rate is ).ˆ|(1 MMP−   Larsen (2005) and Winkler (2005) provide methods for 
parameter estimation are often intended for situations without training data (unsupervised 
learning).  Methods for estimating the number of missed methods are covered in section 4.4.  
Figure 2 (section 3.5) illustrates the situation where the left 10% tail of the estimated curve of 
matches is compared with the truth (45 degree line) and the 10% right tail of the estimated curve 
of nonmatches is compared with the truth for three data sets.  The close agreement is considerably 
better than Winkler (2002) that needs a small amount of training data and Belin and Rubin (1995) 
that holds in a narrower range of situations than Winkler (2002, 2005).  The general research 
problem of estimating these error rates is still open because the current methods only apply in a 
narrow range of situations.   
   Estimating the proportion of false nonmatches (or somewhat analogously the complement of 
recall) is still an open problem.  Recall is given by ).|ˆ( MMP   Even in the situations where 
there is representative training data, the problem may be difficult.  The difficulty is due to the 
facts that businesses on two lists can have completely different names and addresses and that 
existing distributional models often assume that distributions of nonmatches are unimodal and 
have tails that drop off quickly.  The proportion of false nonmatches due to pairs being missed by 
a set of blocking criteria is still an open problem (Winkler 2004). 
 
4.2  Auxiliary information for matching files A and B 
 
   A bridging file is a file that can be used in improving the linkages between two other files. 
Typically, a bridging file might be an administrative file that is maintained by a governmental 
unit.  We begin by describing two basic situations where individuals might wish to analyze data 
from two files. The following tables illustrate the situation. In the first case (Table 10), 
economists might wish to analyze the energy inputs and outputs of a set of companies by building 
an econometric model. Two different government agencies have the files. The first file has the 
energy inputs for companies that use the most fuels such as petroleum, natural gas, or coal as feed 
stocks. The second file has the goods that are produced by the companies. The records associated 
with the companies must be linked primarily using fields such as name, address, and telephone. In 
the second situation (Table 11), health professionals wish to create a model that connects the 
benefits, hospital costs, doctor costs, incomes, and other variables associated with individuals. A 
goal might be to determine whether certain government policies and support payments are 
helpful.  If the policies are helpful, then the professionals wish to quantify how helpful the 



policies are. We assume that the linkages are done in a secure location, that the identifying 
information is only used for the linkages, and that the linked files have the personal identifiers 
removed (if necessary) prior to use in the analyses. 
 
 
Table 10.  Linking Inputs and Outputs from Companies 
________________________________ 
Economics- Companies 
________________________________ 
   Agency A            Agency B     
 
  fuel         ------>  outputs 
  feedstocks   ------>  produced 
________________________________ 
 
 
Table 11.  Linking Health-Related Entities 
____________________________________ 
Health- Individuals 
____________________________________ 
   Receiving             Agencies 
    Social Benefits       B1, B2, B3  
 
   Incomes               Agency I 
 
   Use of Health         Agencies 
    Services              H1, H2_____ 
 
 
   A basic representation in the following Table 12 is where name, address, and other information 
are common across the files. The A-variables from the first A file and the B-variables from the 
second (B) file are what are primarily needed for the analyses. We assume that a record r0 in the 
A might be linked to between 3 and 20 records in the B-file using the common identifying 
information. At this point, there is at most one correct linkage and between 2 and 19 false 
linkages. A bridging file C (Winkler 1999b) might be a large administrative file that is maintained 
by a government agency that has the resources and skills to assure that the file is reasonably free 
of duplicates and has current, accurate information in most fields.  If the C file has one or two of 
the A-variables designated by A1 and A2, the record r0 might only be linked to between 1 and 8 or 
the records in the C file. If the C file has one or two B-variables designated by B1 and B2, then we 
might further reduce the number of records in the B-file to which record r0 can be linked. The 
reduction might be to one or zero records in the B file to which record r0 can be linked. 
 
 
Table 12.  Basic Match Situation 
______________________________________________ 
File A                     Common                      File B 
______________________________________________ 
A11 , ... A1n  Name1, Addr1   B11,...B1m 
A21 , ... A2n  Name2, Addr2   B21,...B2m 
  .                             . 
  .                             . 
  .                             . 
AN1 , ... ANn  NameN, AddrN   BN1,...BNm 
_______________________________________________ 



 
 
   Each of the linkages and reductions in the number of B-file records that r0 can be linked with 
depends on both the extra A-variables and the extra B-variables that are in file C.  If there are 
moderately high error rates in the A-variables or B-variables, then we may erroneously assume 
that record r0 may not be linked from file A to file B.  Having extra resources to assure that the A-
variables and B-variables in the large administrative file C have very minimal error rates is 
crucial to successfully using the C file as a bridging file. Each error in an A- or B-variable in the 
large administrative may cause a match to be missed. 
   The research problems involve if it is possible to characterize the situations when a bridging file 
(or some type of auxiliary information) can be used for improving the basic linkage of two files.  
It is clear that a large population register C that covers the same populations as files A and B and 
that has many additional variables C1, …, Ck might be of use.  If a government agency has the 
resources to build certain administrative sources that represent the merger of many files, 
represents a superpopulation of the populations associated with many other files, has extra 
variables, and has been sufficiently cleaned, then the file from the administrative sources can be 
used for improving the matching of other sets of files.  It can also be used in estimating the effect 
of matching error on analyses (considered in section 4.6 below). 
 
4.3.  Approximate string comparator search mechanisms 
 
   In many situations, we need to bring together information that does not agree exactly or 
character-by-character.  In the database literature, Hjaltson and Samet (2003) have shown how 
records associated with general metrics for quantitative data such as string comparator distance 
can be imbedded in d-dimensional Euclidean space Rd .  If the file size is N, then the intent of the 
embedding to reduce search times from O(N2) to O(N) or O(NlogN) in some situations such as 
those associated with photo archiving.  Several fields of numeric data are used to describe 
characteristics of the photos.  Jin et al. (2003) have shown how to take the basic string comparator 
metrics Φ associated with comparing strings having typographical error and use a corresponding 
embedding of each field into Rd where the dimensionality is chosen to be relatively small (often 
less than 20) and there is a corresponding Euclidean metric Φ’.  Each field is associated with an 
R-tree in Rd and pairs of fields from two files are associated with pairs of R-trees that are 
searched.  The searching is approximate because not all of the pairs of strings with distances Φ ≤ 
c can be associated with pairs of strings Φ’ ≤  c’ in Rd.  Some approximately agreeing strings in 
the original space will not be found (Hjaltson and Samet 2003).  The embedding from the original 
space to the new space can be computationally prohibitive in the dimensionality d is quite large 
(above 50).  A research question is when can the combination of embedding and new decision 
rules associated with the Rd metrics Φ’ improve matching and significantly reduce computation in 
comparison with naïve methods for bringing together all pairs.        
    Chaudhuri et al. (2003) have an alternative procedure in which they approximate edit distance 
with q-gram distances, create new indexes using an IDF (inverted document frequency) method 
with selected subsets of the q-grams to improve the efficiency of the search by three orders of 
magnitude in comparison with naïve search methods. Because Chaudhuri et al. (2003) made use 
of the frequency of occurrence of q-grams, their method improved over more naïve comparison 
methods such as edit distance.  Baxter et al. (2003) have much cruder methods of creating new q-
gram indexes that should be far easier to implement than the methods of Chaudhuri et al. (2003).   
The research questions are “When might it be suitable to use the methods of Chaudhuri et al. 
(2003) or Baxter et al. (2003)?”   
   BigMatch technology (Yancey and Winkler 2004) is designed to use very large amounts of 
memory that is available with many machines.  With conventional matching software, each file is 



sorted according to an individual set of blocking criteria prior to the files being passed through 
the matching software.  If there are ten blocking passes, then each file is sorted ten times and 
passed through the matching software ten times.  With Bigmatch software, file A is held in 
memory with associated indexes and file B never needs to be indexed or sorted.  An initial 
research question is when are the methods of Yancey and Winkler (2004) more suitable than the 
methods of Jin et al. (2003) or Chaudhuri et al. (2003).  The q-gram methods of Baxter et al. 
(2003) can be directly used to extend Bigmatch technology.  BigMatch technology can be 
adapted to databases and is likely to be far more efficiently computationally than methods used 
by Hernandez and Stolfo (1995).  Winkler and Yancey (2006) are investigating parallel versions 
of BigMatch technology that should yield significant speed increases in comparison with the 
basic uniprocessor BigMatch.  The uniprocessor version of BigMatch processes approximately 
130,000 pairs per second on faster machines. 
   One of the fundamental issues is whether one should consider methods that bring together all 
pairs from two files A and B or the subset of pairs in files A and B that sufficiently close 
according to a nearest-neighbor metric or above a matching score cutoff.  Gravano et al. (2001) 
have methods that provably bring together all pairs that are close to each other.  Koudas et al. 
(2004) and Guha et al. (2004) provide generalizations that the authors claim can efficiently be 
used in moderate size applications.  If we use the example of Winkler (2004c) that considers the 
1017 pairs from a 300 million record Census, ten blocking passes yield 1012 pairs that contain 
99.5% of the true matches.  The remaining matches in the residual set of pairs represent 1 match 
in 1011 pairs.  Any strategy for getting the last 0.5% of matches (that have no 3-qrams in common 
– Table 9) would necessarily need to bring together hundreds or thousands of pairs for each true 
match and be subject to exceptionally high false match rates due to the poor quality of the weakly 
identifying information.  In situations where it will be exceptionally difficult to obtain the last x% 
of matches, it might be best to have a method for estimating how many matches are missed as in 
Winkler (2004c).  In situations, where the missing x% is quite small, it seems that the most 
suitable procedures for using the merged files would be to have a straightforward adjustment for 
the proportion of missed matches.  Two research problems are how to accurately estimate the 
number of missed matches and to (somewhat) accurately estimate the effect of missed matches on 
analysis. 
   A closely related issue is whether the merged file A ∩ B is a representative subset of files A 
and B.  If A ∩ B is representative subset of A or B, then an analysis on A ∩ B might be 
representative of an analysis on B in that it allows reproduction of an analysis in the sampling 
sense (Winkler 2006).  Zadrozny (2004; also Fan et al. 2005) deals with the analogous issue of 
when a training sample is representative and does not induce bias.  The research problem is 
whether a merged file is representative of a population in A ∪ B or subpopulation in A or B in the 
sense of producing an analysis without bias in key parameters.  An obvious issue is that any 
matching error in merging files A and B can result in a ‘dirty’ sample set A ∩ B that might not be 
suitable for some (or most) analyses.  
 
4.4  Creating functions and metrics for improving matching 
 
   To build intuition, we describe an elementary matching situation.  During the re-identification 
of record rA1 from file A with fields (geocode, Icode, Y) with record rB2 with fields (geocode, 
Icode, Y’), we use a crude metric that states that the first two variables should agree exactly and 
the last variables Y and Y’ should agree approximately.   The field geocode may be a geographic 
identifier for a small region. The field Icode may be an identifier of the industry of the company.   
If Y and Y’ are known to be in the tails of a distribution such as a high income or unusual 
situation, then we may be able to deduce that a range in which we can say Y and Y’ are likely to 
be approximately the same.  In some situations, we have a crude functional relationship f(X) = Y 



that allows us to associate the X-variables with a predicted Y-variable that may be close to a 
corresponding Y’-variable.  In these situations, we can think of the functional relationship f(X) = 
Y and other knowledge as yielding a metric for the distance between Y and Y’.  The variables Y 
and Y’ can be thought of as weak identifiers that allow us to associate a record in the first file with 
one or more records in the second file.   
   The most interesting situation for improving matching and statistical analyses is when name and 
address information yield matching error rates in excess of 50%.  Sometimes, economists and 
demographers will have a good idea of the relationship of the A-variables from the A-file and the 
B-variables from the B-file (Table 12).  In these situations, we might use the A-variables to 
predict some of the B-variables. That is, Bij = Predj (Ak1 ,Ak2 ,...,Akm ) where j is the jth variable in 
the B-file and Predj  is a suitable predictor function. Alternatively, crude predictor functions Predj 
might be determined during iterations of the linkage process. After an initial stage of linkage 
using only name and address information, a crude predictor function might be constructed using 
only those pairs having high matching weight. Scheuren and Winkler (1997) conjecture that at 
most two hundred pairs having high matching weight and false match rate at most 10% might be 
needed in simple situations with only one A-variable and one B-variable for a very poor matching 
scenario.  The functions relating A- and B-variables can be quite crude.  The intuitive idea is that 
each pair of A- and B-variables and their associations of particular ranges of each can drastically 
reduce the number of B-records that can be associated with each A record. 
   Michalowski et al. (2003) have done related work in which they use information from auxiliary 
files to improve matching.  Koller and Pfeffer (1998), Getoor et al. (2003), Lu and Getoor (2003), 
Taskar et al. (2001, 2002, 2003) have provided extensions of Bayesian networks representing 
links between corresponding entities that also can be used for improving matching.   In the 
context of microdata confidentiality, Winkler (2004a,b) has shown how to create additional 
metrics to improve matching for files that are masked to prevent re-identification or with files of 
synthetic data that are produced according to statistical models. The metrics depend on the 
distributions of the original and masked variables and known analytic uses of files.  For microdata 
confidentiality, 0.5-2.0% re-identification rates are sufficient.  For general administrative lists, we 
would likely need matching (analogously re-identification) rates in excess of 80% of the pairs that 
correspond to the same entities.  The research question is “Under what circumstances can 
functional relationships and associated metrics be created between A-variables in file A and B-
variables in file B to improve matching?” 
   To better illustrate concepts of functional relationships and associated metrics, we describe 
various methods of clustering and closeness in certain metrics such as nearest-neighbor metrics.  
Both Winkler (2002) and Scheuren and Winkler (1997) apply simple methods of one-variable 
types of clustering, knowledge about how far apart records will be according to the clustering, 
and how close a given cluster from one file will be to a given cluster in another file.  The methods 
of clustering and analytic correspondences between a set of variables in cluster in one file to a set 
of variables in clusters in another file can often be obtained from understanding of analytic (or 
functional) relationships.  If there are representative truth data, then functional relationships can 
be obtained via a nearest-neighbor relationship or via the functions of a hidden layer for neural 
nets.  We do not need precise knowledge.  With k-nearest-neighbor, a cluster from one file might 
be associated with a corresponding cluster in another file (according to the truth data).  Any new 
records in files A and B can be associated via their corresponding clusters.  If an A record is in a 
cluster that corresponds to a B record via the corresponding cluster, then the pair of records are 
weakly related according to the weak identifier corresponding to the corresponding cluster pairs.  
If we do multiple clustering in each pairs of files and create multiple pairwise clustering to 
achieve a number of pairwise functional relationships, then we better determine true matches 
based on the multiple clustering relationships.  We note that the methods of Winkler (1989a, 
1993; also 2002) allow us to account for the dependencies between multiple agreements.  A 
somewhat analogous situation would be where we have two records that agree on the name ‘John 



Smith’ and the date-of-birth ‘1965Mar21’ for which we need additional information such as 
current address or income to make a better match determination.  Torra also (2004) provides 
some methods that indicate how clustering can be used for matching. 
 
4.5  Link analysis 
 
   Link analysis can refer to methods of connecting information within a file or across files.  Any 
information that can be associated with an entity can allow the entity to be associated with other 
entities.  We explain the elementary concepts in terms of person matching because the ideas can 
be considerably easier than the related concepts for business matching.  In a single file, a weak 
identifier allows us to associate a record of an individual with other individuals.  For instance, a 
household identifier allows us to associate the individual with other members of the household.  
A first name of John allows us to associate the record with other records having John in the first 
name field.  If we have a date-of-birth 1955.03.21 of the form YYYY.MM.DD in the date-of-
birth field, then we can associate the record with all records having year-of-birth 1955, month-of-
birth 03, day-of-birth 21, or full date-of-birth 1955.03.21.  A combination of weak identifiers 
such as name ‘John Anthony Smith,’ address ‘1623 Main Street, Springfield, Ohio,’ and date-of-
birth ‘1955.03.21’ may allow us to uniquely identify the record associated with ‘John Smith.’  A 
subset of the weakly identifying information such as ‘John Anthony Smith’ and ‘Springfield, 
Ohio’ or ‘John Anthony Smith’ and ‘1955.03.21’ may also allow us to uniquely identify the 
information associated with ‘John Smith.’   
   In identifying the set of information with the entity ‘John Smith’ we make assumptions that 
there is sufficient redundant information to overcome typographical errors in some of the weak 
identifiers and the fact that some of the identifiers may be not current.  For instance, the weak 
identifier ‘John A Smith’ and ‘Sprinfeld, OH’ may be sufficient for us to identify information 
with ‘John Smith.’  This is true even though the weak identifier ‘John A Smith’ does not have the 
full middle name ‘Anthony,’ ‘Sprinfeld’ has typographical error causing it to differ character-by-
character from ‘Springfield,’ and ‘OH’ is the usual postal spelling abbreviation of ‘Ohio.’  The 
combination of ‘John Anthony Smith’ and ‘1955.03.21’ may not be sufficient to identify the 
entity ‘John Smith’ because there are more than 30,000 individuals in the U.S. with the name 
‘John Smith.’  This means that there is on average approximately 1.5 individuals with any given 
date-of-birth.  On the other hand, the combination of a rarely occurring name such as ‘Zbigniew 
Anthony Varadhan’ and date-of-birth ‘1955.03.21’ may be sufficient to uniquely identify the 
entity ‘Zbigniew Varadhan.’  If the name ‘Zbigniew Anthony Varadhan’ is sufficiently rare and 
does not contain typographical error, then it may be sufficient to uniquely identify ‘Zbigniew 
Varadhan.’  This indicates that, if we can make use of the relative rarity of weak identifiers in a 
file or in a population associated with a group of files, then we may be able to find better unique 
identifiers for a subset of the individuals. 
   We can make use of information that links individuals in households.  Table 13 provides a 
listing of individuals that reside in two households at different addresses in different cities.  
Because the individuals are associated with surveys that represent two different time periods, the 
individuals may not be the same.  The first individual in the second listed household is missing 
first name.  We know that the surveys are two years apart.  The middle initials differ on the 
second and fourth individuals.  Although the identifying information differs slightly, we might 
still assume that the two households represent the same family.  If we were creating a large 
population file by merging many lists than we might be able to conclude that John is the correct 
first name associated with the first individual.  We would not be able to correct the middle initials 
with the second and fourth individuals.    
 
 



Table 13.  Individuals in Two Households in Two  
                 Cities at Different Time Periods 
___________________________________________ 
Household1              Household2       
___________________________________________ 
John A Smith    45      blank A Smith    43 
Mary H Smith    43      Mary A Smith     40  
Robert A Smith  16      Robert A Smith   14 
Susan M Smith   14      Susan N Smith    11 
 
 
  In this situation, an individual weak identifier is the information that the individuals reside in a 
household together allows us to link the individuals.  In analogous situation, we might attempt to 
link individuals from two different households in different regions even in one file such as a 
population census.  If we have an auxiliary population file representing all of the individual 
entities for a fixed time period, then we may be able to do the linkage even if more of the first 
names and ages are missing in Table 13.  A research issue is whether it is possible to characterize 
when various types of very weakly identifying information such as membership in the same 
household or membership in the same subset of a file can be improved for improving matching. 
    Object identification can be considered a method of associating a large amount of information 
from a set of files with a given set of entities (or objects) that are considered to represent different 
individuals in a population (Russell 2001).  For instance, Pasula et al. (1999, 2001, 2003) show 
how to apply the ideas to motor vehicle surveillance from viewing pictures along a freeway in 
California.  Each camera will have several successive pictures of a set of cars.  The time and dates 
of all the pictures are known.  The object identification issue is taking the set of images from 
different cameras and associated them with individual vehicles.  The information from each 
camera can be quite good because it includes several pictures of the same vehicle at a given point 
in time.  They use the time and dates to reduce the number of images from a second camera.  
Characteristics such as color, shapes at various viewing angles, and other weak identifiers of a 
vehicle can be quickly determined from the video images.  They perform object identification by 
creating a model that is computed off-line but used in real-time.  Russell (2001) and Pasula et al. 
(1999, 2001, 2003) create a large graph in which that weakly connects enormous sets of images.  
To train the model, they need a moderately large amount of training data for which the truth is 
known.  They use Markov Chain Monte Carlo (MCMC) to optimize the likelihood of the set of 
objects associated with the set of cars.  Although MCMC is computationally prohibitive in these 
situations, more appropriate computational methods are being developed.  An initial research 
issue is when these methods can be applied in a computationally tractable manner (during training 
or during classification).  A second research issue is whether MCMC object identification 
methods can be effectively used to enhance other methods. 
   We have observed that we can use any of the weak identifiers to connect information within 
files or across files.  The direct matching of lists of businesses is known to be difficult because of 
substantial name and address variations (Winkler 1995).  Often the best information for 
improving the linkage of two files may be from a large population register.  If the government has 
expended substantial resources in creating the register, then it can be used as a bridging file for 
linking the other two lists.  If name and addresses variations are carried in the register, then that 
information can be used to improve the matching.  As an extreme example, we might keep ten 
addresses associated with each entity in the register.  Partial agreement on name and one of the 
addresses might be sufficient as a clustering technique (McCallum et al. 2000) that leads to more 
expensive computation on the other fields that might be used in determining the actual linkages of 
the entities. 



  Agreement information obtained from sources such as the Internet may give variants of names 
and addresses for businesses that allow improved linkages.  The information would need to be 
placed in tables or files.  This type of information is particularly helpful in matching if 
subsidiaries must be connected with parent corporations.  If a unique customer identifier is 
available in a companies list associated with a company, then different name and address 
variations associated with the customer identifier may be available for improving matching in 
other files.  Overlapping customer lists from two different files may help identify individual 
business entities.   
   A key feature of the link analysis methods is that they provide a systematic way of bringing in 
information from other files.  The methods are currently computationally prohibitive in most 
situations because they involve an enormous number of weak (or of lower quality) linkages via 
weak identifiers within and across files.  Some of the weak identifiers such as functional 
relationships and associated linkage metrics can be constructed without truth decks.  For many of 
the metrics associated with names and addresses, no truth decks are often needed.   Combinations 
of weak identifiers or weak identifiers combined with other information can yield substantial 
improvements in matching accuracy. 
   At the most sophisticated level of modeling, a link analysis model can represent an enormous 
number of linkages that must be considered.  Via an optimization of likelihood, the set of distinct 
objects and the linkage probabilities associated with their weakly identifying information can be 
determined (Lafferty et al. 2001).  Ishikawa (2003) has provided a more general characterization 
of the set of linkages associated with link analysis.  The set of linkages are a large graph 
representing a Markov Random Field.  Ishikawa’s methods may yield more computationally 
tractable methods of optimizing the likelihood.  McCallum and Wellner (2003) provide a number 
of graph partitioning algorithms that can be computationally tractable in some situations.  
Ravikumar and Lafferty (2004) provide methods that show promising improvement for the theory 
and computation associated graph partitioning and belief propagation. 
 
4.6  Adjusting Analyses for Linkage Error 
 
   The purpose of merging pairs of files A and B is often the situation of Table 12 in which we are 
primarily interesting in analyzing the joint relationships between the A-variables and the B-
variables.  Scheuren and Winkler (1993) considered the simple situation where a continuous x-
variable variable was taken from the A file and compared with the continuous y-variable from the 
B-file.  Among true matches, the pair of variables satisfied the regression relationship y = β x 
where the R2 value was above 0.4.  Among false matches, an x-value would typically be 
associated with a y-value that had been randomly drawn from the entire range of y values.  
Scheuren and Winkler (1993) provided a bias-adjustment procedure for the estimate of the beta 
coefficient that was generalized by Lahiri and Larsen (2005).  Figure 3 illustrates the effect of 
increasing matching error rate on the point cloud associated with a simple regression of the form  
y = β x.  The true regression line is shown in each component of the graph.  As matching error 
increases from Figure 3b until Figure 3f, the regression relationship almost disappears. 
   Further, Scheuren and Winkler (1997) showed how to provide a predicted value pred(y) = β x 
became an additional matching variable (beyond name and address) that could be used in 
matching.  The predicted value was equal to observed y-value when the observed y-value was 
within two standard deviations of the regression error; else it was equal the predicted value β x.  
This simple addition of one additional matching variable reduced the matching error rate from 
well above 50% to a matching error rate of 10%.  With a larger number of pairwise relationships 
between additional correlated variables from the files A and B, Scheuren and Winkler conjectured 
that the matching accuracy could further be improved.  The improvement in matching efficacy is 



 
 
analogous to the improvement in having a third matching variable of current address in addition 
to two matching variables consisting of name and date-of-birth.   Another analogous situation is 
where a given company can be associated with another company via postal ZIP code and 
industrial NAIC code.  If one record in one file has an income variable and another record in 



another file has a receipts variable, then a simple set of piecewise regression relationships can 
yield improved matching (Steel and Konshnik 1999). 
   If we are interested in an (X, Y) relationship where X taken from file A is multivariate and Y 
taken from file B is multivariate, then we might be able to use a mixture model approach for 
partially improving the matching.  As with the Scheuren and Winkler (1997), we separate (XT, 
YT) pairs associated with true matches from (XF, YF) pairs associated with false matches using 
some of the known analytic relationships known to hold among (XT, YT) pairs and the fact in (XF, 
YF) pairs the YF value in drawn randomly (in many or most situations) from the entire set of Y 
values.  If the rate of false matches is high, then a mixture model approach may help to separate 
(XT, YT) pairs from (XF, YF) pairs.  The modeling of relationships can be refined in the set of (XT, 
YT) pairs that have the highest probability of being correct, new relationships and associated 
predicted values added to one file to be used as additional matching variables, and matching 
improved.  One research problem is determining a number of situations when we can use these 
types of procedures to improve matching.  A closely related problem is when is it possible to use 
the procedures to improve a specific analysis? 
 
4.7  Relative Frequency, Typographical Error Rates, and Overlap of Lists 
 
   Chaudhuri et al. (2003) introduced methods for probabilistically approximating (using Chernoff 
bounds) edit distance with distances based on q-grams, methods that used the relative frequency 
of rarer (less frequently occurring) q-grams, and some clever heuristics in creating a matching 
strategy for locating probable duplicates within a database.  The q-grams are used in a type of 
inexpensive clustering procedure for bringing together pairs (McCallum et al. 2000, also 
Ravikumar and Cohen 2004) and for computing matching scores that are based on the relative 
frequency of strings.  The only facet of their work that we address is the relative frequency of 
strings used in matching, a notion that was introduced by Newcombe et al. (1959, 1962) and 
given a somewhat formal model by Fellegi and Sunter (1969) and Winkler (1989c).  In particular, 
we will consider a number of situations where use of relative frequency of strings is will not 
improve matching (Winkler 1989c, Yancey 2000).  
   The work of Newcombe et al (1959, 1962) and later closely related work by Gill (1999) 
primarily depended on a large, complete population file that could be compared against itself in 
developing appropriate relative frequency tables.  The intuition is that a relatively rarer last-name 
string such as ‘Zabrinsky’ has more distinguishing power than a string such as ‘Smith.’  In using 
the frequency tables from the large population file, a smaller file can be matched against the large 
file under the plausible assumption that the smaller file is an approximate subset of the larger file.  
Fellegi and Sunter (1969) dealt with the more general problem where two files A and B were not 
assumed to be approximate subsets of a large population file for which relative frequencies 
needed to be computed under some strong assumptions on the conditional independence of 
different fields.  Winkler (1989c) significantly weakened the strong assumptions by scaling the 
frequency weights to certain conditional probabilities that had been computed under 
(unsupervised) EM procedures.   Chaudhuri et al. 2003) also based their matching scores on 
frequencies of strings that had been computed by matching a file against itself. 
   Accounting for relative frequency in a rigorous manner is difficult for several reasons.  The first 
is that two files A and B may not overlap much.  For instance, if file A is a file of physicians and 
file B is an incomplete listing of the general population, then agreement on a rarer name such as 
‘Zabrinsky’ may help significantly more than agreement on a frequent name such as ‘Smith.’  
Deciding on a match will depend more on the additional fields beyond last name that are used in 
the matching.  The second reason is that if there are much higher typographical error rates in a 
last name such as ‘Zabrinsky.’ then agreement on ‘Zabrinsky’ may depend more on whether 
typographical errors have occurred and relative frequency tables will be inaccurate.  The third 
reason is that, if a smaller list A is compared to a larger list B, then the relative frequencies can 



again be inaccurate.  For instance, if A is a 0.1% sample of a larger population file and B is a 
0.1% sample of the same larger population, then the relative frequency of a rare name such as 
‘Zabrinsky” that happens to be sampled into files A and B may be approximately as high as a 
common name such as ‘Smith.’  The research problem is whether relative frequency can be 
effectively accounted for in a model that improves matching efficacy.   Yancey (2000) has 
demonstrated that relative frequency matching does not improve on simple yes/no matching in 
small geographic regions when there are a number of other high quality fields for matching. 
    Cohen et al. (2003a,b) introduced a soft TFIDF weight as an enhancement to the TFIDF 
weighting of information retrieval that is often used in comparing documents and in search 
engines.  Part of the TFIDF weighting has strong similarity to the value-specific (frequency-
based) weighting of Newcombe (1959, 1962).  The TFIDF weight, or cosine similarity, is defined 
as  
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where AwTF ,  is the frequency of word w in A, N is the size of the file A ∪ B, wIDF  is the 
inverse of the fraction of names that contain w,  
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where the sum is over the entire set of words.  In this situation, the words w can be any strings 
such as first names, last names, house numbers, street names, etc. that are used in the matching.   
In the situations of classical record linkage (Winkler 1989c), individual fields (words) such first 
names, last names, etc. are scaled very differently.  To deal with typographical error, Cohen et al. 
(2003a,b) introduced  
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Here the set ),,( BAClose θ represents the set of words (strings) in A that are close to words 
(strings) in B with a suitable string comparator.  Cohen et al. used the Jaro-Winkler string 
comparator with θ=0.9.  D(w, B) is the closest (i.e., highest string comparator weight) word in B 
to word w.  There are issues with the methods of Cohen et al. (2003a,b).  The first is whether their 
thirteen small test data sets are sufficiently representative of general data in terms of 
typographical error and relative frequencies.  The typographical error affects the computation of 
TFIDF weights and analogous frequency-based weights in Winkler (1989c).  If there is one last 
name ‘Smoth’ that represents a typographical error in last name ‘Smith,’ then the weight 
associated with ‘Smoth’ will be too high.  The adjustment using D(w, B) is likely to be difficult to 
determine with larger real world data sets because of the associated amount of computation.  
Winkler (1989c) had a general downweighting based on the matching weights )|( MfP a

i  that 
were computed via the EM algorithm.  The advantage of the Winkler (1989c) downweighting 
adjustment for typographical error is that it is far faster (but cruder) than the method of Cohen et 
al. (2003a,b).  Based on early empirical evidence, it seems likely that the method of Cohen et al. 
will work well in practice.  A research problem is determining the situations when the Cohen et 
al. method will be superior to other simpler and less compute-intense methods.  



   Cohen et al. (2003b) introduced the idea of a modified Levenstein metric that worked well in a 
number of situations.  The basic Levenstein metric measures the number of insertions, deletions, 
and substitutions to get from one string to another.  A standard rescaling for consistency is to 
divide the Levenstein metric by the total number of unique characters in two strings and subtract 
the ratio from 1.  Cohen et al. (2003b) modified the Levenstein metric by adjusting the 0-1 scaled 
metric upward for exact agreement on the first few characters of the strings.  They found that the 
rescaled Levenstein metric worked best in some matching situations.  A research issue is on what 
types of files the rescaled Levenstein metric can be expected to yield improvements over other 
metrics.  For improving record linkage in general, an important research issue is having a number 
of large, representative test decks for which true matching status is known.  Although some 
researchers (Hernandez and Stolfo 1995, Chaudhuri et al. 2003, Scannipieco 2003) have used 
artificially generated files in which ‘typographical’ errors are induced in true values of certain 
strings, the generated data does not approximate the types of errors that occur in real data.  
Extreme examples occur in Table 9 and in most business lists. 
   A general issue is whether it is possible to create a model that characterizes typographical error 
in a manner that it allows estimation of the number of matches or duplicates that are obtained 
with a given set of blocking strategies.  Historically, blocking strategies have been determined 
using trial and error (Newcombe 1988, Gill 1999, Winkler 2004c).  Chaudhuri et al. (2003) and 
Ravikumar and Cohen (2004) used inverted indexes based on the q-grams for bringing together 
pairs for which a much more compute-intensive procedure was used for computing matching 
scores.  A real issue is that the q-grams used in the inverted indexes may bring together far too 
many pairs in the sense that the set of pairs contains an exceptionally small proportion of 
matches.  A similar issue can occur with blocking criteria.  For instance, if we are matching a ZIP 
code of 50,000 individuals against itself, at most one in 50,000 pairs will be a true match.  
Different blocking passes are intended to keep the number of pairs brought together relatively 
smaller.  For instance, three blocking criteria might be (1) ZIP plus the first few characters of last 
name, (2) ZIP plus the first few characters of street name, and (3) part of last name, first name 
and the street address.  The strategy would partially account for some of the typographical error 
in last name, street name, and ZIP code.  Generally, it will not bring together all of the pairs that 
might have a matching score (based on all fields in the pair of records) above a certain cutoff 
score.   
    Winkler (1989b, 1995, 2004c) gave a capture-recapture method for estimating the number of 
matching pairs that are missed by a set of blocking criteria.  The estimation method can be 
inaccurate due to the correlation of captures of pairs across blocking criteria and due to the 
inaccuracy in estimating matching error rates.  Fellegi and Sunter (1969) and Winkler (1989c) 
gave methods for estimating error rates in individual fields that might be adapted to groups of 
fields.  Winkler (2004c) provides methods for estimating typographical error rates and the 
approximate distinguishing power fields used in searches.  Although the estimates are quite 
inaccurate, they do not need training data and can be used to provide crude upper bounds.  
Winkler (2004c) also provides a very large application of sets of blocking criteria to the 
estimation of the number of matches missed by a set of blocking criteria.  The reason that the 
problems are particularly difficult is that the typographical errors typically occur multiple times 
within a record or within the records associated with a household.  The errors do not apply in 
isolation and are not independent.  Nevertheless, it is possible to get crude bounds on the number 
of missed matches.  It is noteworthy that the most-difficult-to-find 0.2-0.5% of matches have no 
3-grams in common.  These matches are often identified because some other individual in a 
household is identified more easily (Table 9).  The research problem is when these capture-
recapture methods can be used to get accurate estimates of the proportion of missed matches or at 
least reasonable upper bounds of the proportions.  A related problem is if it is possible to adjust 
an analysis in the linked file for the proportions of missed matches. 
 



 
4.8 More Fields, Lack of Independence, and Typographical Error Rates 
 
   Most individuals assume that having more information (fields) for matching would improve the 
matching.  Additional fields only help in certain situations.  Generally, having more fields than 6-
10 fields for matching is not needed.  In this section, we illustrate the situation with a number of 
examples.  To begin we need to describe a particular notion of a typographical error rate and how 
matching weights are computed under conditional independence (naïve Bayes) and in general.  
Let an agreement pattern have the simple yes/no form {0/1, 0,1, …., 0/1} where the first entry is 
agree/disagree on the first field f1, the second entry is agree/disagree on the second field fn, …, 
and the nth entry is agree/disagree on the nth field fn.  In situations where there is very little 
transcription and keypunch error, we expect matches in M to agree on most fields and 
nonmatches in U to only randomly and occasionally agree on fields.  There are obvious 
exceptions where a husband/wife nonmatch agrees on many characteristics such as last name, 
age, house number, street name, telephone, etc.  Most nonmatches will be almost completely 
unrelated in the sense that few fields agree.  There may be occasional random agreements on first 
names, last names, ages, or street name. 
   In computing the matching score (weight) in equation (1) under the conditional independence 
assumption, we obtain 
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if represents either agree a or disagree d on the ith field.  Typically, 

)|()|( UfPMfP a
i

a
i > and )|()|( UfPMfP e

i
d

i < .  This causes the agreement weights (log 
ratios) associated with individual fields to be positive and the disagreement weights to be 
negative.  If one field has very similar characteristics to another, then agreement on the additional 
field may not be helpful.  For instance, if af1  is agreement on last name (surname) and af 2  is 
agreement on Soundex code of surname, then )|,()|( 211 CffPCfP aaa =  where C is either M or 
U.  If we compute the total agreement weight on the left hand side of (4) using the individual 
agreement weights on the right hand side, the total agreement weight will include 

)|(/)|(log( 22 UfPMfP aa  that erroneously increases the total agreement weight.  The 
erroneous increase is primarily due to the fact that the conditional independence assumption does 
not hold. 
    In actuality, )|(/)|(log( 22 UfPMfP aa should be set to 0.  If we compute the left hand side 
of (4) using the right hand side, then any field fj that is completely dependent on the several other 
fields should not be computed according to the conditional independence assumption in (4).  The 
erroneously computed weights can affect the classification rule (1).  As an additional example, if 
f1 is last name, f2 is date-of-birth, f3 is US Postal ZIP code+4 (geographic region of approximately 
50 households), and f4 is first name, then agreement on f1, f2, f3 in M assures agreement with 
probability one on f4 .  In this situation, the numerator on the left hand size of equation (4) would 
be too low if it were computed under conditional independence, the denominator might stay the 
same, and the overall weight given by the left hand size of (4) would be too low.  Winkler (1989a, 
1993) and Larsen and Rubin (2001) have provided ways of dealing with lack of independence. 
   Fellegi and Sunter (1969) and Winkler (1988, 1989c) considered )|( MfP a

i  as an approximate 
measure of typographical error.  Winkler showed that the EM-based parameter estimation 



procedures could yield reasonable estimates of )|( MfP a
i  for use in the matching classification 

rule (2).  Here a typographical error might represent any difference in the representation of 
corresponding fields among matches within a pair of records.   For instance, first name pairs such 
as (Bill, William), (Mr, William), (William, James), or (William, Willam) might all represent a 
typographical error.  In the first example, the nickname Bill corresponds to William, in the second 
example, Mr may represent a type of processing error, in the third example, and James may be a 
middle name that is in the first name position.  In the fourth example, the misspelling Willam 
could be dealt via Jaro-Winkler string comparator ρ by having strings with ρ > 0.89 as agreement 
and disagreement, otherwise.   
   There are research issues associated with computing agreement weights where there are 
possible dependencies and varying amounts of typographical error.  In the first situation, the EM 
algorithm can provide reasonable estimates of the marginal probabilities )|( MfP a

i  and 

)|( UfP a
i  where the probabilities yield good classification rules using (2).  If the probabilities 

yield good classification rules, then )|( MfP a
i  may represent reasonable surrogate measure for 

typographical error.  In many situations, if a typographical error occurs in one field in a record, 
then it is more likely to occur in another field of a record.  This means that while dependencies 
between agreements on fields may increase or decrease the matching weights in (4), the 
dependencies between typographical errors have a tendency to decrease the matching weighs in 
(4).  The research question is “How does one estimate probabilities in equation (4) that yield good 
classification rules (or estimates of error rates) when there are dependencies between fields and 
dependencies between typographical errors in fields?”  If there are many fields, then how does 
one select a subset of the fields that provide a suitable amount of distinguishing power in terms of 
the classification rule (2).  Certain feature selection procedures (e.g., Sebastiani 2002) may yield 
suitable subsets of fields. 
 
4.9  Algorithms Used in Record Linkage Classification Rules 
 
   The standard model of record linkage is conditional independence (naïve Bayes) that has been 
extended to general interaction models by Winkler (1989a, 1993) and Larsen and Rubin (2001).  
In machine learning, support vector machines (SVMs, Vapnik 2000) and boosting (Freund and 
Schapire 1996, Friedman et al. 2000) typically outperform naïve Bayes classifiers and other well 
understood methods such as logistic regression.  In this section, we describe the four classifiers in 
terms of theoretical properties and observed empirical performance.  We begin by translating the 
notation of the four classifiers into a vector space format.  If r = (f1, …, fn) is a record pair of n 
fields used for comparison and (a1, …, an) are agreement vectors associated with the n fields, 
then, in the simplest situations, we are interested in a set of weights w = (w1, …, wn) such that  
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otherwise, the pair is held for clerical review.  In most situations, CH = CL and we designate the 
common value by C.  In this section, we assume that representative training data is always 
available.  In logistic regression, we learn the weights w according to the logistic regression 
paradigm.  In SVM, we learn an optimal separating linear hyperplane having weights w that best 
separate M and U (Vapnik 2000).  With N steps of boosting, we select a set of initial weights wo 
and successively train new weights wi where the record pairs r that are misclassified on the 



previous step are given a different weighting.  The starting weight wo is usually set to 1/n for each 
record where n is the number of record pairs in the training data.  As usual with training data, the 
number in one class (matches) needs to be approximately equal the number of pairs in the other 
class (nonmatches).  Ng and Jordan (2002) and Zhang and Oles (2001) have demonstrated that 
logistic regression can be considered an approximation of SVMs and that SVMs should, in 
theory, perform better than logistic regression. 
   Ng and Jordan (2002) have also demonstrated empirically and theoretically that SVM-like 
procedures will often outperform naïve Bayes.  Various authors have demonstrated that boosting 
is competitive with SVM.  In record linkage under conditional independence, each 
weight )|(/)|( MfPMfPw a

i
a

ii = for individual field agreements are summed to obtain the 
total agreement weight associated the agreement pattern for a record pair.  The weighting of this 
type of record linkage is a straightforward linear weighting.  In theory, SVM and boosting should 
outperform basic record linkage (possibly not by much) because the weights w are optimal for the 
type of linear weighting used in the decision rule.  One reason that SVM or boosting may not 
improve much is that record linkage weights that are computed via an EM algorithm also tend to 
provide better separation than weights computed under a pure conditional independence 
assumption (Winkler 1990a).  Additionally, the conditional independence assumption may not be 
valid.  If conditional independence does not hold, then the linear weighting of the scores S(r) is 
not optimal.  Alternate, nonlinear methods, such as given by Winkler (1989a, 1993b) or Larsen 
and Rubin (2001) may be needed. 
   There are several research issues.  The first issue is to determine the situations where SVM or 
boosting substantially outperforms the Fellegi-Sunter classification rule (2).  Naïve Bayes is 
known to be computationally much faster and more straightforward that SVM, boosting, or 
logistic regression.  Belin and Rubin (1995) observed that logistic regression classification is not 
competitive with Fellegi-Sunter classification.  The second issue is whether it is possible to 
develop SVM or boosting methods that work with only unlabelled data (Winkler 1988, 1993) or 
work in a semi-supervised manner as is done in record linkage (Winkler 2002).  Brefeld and 
Scheffer (2004) provide a semi-supervised version of SVM.  Extensions of the standard Fellegi-
Sunter methods can inherently deal with interactions between fields (1993) even in unsupervised 
learning situations.  Determining the interactions can be somewhat straightforward for 
experienced individuals (Winkler 1993b, Larsen and Rubin 2001).  SVM can only be extended to 
interactions via kernels that are often exceeding difficult to determine effectively even with 
training data.  Fellegi-Sunter methods can deal with nearly automatic methods for error rate (false 
match) estimation in semi-supervised situations (Winkler 2002) or in a narrow range of 
unsupervised situations (Winkler and Yancey 2006).  Accurately estimating error rates is known 
as the regression problem that is very difficult with SVM or boosting even when training data are 
available (Vapnik 2000, Hastie et al. 2001). 
 
4.10  String Comparators and Extensions 
 
   The basic idea of string comparison is to be able to compare pairs of strings such as ‘Smith, 
Snith’ that contain minor typographical error.  Winkler (1990a) showed that even high quality 
files might contain 20+% error in first name pairs and 10+% error in last name pairs among pairs 
that are true matches.  He demonstrated that being able to account for the minor typographical 
error could significantly improve matching efficacy because a (sometimes substantially) higher 
proportion of true matches could be found automatically.  With a priori truth decks he was able to 
model the effect of minor typographical error on the likelihoods (equation (1)) used in the main 
classification rule given by equation (2).  He observed that the two initial variants of the string 
comparator yielded significant improvements in matching.  Further variants of the two string 
comparators and the likelihood-ratio-downweighting function yielded little or no improvement in 



the types of Census files that he used for the empirical applications.  The minor typographical 
error rate can significantly increase with files that have been scanned from handwritten forms 
(Winkler 2004c).  In those situations, having effective string comparator functions is crucial. 
   The Jaro, Jaro-Winkler, and edit-distance string comparators provide fast, effective methods of 
comparing strings having typographical.  At present edit distance appears to be one of the most 
effective off-the-shelf string comparators (Cohen et al. 2003a,b).  Edit distance measures the 
minimum number of insertions, deletions, and substitutions to get from one string to another.  
Each insertion (ε, b), deletion (b, ε), and substitution (a, b) is given cost one in the dynamic 
programming algorithm used to obtain edit distance.  Here ε is the null character.  Characters a 
and b are arbitrary characters.  With ordinary lower-case alphabetic characters plus the blank 
(space) character and null character ε, there are 27 possible values for each character.   For speech 
recognition, Ristad and Yanilios (1998) introduced hidden Markov models in a likelihood-based 
computation of a generalization of edit distance.  They assumed that sufficient training data 
would be available and that costs of specific substitutions (a, b), insertions (ε, b), and deletions 
(b, ε) over different characters a and b could be modeled and estimated.  Ristad and Yanilios 
demonstrated how to use the Viterbi algorithm (fast version of EM algorithm) for computing the 
generalized edit distance.   
   Yancey (2004) examined Markov edit-distance generalization of Wei (2004) and concluded that 
the new metric was slightly outperformed by the Jaro-Winkler string comparator with certain 
types of test decks.  In a more ambitious study, Yancey (2006) compared a number of variants of 
several types of string comparators.  His best general variant of the Jaro-Winkler comparator, 
called JW110, performed a prefix enhancement and applied an enhancement for string similarity.  
Yancey (2006) felt that the third potential enhancement of a suffix comparison performed yielded 
improvements in some situations and performed worse in others.  His best alternative string 
comparator LCSLEV was from a simple averaging of the longest common subsequence string 
comparator with the basic edit (Levenshtein) distance.  Each of these string comparators was 
converted to the real-number range between 0 and 1 range prior to averaging.  His final hybrid 
comparator was a nontrivial function of the scores of the JW110 and LCSLEV string comparators.  
The hybrid comparator very slightly and consistently outperformed both JW110 and LCSLEV in 
matching tests with several test decks.  The metrics in the tests were the number of matches 
obtained at given false match rates. 
   Bilenko and Mooney (2003a) argued that Hidden Markov models could be used for training the 
comparison metrics for individual fields and that other algorithms such as SVMs could be used in 
finding the optimal set of SVM weights for separating matches from nonmatches.  The 
advantages of SVMs are that they are known empirically to perform very well and several SVM 
implementations are freely available.  Similar Hidden Markov algorithms have been used for 
address standardization.  In speech recognition and in simple edit-distance tasks, we know the 
alphabet for the characters.  In more general situations where words are compared, we need 
smoothing methods (Bilenko ad Mooney 2003a) to be able to weight (i.e, compare) two strings in 
which one or both have not been previously encountered. 
   The research issues are somewhat straightforward when there are training data.  Bilenko and 
Mooney (2003a) claim that, if suitable training data, then their method will optimize the 
comparison of individual fields and the overall set of fields between two records.   An initial 
research question is when their methods will yield improved matching performance in 
comparison with much simpler methods such as those based on a Fellegi-Sunter model of record 
linkage.  A second issue is when Bilenko-Mooney methods will be suitable if there are very small 
or no amounts of training data.  Winkler (1988, 1989a, 1993) and Ravikumar and Cohen (2004) 
provided methods for matching that did not need training data.  The Ravikumar-Cohen methods, 
while less general than Winkler (1993), were computationally much faster and possibly suitable 
for a large number of matching situations.  Yancey (2004) made use of large training decks for 



learning the generalized edit distances.  The idea was that the generalized edit-distance would be 
used with the likelihood ratios of equation (2) in a manner similar to that used by Winkler 
(1990a).  The research issue is when can the generalized edit-distance produce clearly superior 
results to those produced with methods such as Jaro-Winkler string comparators?  A third 
research issue is subtle and very difficult.  Winkler (1989a) demonstrated that optimal matching 
parameters vary significantly across adjacent geographic regions.  In particular, because of higher 
typographical error rates in urban regions, urban regions might not be matched as accurately as 
adjacent suburban regions.  If there is significant variation of typographical error across 
geographic regions, do different generalized edit-distances need to be learned for each region? If 
that is the situation, how much representative training data is needed for each geographic region?  
 
4.11  Standardization and Data Extraction 
 
   In record linkage, standardization refers to methods for breaking free-form fields such as names 
or addresses into components that can be more easily compared.  It also refers to methods for 
putting dates such as 12 December 2005 or Dec. 12, 2005 into a standardized MMDDYYYY 
format of ‘12122005’ or sex codes such as ‘0’, ‘1,’ and ‘2’ into more easily maintained codes of 
blank (‘ ‘), male (‘M’), and female (‘F’’).  Standardization is not easy even in seemingly 
straightforward situations.  If we know that free form names in a particular file are supposed to 
have first name first, then we may be able to parse the name into components such as first name 
‘William’ and last name ‘Smith’ as illustrated in lines 1-3 of Table 14.  Name standardization 
software (e.g. Winkler 1993a) looks for certain prefix words such as Rev, Dr, Mr, etc, certain 
postfix words such as MD, PhD, etc and then breaks out remaining words into first name, middle 
initial, and last name.  Last names having certain typical prefixes such as ‘Van,’ ‘De,’ are also 
easily handled.  After putting in standard spelling for words such as Reverend, Doctor, etc, the 
software generally breaks the words into components that are assigned a pattern that is looked up 
in a table that determines the final parsing of the free-form name.  The tables and overall logic are 
determined using large test decks with typically encountered free-form names.  No current 
software can deal with the situation where first names such as ‘Stanley’ and switched with last 
names such as ‘Paul’ as shown in lines 4-5 of Table 14. 
 
Table 14  Examples of Free-form Names 
_________________________ 
1.  Dr. William E. Smith, M.D. 
2.  William Edward Smith, MD 
3.  Dr. Willam F. Smith 
4.  Paul Stanley 
5.  Stanley Paul____________ 
 
 
   The methods for name standardization described above are referred to as ‘rule-based’ because 
the rules for converting a free-form name into components are fixed.  No probability models are 
involved.  Generally, the fixed rules are developed with a very large, representative test deck in 
which the forms of the name components are known because they have been manually processed 
by experts.  At present, I am unaware of any readily available commercial software for name 
standardization.  Because of the large market for address software, there is readily available, 
excellent commercial software.  Typically, commercial software must meet minimal standards 
based on testing against large U.S. Postal Service test decks to be certified.  The logic of the 
commercial address standardization software (like comparable software from the Geography 
Division of the U.S. Census Bureau) uses rule-based methods that are often much faster than 
probability-model-based methods. 



   The probability methods based on Hidden Markov models introduced by Borkar et al. (2001) 
and also applied by Churches et al. (2002) and Christen et al. (2002) show considerable promise 
for certain types of address standardization.  Borkar et al. (2001) applied a 2nd order HMM model 
that required sophisticated modifications in the Viterbi algorithm (very fast type of EM algorithm 
for specific types of applications) that did not require lexicons at initial levels.  Churches et al. 
(2002) applied a simpler 1st order HMM that used lexicons to initially tag words such as possible 
female first name, possible female last name, possible surname, type of postal address, locality 
(town, city) names, etc.  A key feature of the Hidden Markov models is the ability to create 
additional training examples (with assistance from the software) as new types of data files are 
encountered (Churches et al. 2002).  It is relatively straightforward for a human being to parse 
new types of addresses into components that can be used as new training examples.  The 2nd order 
Hidden Markov models work well with the types of unusual address patterns encountered with 
Southeast Asian and Indian addresses.  Both 1st and 2nd order HMMs work well with Western 
style addresses.  As Churches et al. (2002) and Christen et al. (2002 note, rule-based methods 
work well with Western style (house-number / street-name) that are often used in North America, 
Western Europe, and Australia.  The 1st order Hidden Markov methods, however, do not 
presently perform as well as the rule-based methods for name standardization.     
   There are a large number of situations where probability-types of models can be used for 
efficient preprocessing of data.  The methods often apply Hidden Markov models and other 
probabilistic methods such as Conditional Random Fields.  The methods arose in extremely 
difficult data-extraction situations such as Internet web page comparison or general comparison 
of sentences in natural language processing.  Cohen and Sarawagi (2004) apply dictionaries 
(lexicons) in named entity extraction that yield improvements in comparison with more basic 
methods of name or address standardization.  Their methods might yield extensions or 
alternatives to the 1st and 2nd order HMM models of Borkar et al. (2001) and Churches et al. 
(2002), respectively. 
   Agichstein and Ganti (2004) provide alternate methods of segmenting text that depend on 
having a large reference file in which each of the respective fields have been cleaned.  As an 
instance, we might have a person record with a free-form name, free-form address, and other 
information.  In the person record, we wish to identify the location of the name information and 
the location of the address information and divide each of the respective fields into components 
that can be more easily compared.  As another instance, we may have a reference to a journal 
article that is in the form (author, date, title, journal, volume number, pages) where we want to 
identify each of the components and put them in an appropriate.  No specific training data is 
needed.  For their CRAM (Combination of Robust Attribute Models) system, Agichstein and 
Ganti (2004) create the needed information and dictionaries (lexicons) from the reference file. 
   CRAM is based on an Attribute Recognition Model that uses information from individual fields 
in the reference file to locate different fields in the file being processed.  The idea is that a name 
field, address field, or date-of-birth field in the input file being processed will look like 
corresponding fields in the reference file.  CRAM creates a specific attribute recognition model 
(ARMi) for each field Fi or attribute Ai in the reference file.  Given an input string s, CRAM 
partitions s into s1, …, sn, maps the segments si to distinct attributes Asi, i = 1, …, n, such that 
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is maximized over all valid segmentations of s into n substrings. 

   CRAM is trained using a Hidden Markov Model (described in section 4.10), has a feature 
hierarchy to help recognize tokens that have not been encountered previously, contains a 
generalized dictionary to all elements in the feature hierarchy and set of base tokens.  The string s 
= [Amazon Company, 1243 Main Street, Seattle, WA, 92111] has initial token ‘Amazon 
Company’ and token set {amazon, company}.  Each ARMi is divided into Beginning, Middle, and 
Trailing attribute models. The dictionary Di corresponding the ith attribute is divided in beginning, 



middle, and trailing dictionaries Di
B , Di

M, and Di
T .  Agichstein and Ganti (2004) introduce 

substantial enhancements, needed computational relaxations, and robustness. 
 
4.12  Using Multiple Addresses Effectively   
 
   Population registers or large files (denoted by file C) that contain extra information may be very 
useful for improving the matching of two files A and B.  A government agency or other group 
may have the resources to maintain a file C.  In addition to names that have been cleaned up and 
put in a consistent format, file C may contain five of the most recent addresses associated with an 
individual.  Each address has a date (vintage) associated with it.  File C is updated with the most 
recent addresses and the oldest previous address is dropped.    Assume that File A has an entry 
‘John Smith   123 Main St’ and File B has an entry ‘John Smith   456 Oak Ave.’ It may be 
possible to determine accurate match status if file C contains both addresses ‘123 Main St’ and 
‘456 Oak Ave’ associated with some individual John Smith.  Other weak identifiers might be 
previous phone numbers, places where someone has purchased products, or places where 
someone has worked.  In all situations, it helps if the typographical error in different weakly 
identifying fields is cleaned up. 
   The research problems are straightforward.  Can multiple addresses improve matching?  Do the 
multiple addresses need to be carried in two files A and B that are being matched?  Can the 
multiple addresses be contained in an auxiliary population register?  Are there other fields such as 
dates or names for which multiple versions might help matching?  It is obvious that multiple 
addresses associated with an entity are not independent.  How can matching weights (scores) be 
computed with multiple addresses? Business list matching is a major problem.  If an agency 
maintains a large business register, how useful is it to maintain multiple versions of the name, 
addresses, and contact individuals associated with individual entities such as enterprises or 
company locations.  In particular, do the multiple names and address improve the ability to detect 
duplicates within the list and to reduce the possible of a false duplicate (existing entity) being 
added from an external source? 
 
4.13  Maintaining Registers   
 
    If a register is not maintained effectively, undetected duplication may increase by 1% or more 
per year.  At the end of several years, it may be difficult to use the register for sampling, analysis 
and other purposes.  The same is true for any large file contains a unique identifier such as a 
verified Social Security Number and is updated with source files that do not contain the unique 
identifier.  Usually a register is the source of the unique identifier (such as a Social Security 
Number, Employer Identification Number or National Health Number).  We begin by describing 
very straightforward issues and then proceed to more complicated issues. 
   An agency maintains a National Death Register (NDR).  Entries are received from hospitals, 
coroner offices, and a variety of official sources.  The first entry in Table 15 with source ‘NDR’ is 
the typical entry in the register after it has been cleaned up.  The date-of-birth might be added 
from a record from a doctor, family member, coroner, or other source.  We see that there are very 
minor variations in the name that either an automatic procedure or a clerically assisted procedure 
could easily deal with during matching.  The county varies with some of the sources (police, 
doctor, family) and may represent counties that are near Harris County.  Because the John Smith 
is a common name, the date-of-death with sources (coroner, police, doctor) help determine ‘true’ 
matches.  The date-of-birth field is very useful in the NDR and might be available with records 
from the coroner or doctor (via health insurance verifying information).  SSN can be useful for 
general purposes and might be added from an external source. 
 



 
  Table 15.   Name and Other Information Variants   
__________________________________________________________________________ 
Source      Name                 County                      date-of-death    date-of-birth      SSN______ 
NDR        John L. Smith    Harris County, TX    Jan 26, 2005     Jun 15, 1946     123-45-6789 
Coroner    John Smith        Harris County, TX    Jan 26, 2005     Jun 15, 1946      bb  
Police       John Smith        Next1 County, TX    Jan 26, 2005      bb                      bb   
Doctor      John L. Smith    Next1 County, TX    Jan 25, 2005      June 15, 1946   bb 
Family      John L. Smith    Next2 County, TX    Feb 1, 2004       June 5, 1947     bb________ 
 
 
   We can make several observations.  The NDR may have several sources from which it can 
update its register.  In final entries, it may require extensive and periodic clerical review to 
remove typographical error.  If NDR entries contain typographical error, then it is much more 
likely that duplicates from a source such as Doctor may be added erroneously.  Over a period of 
time, individuals running the NDR may decide that certain sources such as Family may have 
much higher error rates and should only be used when other sources are unavailable.  Any new 
entry may have typographical error that needs to be corrected.  Any ‘corrected’ records should be 
certified with a status code that gives the date of the certification so that further changes to the 
record are not made.  The SSN is a useful identifier because it allows better determination of 
whether an entry is a duplicate.  There are 2-3 John Smiths associated with every date-of-birth 
and likely 2-3 John Smiths associated with most dates-of-death.  It is possible that on some dates, 
two John Smiths die in Harris County, TX. 
   The research problems are straightforward.  How much maintenance and resources are needed 
for a population register or large file C.  How useful is it to clean up minor spelling variations and 
typographical error in files?  Specifically, how are value-specific frequency tables that are 
constructed from population registers affected by typographical error?  Do the errors affect less 
frequent strings more than less frequent strings? 
 
5.  Concluding remarks 
 
   This document provides an overview of record linkage.  Record linkage is also referred to as 
data cleaning or object identification.  It gives background on how record linkage has been 
applied in matching lists of businesses.  It points out directions of research for improving the 
linkage methods. 
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