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ABSTRACT
This paper summarizes our efforts for the first time partici-
pation in the Violent Scene Detection subtask of the Medi-
aEval 2015 Affective Impact of Movies Task. We build vio-
lent scene detectors using both audio and visual cues. In par-
ticular, the audio cue is represented by bag-of-audio-words
with fisher vector encoding. The visual cue is exploited
by extracting CNN features from video frames. The detec-
tors are implemented using two-class linear SVM classifiers.
Evaluation shows that the audio detectors and the visual
detectors are comparable and complementary to each other.
Among our submissions, multi-modal late fusion leads to the
best performance.

1. INTRODUCTION
The 2015 Affective Impact of Movies Task consists of two

subtasks: Induced Affect Detection and Violence Detection
which we participated in for the first time. Violent scene
detection (VSD) which automatically detect violent scenes
in videos is a challenging task due to its large variations in
video quality, content, and broad semantic meaning. Vio-
lence is defined as“ violent videos are those one would not let
an 8 years old child see because of their physical violence”.
MediaEval provides a common corpus and evaluation plat-
form that encourages and enables competition and compar-
ison among research teams. In this paper, we describe our
VSD system for our first time participation in MediaEval
2015 [8]. We focus on utilizing both audio and visual cues
in the video for violent scene detection. Our audio-based
system uses bag-of-audio-words with fisher vector encoding,
while our visual-based system uses deep features extracted
by pretrained Convolutional Neural Networks (CNN) mod-
els. We combine both modalities via late fusion, and inves-
tigate two weighting strategies. One is equal weights, and
the other is non-equal weights learned on a held-out subset
of the development dataset.

2. SYSTEM DESCRIPTION
In this task, we build audio-only subsystems and visual-

only subsystems. We also fuse the two modality subsystems
via late fusion. The detailed description of feature represen-
tation and prediction model of each subsystem is presented
in following subsections.
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2.1 Audio Feature Representation
We chunk the audio stream into small segments with some

overlap (such as a 3-sec segment and 1-sec shift leading to 2-
sec of overlap between adjacent segments), and empirically
find that 2s segment length with 1s shift achieves the best
detection accuracy. We therefore use this setup.

We use the Mel-frequency Cepstral Coefficients (MFCCs)
as our fundamental frame-level feature. The MFCCs are
computed over a sliding short-time window of 25ms with
a 10ms shift [1]. Each 25ms frame of an audio segment
is then represented as a 39-dimensional MFCC feature vec-
tor (13-dimensional MFCC + delta + delta delta). An au-
dio segment is then represented by a set of MFCC feature
vectors. Finally, we use two encoding strategies to trans-
form this set of MFCC frames into a single fixed-dimension
segment-level feature vector: Bag-of-Audio-Words (BoAW)
and Fisher Vector (FV) [6].

Bag-of-Audio-Words: We first use an acoustic code-
book to generate the segment-level feature vector. The code-
book model is a common technique used in the document
classification (bag-of-words) [10] and the image classifica-
tion (bag-of-visual-words) [5] fields. We use the bag-of-
audio-words model to represent each audio segment by as-
signing its low-level acoustic features (MFCCs) to a discrete
set of codewords in the vocabulary (codebook), thus pro-
viding a histogram of codeword counts. The vocabulary of
BoAW is learned by applying Kmeans clustering algorithm
with K=4096 on the whole training dataset.

Fisher Vector: The Fisher Vector (FV) [6] representa-
tion can be seen as an extension of bag-of-words representa-
tion. Both the FV and BoAW are based on an intermediate
representation, the audio vocabulary built in the low level
feature space. The Fisher encoding uses Gaussian Mixture
Models (GMM) to construct an audio word dictionary. We
compute the gradient of the log likelihood with respect to the
parameters of the model to represent an audio segment. The
Fisher Vector is the concatenation of these partial deriva-
tives and describes in which direction the parameters of the
model should be modified to best fit the data. A GMM
with 256 mixtures is used in our experiments to generate
FV representation.

2.2 Visual Feature Representation
We consider both frame-level and video-level representa-

tions. Given a video, we uniformly extract its frames with
an interval of 0.5 seconds. Subsequently, we extract CNN
features from these frames. In particular, we employ two
existing CNN models, i.e., the 16-layer VGGNet [7] and



GoogLeNet [9]. The feature vectors are the last fully con-
nected layer of VGGNet, and the pool5 layer of GoogLeNet,
respectively.

A video’s feature vector is obtained by mean pooling the
feature vectors of its frames.

2.3 Classification Model
For both the audio and visual systems, we train two-class

linear SVM classifiers as violent scene detectors. A frame is
considered as a positive training example if its video is la-
belled as positive with respect to the violent class. To learn
from many training examples, we employ the Negative Boot-
strap algorithm [3]. The algorithm takes a fixed number N
of positive examples and iteratively selects those negative
examples, which are misclassified the most by the current
classifiers. The algorithm randomly samples 10×N number
of negative examples from the remaining negative examples
as candidates at each iteration. An ensemble of classifiers
trained in the previous iterations is used to classify each of
the negative candidate examples. The top N most misclas-
sified candidates are selected and used together with the N
positive examples to train a new classifier. The algorithm
takes several bags of positive examples and performs the
training independently on each of the positive bags, result-
ing in multiple ensembles. They are compressed into a single
vector [2], making the prediction very fast.

2.4 Prediction at Video Level
For detectors trained using the frame-level representa-

tions, they make prediction also at frame-level. In order to
aggregate the frame-level scores to the video-level, we first
apply temporal smoothing to refine scores per frame. For
the visual-based system, we take the maximum response of
the frames as their video score, while for the audio-based
system, the video score is obtained by averaging over its
frames.

We fuse the two modalities of audio and visual via simple
linear fusion at the decision score level. We experiment two
fusion strategies: 1) simply assigning equal fusion weights
to each modality and 2) learning the optimal fusion weights
via coordinate ascent [4].

3. EXPERIMENTS

3.1 Dataset
There are in total 6,144 labelled videos for development in

this year’s task. We split the development set randomly into
two partitions, namely 1) dev-train consisting of 4,300 videos
among which 190 videos are labelled as violent videos, and 2)
dev-val of 1844 videos among which 82 videos are labelled
as violent videos. The detectors are trained on dev-train,
with hyper parameters tuned on dev-val.

3.2 Submitted Runs
All the runs use the previous described subsystems or

fused system. We use feature name to indicate a specific
system. For instance, BoAW refers to the system using
the BoAW feature. Frame-level VGGNet-CNN means the
system is learned from frames which are represented by
VGGNet-CNN, while Video-level VGGNet-CNN means learn-
ing directly from video vectors. We submitted 5 runs:

Run1: Learned fusion of BoAW and FV.

Table 1: Performance of our VSD system with var-
ied settings. Evaluation metric: MAP.

System setting dev-val test
BoAW 0.320 –
FV 0.313 –
Frame-level GoogLeNet-CNN 0.245 –
Video-level GoogLeNet-CNN 0.296 –

Run1 (BoAW + FV) 0.348 0.106
Run2 (Frame-level VGGNet-CNN) 0.347 0.118
Run3 (Video-level VGGNet-CNN) 0.308 0.120
Run4 (Average fusion) 0.485 0.216
Run5 (Learned fusion) 0.500 0.211

Run2: Frame-level VGGNet-CNN.
Run3: Video-level VGGNet-CNN.
Run4: Average fusion of all audio and visual runs, in-
cluding BoAW, FV, Frame-level VGGNet-CNN, Video-level
VGGNet-CNN, Frame-level GoogLeNet-CNN, and Video-
level GoogLeNet-CNN.
Run5: Learned fusion of all audio and visual runs.

3.3 Results
The performance of our VSD system with varied settings

is summarized in Table 1. We observe that fusion is always
helpful. For the audio-only runs, fusion of BoAW and FV
brings additional gain. Fusion of the audio and visual runs
results in the best performance. Probably due to the diver-
gence between the dev-val set and the test set, while Run2
(Frame-level VGGNet-CNN) outperforms Run3 (Video-level
VGGNet-CNN) on dev-val, the latter is better on the test
set. Consequently, fusion with learned weights does not yield
improvement.

4. CONCLUSIONS
Our results show that both audio and visual modalities

can perform violence detection well and the two modali-
ties are complementary to each other and simple late fu-
sion of two modalities leads to performance enhancement.
The CNN features, although without domain-specific infor-
mation engineered, can generalize well for the VSD task. In
the future work, we will explore more effective fusion strat-
egy for improving detection performance.
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