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Abstract We investigate the relationships between various sum of squares
(SOS) and semidefinite programming (SDP) relaxations for the sensor net-
work localization problem. In particular, we show that Biswas and Ye’s SDP
relaxation is equivalent to the degree one SOS relaxation of Kim et al. We
also show that Nie’s sparse-SOS relaxation is stronger than the edge-based
semidefinite programming (ESDP) relaxation, and that the trace test for ac-
curacy, which is very useful for SDP and ESDP relaxations, can be extended
to the sparse-SOS relaxation.
Key words. Sensor network localization, semidefinite programming relaxation, sum of

squares relaxation, individual trace.

1 Introduction

In its basic form, the sensor network localization problem is that of finding
the coordinates of some sensors xi = (x1

i , x
2
i )

T ∈ R2, i = 1, . . . , m, while
given the Cartesian coordinates of n−m points in R2, xm+1, . . . , xn, which we
call anchors, and the Euclidean distances ‖xi − xj‖, for all (i, j) ∈ A, where
A ⊂ {(i, j) ∈ N2 : 1 ≤ i < j ≤ n} is the set of edges. We say that the two
points xi and xj are neighbors if (i, j) ∈ A. In practice, measured distances
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may be inexact, and we only know some estimated dij , where

d2
ij = ‖xtrue

i − x
true

j ‖2 + δij ∀(i, j) ∈ A,

δ = (δij)(i,j)∈A ∈ R|A| denotes the measurement noise, and x
true

i denotes the
true position of the ith point. When δ = 0, we call this problem the noiseless
sensor network localization problem.

The sensor network localization problem is NP-hard in general, thus ef-
forts have been directed at solving this problem approximately. One approach
involves solving a convex relaxation, and then refining the resulting solution
through local improvement. Examples of this approach are second-order cone
programming (SOCP) relaxations [4,13], semidefinite programming (SDP) re-
laxations [1–3,5–7,11], edge-based semidefinite programming (ESDP) relax-
ations [10,14] and sum of squares (SOS) relaxations [8]. We will compare the
SOS relaxations with the SDP type relaxations, and in particular show that
the SOS relaxations are tighter.

2 Notation

Throughout this paper, sensor positions xi are 2 × 1 vectors, Sn denotes the
space of n×n real symmetric matrices, and T denotes transpose. For a vector
v ∈ Rp, ‖v‖ denotes the Euclidean norm of v. For A ∈ Rp×q, aij denotes
the (i, j)th entry of A. For A,B ∈ Sp, A º B means A − B is positive
semidefinite. For A ∈ Sp and an index set I, AI =

(
aij

)
i,j∈I denotes the

principal submatrix of A comprising the rows and columns of A indexed by I.
Any instance of the sensor network localization problem has an associated

graph structure, namely the graph G = ({1, . . . , n},A). We will work under
the standard assumptions that every connected component of G has at least
one index corresponding to an anchor and that each sensor connects to at
least one other sensor. The first assumption is justified since if a connected
component has no anchors, all associated sensors are clearly not localizable,
i.e. their positions are not uniquely determined from the known distances;
while the second assumption is reasonable since if a sensor is only connected
to anchors, determining its location can be treated as a separate problem. We
partition the set A of edges into the sets As = {(i, j) ∈ A : i < j ≤ m}
(edges from a sensor to a sensor) and Aa = {(i, j) ∈ A : i ≤ m < j} (edges
from a sensor to an anchor). The set βk will be the set of all monomials in
variables {x1

i , x
2
i : i = 1, ..., m} with degree up to k, while for (i, j) ∈ A, the

set βk
ij will denote the set of all monomials of degree up to k in variables

{x1
i , x

2
i , x

1
j , x

2
j} if (i, j) ∈ As, or in variables {x1

i , x
2
i } if (i, j) ∈ Aa. Let β be

any set of monomials, we define ξβ to be the column vector indexed by β with
polynomial entries such that for each s ∈ β, [ξβ ]s = s(x). Let Γ be the set of
monomials obtained by taking all possible pairwise products of the elements
of β. Then

ξβξT
β =

∑

s∈Γ

s(x)As, (1)
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for some |β| × |β| real symmetric matrices As. Given a real vector y indexed
by a set of monomials containing Γ , we define the moment matrix of y with
respect to β as

Mβ(y) =
∑

s∈Γ

ysAs,

a linearization of (1).

3 SOS relaxations

The sensor network localization can be formulated as the following polynomial
optimization problem:

υopt := min
x1,...,xm

p(x) :=
∑

(i,j)∈A
(‖xi − xj‖2 − d2

ij)
2. (2)

Let P ⊆ R2×m be the set of minimizers to problem (2). This is an uncon-
strained polynomial optimization problem and can be relaxed using sums of
squares, as proposed in [8] by Nie:

υsos := max
qi,γ

γ

s.t. p(x)− γ =
∑r

i=1 qi(x)2,
(3)

where qi(x) are arbitrary polynomials. It is well known that this problem can
be reformulated as the following SDP

υsos := max
W,γ

γ

s.t. p(x)− γ = ξT
β2Wξβ2 , W º 0.

(4)

Write p(x) =
∑

s∈β4 pss(x), the dual of (4) can then be written as

υd
mom

:= min
y

∑

s∈β4

psys

s.t. Mβ2(y) º 0
y1 = 1,

(5)

where y is a real vector indexed by β4. The solution set of (5) is denoted
by Smom and the sensor xi is recovered from a solution y ∈ Smom by setting
xi = (yx1

i
, yx2

i
)T . The set of all sensor positions (each sensor position is denoted

by a 2× 1 vector) obtained this way is denoted by Pmom ⊆ R2×m.
In view of the special structure of (2), Nie proposed considering the fol-

lowing sparse-SOS relaxation:

υspsos := max
Wij ,γ

γ

s.t. p(x)− γ =
∑

(i,j)∈As

ξT
β2

ij
Wijξβ2

ij

Wij º 0 ∀(i, j) ∈ As.

(6)
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This corresponds to demanding not only that p(x)−γ is a sum of squares, but
also that each of its summands is the square of a polynomial depending only
on xi and xj , for some (i, j) ∈ As. The dual of (6) is

υspmom := min
y

∑

(i,j)∈A

∑

s∈β4
ij

pij
s ys

s.t. Mβ2
ij

(y) º 0 ∀(i, j) ∈ As

y1 = 1,

(7)

where

(‖xi − xj‖2 − d2
ij)

2 =:
∑

s∈β4
ij

pij
s s(x) ∀(i, j) ∈ A.

Note that Mβ2
ij

(y) º 0 for (i, j) ∈ As implies Mβ2
ij

(y) º 0 for (i, j) ∈ Aa, since
each sensor is connected to at least one other sensor. The solution set of (7) is
denoted by Sspmom . The sensor xi is recovered from a solution y of (7) by setting
xi = (yx1

i
, yx2

i
)T . The set of all sensor positions obtained this way is denoted

by Pspmom ⊆ R2×m. It was shown in [8, Theorem 3.4] that υspsos = υspmom

and it is easy to see that, in the noiseless case, P ⊆ Pmom ⊆ Pspmom and that
Smom ⊆ Sspmom . A general study of these sparse SOS relaxations can be found
in [9].

A different SOS relaxation is proposed in [5]. There, the original problem
is formulated as

υopt := min
x1,...,xm

p(x) :=
∑

(i,j)∈A

∣∣‖xi − xj‖2 − d2
ij

∣∣ , (8)

and a degree one SOS relaxation is used. More specifically, let

‖xi − xj‖2 − d2
ij =:

∑

s∈β2

pij
s s(x) ∀(i, j) ∈ A.

The relaxation is given by

υ1
mom := min

y

∑

(i,j)∈A

∣∣∣∣∣∣
∑

s∈β2

pij
s ys

∣∣∣∣∣∣
s.t. Mβ1(y) º 0

y1 = 1,

(9)

where Mβ1(y) is the moment matrix generated by moment vector y = (ys)s∈β2 .
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4 Relationship between SOS and SDP relaxations

In the SDP approach of Biswas and Ye [1,2], instead of (2), the sensor network
localization problem is formulated as in (8). Letting X :=

(
x1 · · · xm

)
and I2

denote the 2× 2 identity matrix, Biswas and Ye considered the following SDP
relaxation of (8):

min
Z

∑

(i,j)∈A

∣∣`ij(Z)− d2
ij

∣∣

s.t. Z =
(

U XT

X I2

)
º 0,

(10)

where U =
(
uij

)
1≤i,j≤m

and

`ij(Z) :=

{
uii − 2uij + ujj if i < j ≤ m;
uii − 2xT

i xj + ‖xj‖2 if i ≤ m < j.

The solution set of (10) is denoted by Ssdp , while the set of the corresponding
recovered sensor positions, given by X, is denoted by Psdp . Our first result
shows that the SDP relaxation (10) is equivalent to the degree one SOS relax-
ation (9). The proof presented is a simplification of the original argument and
is due to Paul Tseng.

Theorem 1 (a) Let Z be a feasible solution of (10), then there is a vector y
indexed by β2 that is feasible for (8) and has the same objective value.

(b) If y is a feasible solution of (8), then there exists Z that is feasible for
(10) and has the same objective value.

Proof (a) Let Z =
(

U XT

X I2

)
, where X =

(
x1 · · · xm

)
. Define y by setting

y1 = 1, yxk
i

= xk
i , yx1

i xk
j

= x1
i x

k
j and yx2

i x2
j

= uij − x1
i x

1
j for all i, j = 1, ..., m

and k = 1, 2. Let vk be the vector (xk
1 . . . xk

m), for k = 1, 2, then we have

Mβ1(y) =




1
vT
1

vT
2


 (

1 v1 v2

)
+

(
0 0
0 U −XT X

)
.

The first matrix is positive semidefinite of rank 1 while the second matrix is
positive semidefinite since, by (10) and a basic property of Schur complement,
U −XT X º 0. Thus y is a feasible solution of (8) and it is easy to check that
y gives the same objective value as Z.

(b) Consider the submatrices U1 and U2 of Mβ1(y) indexed by {1, x1
1, ..., x

1
m}

and {1, x2
1, ..., x

2
m} respectively. Let wk =

(
yxk

1
. . . yxk

m

)
, k = 1, 2. By the same

property of Schur complement as above, we have Uk º wT
k wk for k = 1, 2. Let

U = U1 + U2 and X =
(

w1

w2

)
, then

U = U1 + U2 º wT
1 w1 + wT

2 w2 = XT X,
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hence Z =
(

U XT

X I2

)
is a feasible solution of (10). Again, it is easy to check

that Z gives the same objective value as y.

The SDP relaxation (10) can be further relaxed to the ESDP relaxation by
requiring only the principal submatrices of Z associated with As to be positive
semidefinite, as proposed in [14]. Specifically, the ESDP relaxation is

min
Z

∑

(i,j)∈A

∣∣`ij(Z)− d2
ij

∣∣

s.t.




uii uij xT
i

uij ujj xT
j

xi xj I2


 º 0 ∀(i, j) ∈ As,

(11)

where Z stands for the matrix
(

U XT

X I2

)
, and whose solution set we will denote

by Sesdp . As usual we will denote by Pesdp the set of corresponding recovered
sensor positions X. Then we have the following result.

Theorem 2 In the noiseless case, Pspmom ⊆ Pesdp .

Proof Take any X =
(
x1 · · · xm

) ∈ Pspmom and the corresponding y ∈ Sspmom .
Then for each (i, j) ∈ As, it holds that Mβ2

ij
(y) º 0. Hence, both M{1,x2

i ,x2
j}(y)

and M{1,x1
i ,x1

j}(y), being principal submatrices of Mβ2
ij

(y), are positive semidef-
inite. For (i, j) ∈ As, define ukl := yx1

kx1
l

+ yx2
kx2

l
for k, l ∈ {i, j}. We claim

that 


uii uij xT
i

uij ujj xT
j

xi xj I2


 º 0.

To see this, it suffices to show that the Schur complement of I2,
(

uii uij

uij ujj

)
−

(‖xi‖2 xT
i xj

xT
i xj ‖xj‖2

)
,

is positive semidefinite. But this matrix is the sum of the Schur complement
of 1 in M{1,x1

i ,x1
j}(y), which is

(
y(x1

i )2 − (x1
i )

2 yx1
i x1

j
− x1

i x
1
j

y(x1
j )2 − x1

i x
1
j yx1

i x1
j
− (x1

j )
2

)
,

and the Schur complement of 1 in M{1,x2
i ,x2

j}(y), which is
(

y(x2
i )2 − (x2

i )
2 yx2

i x2
j
− x2

i x
2
j

y(x2
j )2 − x2

i x
2
j yx2

i x2
j
− (x2

j )
2

)
.

Both matrices are positive semidefinite since M{1,x2
i ,x2

j}(y) and M{1,x1
i ,x1

j}(y)
are. Hence, the claim follows.
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Define Z :=
(

U XT

X I2

)
. Then Z is feasible for (11). We shall show that

Z ∈ Sesdp . To this end, let qij be a column vector such that

‖xi − xj‖2 − d2
ij =:

∑

s∈β2
ij

qij
s s(x) ∀(i, j) ∈ A.

Since Mβ2
ij

(y) º 0 for all (i, j) ∈ A, it follows that
(

1
∑

s∈β2
ij

qij
s ys∑

s∈β2
ij

qij
s ys

∑
s∈β4

ij
pij

s ys

)
=

(
eT
1

qT

)
Mβ2

ij
(y)

(
e1 q

) º 0

for all (i, j) ∈ A, where e1 is the vector that is one in the first entry and zero
otherwise. This last relation implies

∑

s∈β4
ij

pij
s ys ≥


 ∑

s∈β2
ij

qij
s ys




2

=
(
`ij(Z)− d2

ij

)2 ∀(i, j) ∈ A.

Since y ∈ Sspmom , the noiseless assumption implies that
∑

(i,j)∈A
(
`ij(Z)− d2

ij

)2 =
0, and hence Z solves (11). This proves that Pspmom ⊆ Pesdp .

From the above proof, we obtain the following corollary.

Corollary 1 Consider the noiseless case. Let y ∈ Sspmom . For (i, j) ∈ As,
define xs

k := yxs
k
, ukl := yx1

kx1
l

+ yx2
kx2

l
, for s = 1, 2 and k, l ∈ {i, j}. Then

Z :=
(

U XT

X I2

)
∈ Sesdp .

Remark 1 Similarly one can show that, in the noiseless case, Pmom ⊆ Psdp .

5 Testing accuracy of individual sensors

As in [10], [13] and [14], one is interested in identifying sensors whose recovered
locations remain the same for all solutions since, in the noiseless case, these
sensors will turn out to be in their true position. Hence, we are interested in
the following set

Ispmom :=
{

i ∈ {1, ..., m} | (yx1
i
, yx2

i
) is invariant over Sspmom .

}

In order to identify elements in Ispmom , we consider a version of individual
trace for SOS relaxations.

Definition 1 For any y ∈ Sspmom , the i-th individual trace of y is defined as

Tri(y) := y(x1
i )2 + y(x2

i )2 − (yx1
i
)2 − (yx2

i
)2.
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Note that the trace is always nonnegative since y(xk
i )2 − (yxk

i
)2 is the determi-

nant of a principal submatrix of Mβ2
ij

(y), for k = 1, 2. We have the following
simple result, generalizing the zero trace test to the setting of SOS relaxations.
The proof parallels that of [13, Proposition 4.1].

Theorem 3 If Tri(y) = 0 for some y in the relative interior of Sspmom , then
i ∈ Ispmom .

Proof We shall show that yx1
i

is invariant over Sspmom . The proof for yx2
i

is
similar. Note that Tri(y) = 0 implies y(x1

i )2 = (yx1
i
)2. Take any w ∈ Sspmom .

Since y is in the relative interior of Sspmom , there exists ε > 0 so that both

η := y + ε(w − y) and ζ := y − ε(w − y)

belong to Sspmom . Thus, y = η+ζ
2 and hence

0 = y(x1
i )2 − (yx1

i
)2 =

1
2
[η(x1

i )2 − (ηx1
i
)2] +

1
2
[ζ(x1

i )2 − (ζx1
i
)2] +

1
4
(ηx1

i
− ζx1

i
)2

≥ 1
4
(ηx1

i
− ζx1

i
)2 = ε2(wx1

i
− yx1

i
)2.

This shows that wx1
i

= yx1
i

and the proof is complete.

It is not known whether the converse of Theorem 3 is true. Nonetheless, we
are able to establish a partial converse to the theorem in the noiseless case.
This follows from the fact that if y ∈ Sspmom and Z ∈ Sesdp is obtained from y
according to Corollary 1 then the trace Tri(y) equals the ESDP trace tri(Z)
as defined in [14]. Then the proofs of [10, Lemmas 2,3] follow through and we
get the following result.

Lemma 1 In the noiseless case, let i ≤ m and y ∈ Sspmom be such that the
corresponding recovered sensor positions verify ‖xi−xj‖ = dij. Then if j > m,
we have Tri(y) = 0, and if j ≤ m, we have Tri(y) = Trj(y).

Now, the next theorem follows from Lemma 1 by a simple induction argument.

Theorem 4 In the noiseless case, let i ∈ Ispmom be such that there exists a
path with nodes in Ispmom connecting xi to an anchor. Then Tri(y) = 0 for all
y ∈ Sspmom .

6 Numerical examples

Theorem 2 says that in the noiseless case, the sparse-SOS relaxation is at least
as strong as the ESDP relaxation. We illustrate this fact in Example 1, which
is taken from [14, Example 1]. In [14], the same example was used to illustrate
that the SDP relaxation is stronger than the ESDP relaxation. All computa-
tions presented were done with SeDuMi1.05 [12] interfaced in Matlab7.7.
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Example 1 Let n = 6 and m = 3. The anchors are x4 = (−0.4, 0)T , x5 =
(0.4, 0)T and x6 = (0, 0.4)T , and the true positions of the sensors are x1 =
(−0.05, 0.3)T , x2 = (−0.08, 0.2)T and x3 = (0.2, 0.3)T . We have A = {(1, 2),
(1, 3), (1, 4), (1, 6), (2, 3), (2, 4), (2, 6), (3, 5), (3, 6)}.

First we solve the ESDP relaxation (11); the result is inaccurate, as is
shown in Figure 1, with RMSD being 6e-2; where RMSD stands for Root
Mean Square Deviance, defined by

RMSD =

(
1
m

m∑

i=1

‖xi − x
true

i ‖2
) 1

2

. (12)

However, the sparse-SOS relaxation seems to provide an accurate solution, as
is shown in the figure, with RMSD 9e-5. This is also suggested by the small
individual traces of the solution obtained by solving the sparse-SOS relaxation:
4e-7, 2e-6 and 1e-6. By Theorem 3, the sensors are likely accurately positioned,
since SeDuMi likely returns a relative interior solution. On the other hand, the
individual traces of the solution obtained by solving the ESDP relaxation turn
out to be much larger: 1e-3, 7e-3 and 4e-3, so the solution is less likely to be
accurate.

How does the SOS relaxation compare with the SDP relaxation? The next
example shows a network that is not localizable by solving the SDP relaxation,
yet is likely localizable by solving the SOS relaxation. This implies that the
underlying graph has a unique realization in R2, but does not have a unique
realization if we relax the dimension restriction. It is surprising that the SOS
relaxation is strong enough to restrict the dimensionality of the realization.

Example 2 Let n = 5 and m = 2. The anchors are x3 = (0, 0)T , x4 = (0.5, 1)T

and x5 = (1, 0)T , and the true positions of the sensors are x1 = (0.4, 0.7)T and
x2 = (0.6, 0.7)T . We have A = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4)}.

First we solve the SDP relaxation (10); the result is inaccurate, as is shown
in Figure 2, with RMSD being 1e-1. It can also be shown manually that the
solution to this SDP relaxation is not unique. However, the SOS relaxation
seems to provide an accurate solution, as is shown in the figure, with RMSD
2e-4. This is also suggested by the individual traces of the solution obtained
by solving the SOS relaxation: both being 3e-6.

The only existing computational results on solving (7) for large scale prob-
lems are reported in [8]. The codes are written in Matlab, calling SeDuMi to
solve the corresponding SDP. The solution time is large comparing with other
existing methods for sensor network localization [3,5,6,10,14] that solve other
convex relaxations. In view of Theorems 2 and 3, it is worth investigating ef-
ficient algorithms to solve for a relative interior solution of (7). Since (7) has
a partial separable structure, one direction is to look for a distributed algo-
rithm, like the LPCGD algorithm in [10], to solve (7). A distributed algorithm
is important for applications like real time tracking. Since each edge is related
to a 15 by 15 matrix in the sparse-SOS relaxation, it should take more time
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Fig. 1 The top left figure shows the anchor (“¨”) and the solution found by solving ESDP
relaxation (11). Each sensor position (“∗”) found is joined to its true position (“◦”) by
a line. The top right figure shows the same information for the solution found by solving
sparse-SOS relaxation (6). The bottom figure shows the location of the points (“•”) and the
edges.

to solve (7) than to solve (11). However, sparse-SOS relaxation is stronger
than the ESDP relaxation by Theorem 2: this is a tradeoff between solution
accuracy and solution time.

A possible approach to save solution time and yet get higher accuracy
would be to use this stronger convex relaxation to refine the solution obtained
from solving the ESDP relaxation. Taking advantage of the existing trace test
for ESDP, we take an ESDP solution, fix those sensors with small trace as new
anchors, and run the sparse-SOS relaxation in the remaining reduced network.
The advantage of this approach is that we would still have an accuracy certifi-
cate for the refined solution (the trace test), which is not common for existing
refinement heuristics. Moreover, since the sparse-SOS relaxation is solved on
the reduced network, the time taken to solve the problem should be smaller
compared to solving the sparse-SOS relaxation on the whole network.
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Fig. 2 The top left figure shows the anchor (“¨”) and the solution found by solving SDP
relaxation (10). Each sensor position (“∗”) found is joined to its true position (“◦”) by a
line. The top right figure shows the same information for the solution found by solving SOS
relaxation (4). The bottom figure shows the location of the points (“•”) and the edges.
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