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ABSTRACT
Probabilistic model checking is a formal verification frame-
work for systems which exhibit stochastic behaviour. It has
been successfully applied to a wide range of domains, includ-
ing security and communication protocols, distributed algo-
rithms and power management. In this paper we demon-
strate its applicability to the analysis of biological pathways
and show how it can yield a better understanding of the
dynamics of these systems. Through a case study of the
MAP (Mitogen-Activated Protein) Kinase cascade, we ex-
plain how biological pathways can be modelled in the prob-
abilistic model checker PRISM and how this enables the
analysis of a rich selection of quantitative properties.

1. INTRODUCTION

Recent research has had considerable success adapting ap-
proaches from computer science to the analysis of biological
systems and, in particular, biochemical pathways. The fun-
damental theory behind the majority of this work is the
simulation-based techniques for discrete stochastic models
originally introduced by Gillespie [9]. This models the evo-
lution of individual molecules, whose rates of interaction are
controlled by exponential distributions, and differs from the
principal alternative modelling paradigm of pathways, us-
ing ordinary differential equations to model the evolution of
average molecular concentrations over time. We adopt the
stochastic modelling approach but, by employing formal ver-
ification techniques, compute exact quantitative measures as
opposed to taking averages over sets of simulation runs.

In this paper we show how probabilistic model checking
[2, 21, 31] and the probabilistic model checker PRISM [15,
26] can be employed as a framework for the modelling and
analysis of biological pathways. This approach is motivated
by both the fact that PRISM has already been successfully
applied to the study of biological pathways [12, 4, 29] and
previous work which has demonstrated the applicability of
probabilistic model checking to the analysis of a wide variety
of complex stochastic systems [19].

This framework inherits many of the advantages of model
checking, including the use of a formal model and speci-
fication of the system under study and the fact that the
approach is exhaustive, analysing all possible behaviours of
the system. We are also able to re-use existing technology,
exploiting the efficient implementations and tool support de-
veloped for probabilistic model checkers such as PRISM,
see for example [18]. The intention is that probabilistic
model checking should be used in conjunction with other,

well-established approaches for analysing pathways based
on simulation and differential equations. In combination,
these techniques can offer greater insight into the complex
interactions present in biological pathways.

Outline of the paper. In the next section we give an overview
of probabilistic model checking and the tool PRISM. Sec-
tion 3 presents the MAPK cascade, discusses how the path-
way can be modelled in the PRISM language and demon-
strates how PRISM can be used to specify and analyse a
wide range of quantitative properties. In Section 4 we dis-
cuss related work and Section 5 concludes the paper.

2. PROBABILISTIC MODEL CHECKING
Probabilistic model checking is a formal verification tech-
nique for the modelling and analysis of systems which ex-
hibit stochastic behaviour. This technique is a variant of
model checking , a well-established and widely-used formal
method for ascertaining the correctness of real-life systems.
Model checking requires two inputs:

• a description of the system, usually given in some high-
level modelling formalism such as a Petri net or process
algebraic expression;

• a specification of one or more desired properties of the
system, normally using temporal logics such as CTL
(Computation Tree Logic) or LTL (Linear-time Tem-
poral Logic).

From these inputs, a model checker can construct a model
of the system, typically a labelled state-transition system
in which each state represents a possible configuration and
each transition represents an evolution of the system from
one configuration to another over time. It is then possible
to automatically verify whether or not each property is sat-
isfied, based on a systematic and exhaustive exploration of
the constructed state-transition system.

In probabilistic model checking, the models are augmented
with quantitative information regarding the likelihood that
transitions occur and the times at which they do so. In prac-
tice, these models are typically Markov chains or Markov
decision processes. To model biological pathways the appro-
priate model is continuous-time Markov chains (CTMCs),
in which transitions between states are assigned (positive,
real-valued) rates. These values are interpreted as the rates
of negative exponential distributions.

Formally, letting R≥0 denote the set of non-negative reals
and AP be a fixed, finite set of atomic propositions used to



label states with properties of interest, a CTMC is a tuple
(S,R, L) where:

• S is a finite set of states;

• R : (S × S) → R≥0 is a transition rate matrix ;

• L : S → 2AP is a labelling function which associates
each state with a set of atomic propositions.

The transition rate matrix R assigns rates to each pair of
states, which are used as parameters of the exponential dis-
tribution. A transition can only occur between states s
and s′ if R(s, s′)>0 and, in this case, the probability of
the transition being triggered within t time-units equals

1 − e−R(s,s′)·t. Typically, in a state s, there is more than
one state s′ for which R(s, s′)>0; this is known as a race
condition and the first transition to be triggered determines
the next state. The time spent in state s before any such
transition occurs is exponentially distributed with the rate
E(s) =

P
s′∈S R(s, s′), called the exit rate. The probability

of moving to state s′ is given by R(s, s′)/E(s).
A CTMC can be augmented with rewards, attached to

states and/or transitions of the model. Formally, a reward
structure for a CTMC is a pair (ρ, ι) where:

• ρ : S → R≥0 is a state reward function;

• ι : (S × S) → R≥0 is a transition reward function.

State rewards can represent either a quantitative measure
of interest at a particular time instant (e.g. the number of
phosphorylated proteins in the system) or the rate at which
some measure accumulates over time (e.g. energy dissipa-
tion). Transition rewards are accumulated each time a tran-
sition occurs and can be used to compute, e.g. the number
of protein bindings over a particular time period.

Properties of CTMCs are, like in non-probabilistic model
checking, expressed in temporal logic, but are now quan-
titative in nature. For this, we use probabilistic temporal
logics such as CSL [1, 2] and its extensions for reward-based
properties [21]. For example, rather than verifying that ‘the
protein always eventually degrades’, using CSL allows us
to ask ‘what is the probability that the protein eventually
degrades?’ or ‘what is the probability that the protein de-
grades within t hours?’. Reward-based properties include
‘what is the expected time that proteins are bound within
the first t time units?’ and ‘what is the expected number
of phosphorylations before relocation occurs?’. For further
details on probabilistic model checking of CTMCs, see for
example [2, 21, 31].

PRISM [15, 26] is a probabilistic model checking tool de-
veloped at the Universities of Birmingham and Oxford. It
provides support for several types of probabilistic models,
including CTMCs. Models are specified in a simple, state-
based language based on guarded commands. PRISM’s no-
tation for specifying properties of CTMCs incorporates the
reward-based extension ([21]) of CSL.

The underlying computation in PRISM involves a combi-
nation of:

• graph-theoretical algorithms, for conventional tempo-
ral logic model checking and qualitative probabilistic
model checking;

• numerical computation, for quantitative probabilistic
model checking, i.e. calculation of probabilities and re-
ward values.

Graph-theoretical algorithms are comparable to the opera-
tion of a conventional, non-probabilistic model checker. For
numerical computation, PRISM typically solves linear equa-
tion systems or performs transient analysis. Due to the size
of the models that need to be handled, the tool uses iter-
ative methods rather than direct methods. For solution of
linear equation systems, it supports a range of well-known
techniques including the Jacobi, Gauss-Seidel and SOR (suc-
cessive over-relaxation) methods; for transient analysis of
CTMCs, it employs uniformisation.

One of the most notable features of PRISM is that it uses
state-of-the-art symbolic approaches, using data structures
based on binary decision diagrams [18, 24]. These allow for
compact representation and efficient manipulation of large,
structured models by exploiting regularities exhibited in the
high-level modelling language descriptions. The tool actu-
ally provides three distinct engines for numerical solution:
the first is purely symbolic; the second uses sparse matri-
ces; and the third is a hybrid, using a combination of the
two. The result is a flexible implementation which can be
adjusted to improve performance depending on the type of
models and properties being analysed.

PRISM also incorporates a discrete-event simulation en-
gine. This allows approximate solutions to be generated for
the numerical computations that underlie the model check-
ing process, by applying Monte Carlo methods and sam-
pling. These techniques offer increased scalability, at the
expense of numerical accuracy. Using the same underlying
engine, PRISM includes a tool to perform manual execution
and debugging of probabilistic models. Other functionality
provided by the user interface of the tool includes a graph-
plotting component for visualisation of numerical results and
editors for the model and property specification languages.

3. CASE STUDY: MAPK CASCADE

We demonstrate the application of probabilistic model check-
ing to the modelling, specification and analysis of biological
pathways through a case study: the MAPK cascade.

The MAP (Mitogen-Activated Protein) Kinases are in-
volved in a pathway through which information is sent to
the nucleus. It is one of the most important signalling
pathways, playing a pivotal role in the molecular-signalling
that governs the growth, proliferation and survival of many
cell types. The MAPK cascade consists of a MAPK Ki-
nase Kinase (MAPKKK), a MAPK Kinase (MAPKK) and
a MAPK. The cascade is initialised through the phosphory-
lation of MAPKKK, which then activates MAPKK through
phosphorylation at two serine residues. This then activates
MAPK through phosphorylation at theronine and tyrosine
residues. The initialisation of the pathway can be caused
by a diverse set of stimuli including growth factors, neuro-
transmitters and cytokines.

Figure 1 gives an overview of the structure of the path-
way and Figure 2 details the reactions that form the cas-
cade, as taken from [16]. In the reactions presented in Fig-
ure 2, it is assumed that the phosphorylation of both MAPK
and MAPKK occur in two distributed steps. For exam-
ple, when MAPK collides with its activator (MAPKK-PP)
the first phosphorylation (MAPK-P) occurs and the activa-
tor is released. The phosphorylated MAPK must then col-
lide again with its activator for the second phosphorylation
(MAPK-PP) to occur. The deactivation of phosphorylated
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Figure 1: MAPK cascade pathway

MAPK and MAPKK is caused by the corresponding phos-
phatase, while the activation and deactivation of MAPKKK
is through the enzymes E1 and E2 respectively. To simplify
the presentation in Figure 2 we denote MAPK, MAPKK
and MAPKKK by K, KK and KKK respectively.

The kinetic rates given in Figure 2 are based on the data
presented in [16] where it is assumed that the Km values
(Km = (dm + km)/am) for phosphorylation and dephospho-
rylation of MAPK, MAPKK and MAPKK all equal 300 nM.

3.1 Specifying the model

We now outline how to construct a discrete stochastic model
of the MAPK cascade reactions from Figure 2 in the mod-
elling language of the PRISM tool. The applicability of
probabilistic model checking and PRISM follows from the
fact that the underlying model can be shown to be a CTMC,
in which the stochastic rates associated with each transition
can be derived from the kinetic rates of the reactions. In
the case of unary reactions, the stochastic rate equals the
kinetic rate. On the other hand, for binary reactions, if the
kinetic rate is given in terms of molar concentrations, then
the stochastic rate can be obtained by dividing by Vol · NA

where Vol is the volume and NA is Avogadro’s number. For
a more detailed discussion of the relationship between ki-
netic and stochastic rates, see for example [34, 9].

A model described in the PRISM language comprises a
set of modules, the state of each being represented by a set
of finite-ranging variables. The global state of the model is
determined by the union of all variables, which we denote V .
The atomic propositions of the model are given by predicates
over the variables V and the labelling function assigns to
each state the predicates that it satisfies.

The behaviour of a module, i.e. the changes in state which
it can undergo, is specified by a number of guarded com-
mands of the form:

[act ] guard → rate : update;

where act is an (optional) action label, guard is a predicate
over the variables V , rate is a (non-negative) real-valued
expression and update is of the form:

(x′1=u1) & (x′2=u2) & . . . & (x′k=uk)

where u1, u2, . . . , uk are functions over V and x1, x2, . . . , xk

are variables of the module. Intuitively, in global state s
of the PRISM model, the command is enabled if s satisfies
the predicate guard . If a command is enabled, a transition
that updates the module’s variables according to update can
occur with rate rate. When multiple commands with the

1. MAPKKK is activated through enzyme E1

KKK + E1 → KKK:E1 a1=1 nM−1s−1

KKK + E1 ← KKK:E1 d1=150 s−1

KKK:E1 → KKK? + E1 k1=150 s−1

2. MAPKKK is deactivated through enzyme E2

KKK? + E2 → KKK:E2 a2=1 nM−1s−1

KKK? + E2 ← KKK:E2 d2=150 s−1

KKK?:E2 → KKK + E2 k2=150 s−1

3. MAPKK is activated by MAPKKK?

KK + KKK? → KK:KKK? a3=1 nM−1s−1

KK + KKK? ← KK:KKK? d3=150 s−1

KK:KKK? → KK-P + KKK? k3=150 s−1

4. MAPKK-P is deactivated by MAPKK phosphatase

KK-P + KK-Ptase → KK-P:KK-Ptase a4=1 nM−1s−1

KK-P + KK-Ptase ← KK-P:KK-Ptase d4=150 s−1

KK-P:KK-Ptase → KK + KK-Ptase k4=150 s−1

5. MAPKK-P is activated by MAPKKK?

KK-P + KKK? → KK-P:KKK? a5=1 nM−1s−1

KK-P + KKK? ← KK-P:KKK? d5=150 s−1

KK-P:KKK? → KK-PP + KKK? k5=150 s−1

6. MAPKK-PP is deactivated by MAPKK phosphatase

KK-PP + KK-Ptase → KK-PP:KK-Ptase a6=1 nM−1s−1

KK-PP + KK-Ptase ← KK-PP:KK-Ptase d6=150 s−1

KK-PP:KK-Ptase → KK-PP + KK-Ptase k6=150 s−1

7. MAPK is activated by MAPKK-PP

K + KK? → K:KK? a7=1 nM−1s−1

K + KK? ← K:KK? d7=150 s−1

K:KK? → K-P + KK? k7=150 s−1

8. MAPK-P is deactivated by MAPK phosphatase

K-P + K-Ptase → K-P:K-Ptase a8=1 nM−1s−1

K-P + K-Ptase ← K-P:K-Ptase d8=150 s−1

K-P:K-Ptase → KK + K-Ptase k8=150 s−1

9. MAPK-P is activated by MAPKK-PP

K-P + KK? → K-P:KK? a9=1 nM−1s−1

K-P + KK? ← K-P:KK? d9=150 s−1

K-P:KK? → K-PP + KK? k9=150 s−1

10. MAPK-P is deactivated by MAPK phosphatase

K-PP + K-Ptase → K-PP:K-Ptase a10=1 nM−1s−1

K-PP + K-Ptase ← K-PP:K-Ptase d10=150 s−1

K-PP:K-Ptase → K-PP + K-Ptase k10=150 s−1

Figure 2: MAPK Cascade reactions

same update are enabled, the corresponding transitions are
combined into a single transition whose rate is the sum of
the individual rates.

To model interactions where the state of several modules
changes simultaneously, we use synchronisation, through the
action labels that can be included in the guarded commands.
The rate of the combined transition is defined as the product
of the rates for each command. As we will see below, the
rate of the combined transition is often fully specified in
one module and rates omitted from the other modules (this
yields the correct rate since PRISM assigns a rate of 1 to
any command for which none is specified).

When building a PRISM model of a biological pathway, it
is possible to construct an individual-based model which pro-
vides a detailed model of the evolution of individual molec-
ular components. However, taking this approach comes at
a cost: it will inevitably suffer from the well known state-
space explosion problem where, as the complexity of the
system increases, the state space of the underlying model
grows exponentially.

An alternative is to employ a population-based approach
where the number of each type of molecule or species is mod-
elled, rather than the state of each individual component.
Such an approach leads to a much smaller state-space (see
for example [12]) while still including sufficient detail to ex-



const int N ; // initial amount of MAPK

// stochastic reaction rates
const double a7=1/N ; const double d7=150; const double k7=150;
const double a8=1/N ; const double d8=150; const double k8=150;
const double a9=1/N ; const double d9=150; const double k9=150;
const double a10=1/N ; const double d10=150; const double k10=150;

module MAPK

k : [0..N ] init N ; // quantity of MAPK
k kkpp : [0..N ] init 0; // quantity of MAPK:MAPKK-PP
kp : [0..N ] init 0; // quantity of MAPK-P
kp kkpp : [0..N ] init 0; // quantity of MAPK-P:MAPKK-PP
kp ptase : [0..N ] init 0; // quantity of MAPK-P:MAPK phosphatase
kpp : [0..N ] init 0; // quantity of MAPK-PP
kpp ptase : [0..N ] init 0; // quantity of MAPK-PP:MAPK phosphatase

// reaction 7 (MAPK is activated by MAPKK-PP)
[a k kk ] k>0 & k kkpp<N → a7 ∗ k : (k kkpp′=k kkpp + 1) & (k ′=k − 1);
[d k kk ] k<N & k kkpp>0 → d7 ∗ k kkpp : (k kkpp′=k kkpp − 1) & (k ′=k + 1);
[k k kk ] k kkpp>0 & kp<N → k7 ∗ k kkpp : (k kkpp′=k kkpp − 1) & (kp′=kp + 1);
// reaction 8 (MAPK-P is deactivated by MAPK phosphatase)
[a k ptase] kp>0 & kp ptase<N → a8 ∗ kp : (kp ptase′=kp ptase + 1) & (kp′=kp − 1);
[d k ptase] kp<N & kp ptase>0 → d8 ∗ kp ptase : (kp ptase′=kp ptase − 1) & (kp′=kp + 1);
[k k ptase] kp ptase>0 & k<N → k8 ∗ kp ptase : (kp ptase′=kp ptase − 1) & (k ′=k + 1);
// reaction 9 (MAPK-P is activated by MAPKK-PP)
[a k kk ] kp>0 & kp kkpp<N → a9 ∗ kp : (kp kkpp′=kp kkpp + 1) & (kp′=kp − 1);
[d k kk ] kp<N & kp kkpp>0 → d9 ∗ kp kkpp : (kp kkpp′=kp kkpp − 1) & (kp′=kp + 1);
[k k kk ] kp kkpp>0 & kpp<N → k9 ∗ kp kkpp : (kp kkpp′=kp kkpp − 1) & (kpp′=kpp + 1);
// reaction 10 (MAPK-PP is deactivated by MAPK phosphatase)
[a k ptase] kpp>0 & kpp ptase<N → a10 ∗ kpp : (kpp ptase′=kpp ptase + 1) & (kpp′=kpp − 1);
[d k ptase] kpp<N & kpp ptase>0 → d10 ∗ kpp ptase : (kpp ptase′=kpp ptase − 1) & (kpp′=kpp + 1);
[k k ptase] kpp ptase>0 & kp<N → k10 ∗ kpp ptase : (kpp ptase′=kpp ptase − 1) & (kp′=kp + 1);

endmodule

Figure 3: PRISM module representing quantities of species relating to MAPK

press the properties of interest. For these reasons, it is this
approach that we use here.

For the PRISM language, a population-based model can
be expressed naturally by using the variables of modules
as counters, i.e. there is a variable for each of the possible
species in the system which keeps count of the number of
that species that are currently present.

In Figure 3, we present the module representing quan-
tities of the species relating to MAPK and, in Figure 4,
the module representing MAPK phosphatase. Note that,
the whole cascade could have been specified in one single
large PRISM module. However, there is a natural sepa-
ration of the different elements in the cascade (those relat-
ing to MAPKKK, MAPKK, MAPK, MAPKK phosphatase,
MAPK phosphatase, E1 and E2) and defining the system us-
ing individual modules based on this separation makes the
description simpler, easier to understand and less prone to
modelling errors. This fact can be seen in other PRISM lan-
guage models of biological pathways, see for example [12, 4,
26]. The complete PRISM description of the MAPK cascade
is available from the case study repository on the PRISM
website [26].

As can be seen in Figures 3 and 4, we have specified that
there are initially N inactive MAPKs (the initial value of
the variable k is N) and M MAPK phosphatases (the initial
value of kptase is M). The actual values of N and M have
been left undefined since, as will be seen later, this allows
these parameters to be varied during model checking.

The values for stochastic reaction rates of the system are
defined as constants (see the top of Figure 3). Notice that
the stochastic rates of the binary reactions (i.e. those speci-
fied by the constants a7 , a8 , a9 and a10 ) are obtained from

the kinetic rates by dividing by the initial number of MAPKs
(i.e. N) . This is because (recall the discussion of computing
stochastic reaction rates earlier in this section) we make the
assumption that volume of the system is proportional to the
initial number of MAPKs. It would also have been possi-
ble to leave some of the constants for the stochastic rates
unspecified and also vary these during verification.

Figures 3 and 4 also show that the modules for MAPK
and MAPK phosphatase synchronise through the actions
a k ptase, d k ptase and k k ptase, which correspond to the
deactivation of MAPK (as described in reactions 8 and 10
of Figure 2). The actions a k kk , d k kk and k k kk , which
appear in the module for MAPK (Figure 3), correspond to
the activation of MAPK by MAPKK-PP (see reactions 7
and 9 of Figure 2), and there will therefore be corresponding
commands in the module for MAPKK.

When using a population-based approach, we must ensure
that the rates of the CTMC take into account the different
possible interactions that can occur. For example, if there
are three activated MAPKs (k pp1, k pp2 and k pp3) and
two MAPK phosphatases (kptase1 and kptase2) then there
are six different species that can be formed: k pp1: kptase1,
k pp1: kptase2, k pp2: kptase1, k pp2: kptase2, k pp3: kptase1

and k pp3: kptase2. The reaction rate is thus proportional
to both the number of activated MAPKs and the number
of MAPK phosphatases. This is straightforward to achieve
in the PRISM modelling language since PRISM multiplies
rates when modules synchronise: in this case, we set the
rates to a10 ∗ kpp and kptase in the modules MAPK (Fig-
ure 3) and KPTASE (Figure 4), respectively.



const int M ; // initial amount of MAPK phosphatase

module KPTASE

kptase : [0..M ] init M ; // amount of MAPK phosphatase

// reactions 8 and 10
// (MAPK/MAPK-P is deactivated by MAPK phosphatase)
[a k ptase] kptase>0 → kptase : (kptase′=kptase − 1);
[d k ptase] kptase<M → 1 : (kptase′=kptase + 1);
[k k ptase] kptase<M → 1 : (kptase′=kptase + 1);

endmodule

Figure 4: PRISM module representing quantity of
MAPK phosphatase

3.2 Specifying rewards

Rewards are PRISM’s mechanism for describing additional
quantitative measures of probabilistic models. In this sec-
tion we explain how to specify reward structures for the
PRISM model of the MAPK cascade presented in the pre-
vious section. Reward structures in PRISM are described
using the construct:

rewards “reward name” . . . endrewards

comprising one or more state-reward items of the form:

guard : reward ;

and/or transition-reward items of the form:

[act ] guard : reward ;

where guard is a predicate (over all the variables V of the
model), act is an action label appearing in the commands of
the model and reward is a real-valued expression (which can
contain variables and constants from the model). A state-
reward item assigns a state reward of reward to all states
satisfying guard and a transition-reward item assigns a tran-
sition reward of reward to all act-labelled transitions from
states satisfying guard . Multiple rewards (from different re-
ward items) for a single state or transition are summed and
states or transitions with no assigned reward are assumed
to have reward 0.

In Figure 5, we present three different reward structures
for the PRISM model of the cascade. The first reward struc-
ture (“activated”) assigns a state reward equal to the per-
centage of MAPK that is activated. This can be used to
compute the expected percentage of activated MAPK at
some time instant or in the long run. The second reward
structure “reactions” assigns a reward of 1 to all transi-
tions which correspond to a reaction between MAPK and
MAPKK. This can be used to compute the expected num-
ber of such reactions within a particular period of time or
on average (in the long run). The third reward structure
(“time”) simply assigns a state reward of 1 to all states in
the model which can be used, for example, to analyse the
total expected time before an event/reaction occurs or a
certain configuration is reached.

3.3 Specifying properties

The temporal logic CSL, originally introduced by Aziz et al.
[1] and since extended by Baier et al. [2], is based on the

rewards “activated”

true : 100∗(kpp/N );

endrewards

rewards “reactions”
[a k kk ] true : 1;
[d k kk ] true : 1;
[k k kk ] true : 1;

endrewards

rewards “time”

true : 1;

endrewards

Figure 5: Reward structures for the cascade

temporal logics CTL [5] and PCTL [11]. It provides a pow-
erful means of specifying a variety of performance measures
on CTMCs. PRISM use an extended version [21] which also
allows for the specification of reward properties. We now
give a number of examples of such specifications relating
to the PRISM model and reward structures for the MAPK
cascade presented in the previous sections. Recall that, in a
PRISM model, atomic propositions are given by predicates
over the variables of the model.

• (kkpp=N ∧ kpp=0) → P≥0.12[ (kkpp>0) U (kpp>0) ] -
if all MAPKKs are activated and none of the MAPK
are activated, then the probability that, while some
MAPKK remain activated, some of the MAPKs be-
come activated is at least 0.12.

• P=?[ true U [t,t] ((kpp+kkpp)<l) ] - what is the proba-
bility that the total number of MAPKs and MAPKKs
activated at time instant t is less than l?

• (kkkp>0∧kpp=0) → P>0.7[ (kpp=0) U [t1,t2] (kpp>0) ]
- if some MAPKKKs are activated and no MAPK are
activated, then the probability that the first time a
MAPK gets activated is within the time interval [t1, t2]
is greater than 0.7.

• (k=0) → P≤0.01[ (k=0) U [t,∞) (k>0) ] - if there are no
inactive MAPKs, then the probability that the first
time a MAPK becomes inactive is after time t is at
most 0.01.

• S=?[ (kpp=l) ] - what is the probability that in the
long run there are precisely l MAPKs activated?

• R{“reactions”}=?[ C≤t ] - what is the expected number of
reactions between MAPKs and MAPKKs during the
first t seconds?

• (kpp=N) →R{“activated”}≥75[ I≤t ] - if all MAPKs are
activated, then after t seconds the expected percentage
of activated MAPK is at least 75%.

• R{“reactions”}=?[ F (kpp=N) ] - what is the expected
number of reactions between MAPK and MAPKK un-
til all MAPKs are activated at the same time instant?

• (kpp>0) →R{“time”}<120[ F (k=N) ] - if some MAPKs
are activated, the expected time until all of the MAPKs
are inactive at the same time instant is less than 120
seconds.

• R{“reactions”}=?[ F (kpp=N) ] - what is the expected
number of reactions before a state is reached where all
MAPKs are activated?

• R{“activated”}≥98[ S ] - the long run percentage of acti-
vated MAPKs is at least 98%.

• R{“reactions”}=?[ S ] - what is the long run average num-
ber of reactions between MAPK and MAPKK?
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Figure 6: Results obtained with PRISM for the MAPK cascade

3.4 Results and analysis
When analysing quantitative properties such as those listed
above, it is often beneficial to study trends in these results as
some parameters of the model (e.g. initial species concentra-
tions or reaction rates) or of the property specification (e.g.
a time bound) vary. Performing analysis in this way is more
likely to provide insight into the dynamics of the model or
to identify interesting or anomalous behaviour.

To illustrate this, Figure 6 shows results obtained with
PRISM for the MAPK cascade case study. The properties
we consider are the expected percentage of activated MAPK
at time instant t, the expected number of reactions between
MAPK and MAPKK up until time t and the expected time
until all MAPK are activated at the same time. We varied
the initial quantities of MAPK, MAPKK and MAPKKK:
initially we suppose there are N of each of these species and
that there is 1 of all remaining species in the cascade (the
enzymes E1 and E2 and the phosphatases for MAPK and
MAPKK). For the first two properties, we also varied the
value of the time bound t.

The results presented in Figure 6 demonstrate that, as
the size of N grows, the percentage of MAPK that is acti-
vated increases and the time until all MAPK are activated
decreases. They also show the (expected) dynamics that
raising species quantities increases the number of reactions
that occur between them. We also observe that, as N in-
creases, the behaviour of the PRISM model demonstrates
the same behaviour as that presented in [16] (computed
through ODEs and the reactions given in Figure 2) where,
in response to an external stimulus (E1), the cascade acts
as a switch for the activation of MAPK.

4. RELATED WORK
In this section, we briefly review some other applications
of probabilistic verification techniques to systems biology.
We also describe the connections that exist between these
approaches and the PRISM tool. Figure 7 illustrates the
ways in which PRISM can interact with other tools and
specification formalisms.

PRISM has been applied to a variety of biological case
studies. In [12], it is used to study a model of the FGF
(Fibroblast Growth Factor) signalling pathway. The model

corresponds to a single instance of the pathway, i.e. there is
at most one of each molecule or species, which has the advan-
tage that the resulting state space is relatively small. How-
ever, the model is still highly complex due to the large num-
ber of different interactions that can occur in the pathway
and is sufficiently rich to explain the roles of each compo-
nent and how they interact. In [4], PRISM is used to model
the RKIP-inhibited ERK pathway where concentrations of
each protein are modelled as discrete abstract quantities.
Through comparisons with simulations for a traditional dif-
ferential equation model, the authors show that accurate
results can be obtained with relatively small sets of discrete
values. PRISM is used in [29] to model codon bias, study-
ing a range of quantitative properties of the system. Finally,
[30] uses PRISM, in combination with several other tools,
to analyse gene expression modelled using P-Systems.

Another formalism that has proved popular for modelling
biological systems is stochastic process algebra. For exam-
ple, PEPA [14] is used [3] to study the effect of RKIP on the
ERK signalling pathway. The stochastic π-calculus [27], an
extension of the π-calculus with CTMC semantics, has been
used to model many systems, see for example [28, 22]. Var-
ious tools for construction and verification of PEPA models
are available and, for the stochastic π-calculus, simulators
such as BioSpi [28] and SPiM (the Stochastic Pi-Machine)
[25] have been developed, but no model checkers. Both
formalisms can also be used in conjunction with PRISM,
through language translators. The PEPA translator is part
of PRISM [26] and a prototype stochastic π-calculus trans-
lator has been built based on the techniques in [23].

An alternative format for representing biological mod-
els is SBML (Systems Biology Markup Language) [33], a
computer-readable language based on XML. This is intended
to facilitate exchanging models between different systems
biology software tools. Biochemical reaction networks are
described by specifying the set of species in the system, the
reactions they can undergo, and the kinetic laws and pa-
rameters which govern these reactions. Again, support for
PRISM is provided through a language transator [32].

Further mechanisms are also available for input of mod-
els into PRISM. The tool includes a simple pre-processing
language (PRISM-PP) which can be used to automatically
generate model and property specifications that contain a
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lot of repetition. Markov chains can also be imported di-
rectly (through an explicit list of their states, transitions
and rates) allowing models to be generated in other tools
and then analysed in PRISM.

Conversely, it is also possible to use external tools to anal-
yse PRISM models. One example is the statistical based
model-checker Ymer [35], which performs approximate CSL
model checking of CTMCs expressed as PRISM models,
using discrete-event simulation and sequential acceptance
sampling (for a detailed comparison of the merits of this
approach and the probabilistic model checking techniques
used by PRISM, see [36]). Another example is the tool
GRIP (Generic Representatives In PRISM) [7], which per-
forms language-level symmetry reduction of PRISM mod-
els based on the the generic representatives approach of
[8]. Further support for symmetry reduction is provided by
PRISM-symm [20], a prototype extension of PRISM which
uses an efficient symbolic (MTBDD-based) implementation.

Finally, models that have been specified in the PRISM
modelling language can constructed in PRISM, and then
exported to an explicit representation of the Markov chain
for analysis in other tools. In particular, this output can
be customised for the probabilistic model checkers MRMC
(Markov Reward Model Checker) [17] and ETMCC (the
Erlangen-Twente Markov Chain Checker) [13] which can
both be used for verifying CTMCs against CSL specifica-
tions. MRMC also supports rewards-based property spec-
ifications through the logic CSRL [6]. Models, in addition
to other PRISM outputs such as numerical results or sim-
ulation traces, can be imported into more general-purpose
tools such as MATLAB and MAPLE.

5. CONCLUSIONS

We have illustrated how probabilistic model checking and,
in particular, the probabilistic model checker PRISM can
be employed as a framework for the analysis of biological
pathways. One of the key strengths of this approach is that
it allows for the computation of exact quantitative measures
relating to the evolution of the system over time. Since, as
we have demonstrated, it is possible to specify and verify
a wide variety of such measures, a detailed, quantitative
analysis of the interactions between the components of a
pathway is possible.

The principal challenge remaining for the application of

probabilistic model checking to biological systems, as in so
many other domains, is the scalability of the techniques to
ever larger systems and models. There is hope that some of
the techniques that have already been developed in the field
of formal verification, such as symmetry reduction, bisim-
ulation minimisation and abstraction, will prove beneficial
in this area. For further details on such approaches and
pointers to related work, see for example [12].
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