
1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

Theory-Neutral Parser Engineering

Sylvain Delisle1 , Elizabeth Scarlett2 & Stan Szpakowicz2

1 Département de mathématiques et d’informatique 2 School of Information Technology and Engineering
Université du Québec à Trois-Rivières University of Ottawa

Trois-Rivières, Québec, Canada, G9A 5H7 Ottawa, Ontario, Canada, K1N 6N5
Sylvain_Delisle@uqtr.uquebec.ca {scarlett, szpak}@site.uottawa.ca

Abstract

Developing and, above all, maintaining a large, broad-coverage parser can be a serious
exercise in software engineering. While a parser trained on an annotated corpus may be
maintained by retraining on another corpus, such corpora are scarce enough for much parser-
writing to require linguistic introspection. We argue that intuitiveness and readability of the
underlying grammar is an essential property of a successful parser, and that it helps a lot if the
results are also intuitive and readable. Given such intuitiveness, it is easier to achieve the
parser’s robustness, improve its coverage and its portability to new domains and applications,
and generally to increase its usefulness.

1. Parser Engineering and Test Suites

In the last decade or so, language engineering has become an important area of natural
language processing. Netter & Pianesi (1997) write:

“With a growing number of NLP applications going beyond the status of simple
research systems, there is also a more evident need for better methods, tools and
environments to support the development and reuse of large scale linguistic resources
and efficient processors. This new area of research, often referred to as Linguistic
Engineering, is rapidly gaining interest besides the more traditional ones concerned with
formalisms or algorithm studies and development. Aspects of linguistic engineering
range from grammar development environments, through the construction and
maintenance of large scale linguistic resources, to methodologies for quality assurance
and evaluation.”

In this paper, we express the view that this new area of NLP benefits from the more general
insights of good software engineering practice. In particular, we argue that readability of a
parser’s linguistic core can be a determining factor in the development of a robust NLP
system.

Parser engineering—the business of developing and maintaining large-scale, broad-
coverage parsers—is a peculiar brand of software engineering. Although even non-trivial
parsers may be small by the contemporary software engineering standards, they usually
require highly specialised expertise and labour-intensive testing. They also are highly
sensitive to minor changes in the underlying grammar, which can have a dramatic effect on
the parser’s output.

Related work on various aspects of NLP system testing is presented in Black et al. (1992),
Boguraev et al. (1988), Li et al. (1998), Schmidt et al. (1996), Srinivas et al. (1995), and Volk
(1992).



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

Parsers can be derived from an annotated corpus, though such a derivation does little more
than recover the grammatical principles encoded by the annotators, along with all
unintentional annotation errors. Claims have been made that only trainable, statistical, parsers
are robust enough to be successfully fielded—see, for example, Hatzivassiloglou (1994),
Magerman (1994), Zelle & Mooney (1994), Lawrence et al. (1996), Charniak (1997), and
Collins (1997)—but robustness depends on the quality of the requisite “treebank”. It would
appear that the effort of a virtually error-free annotation is not much different than the effort
of designing and hand-coding a parser based on linguistic introspection. Once such a parser
has been constructed, its maintenance can be done according to good software engineering
practices, especially if it has been developed using a parser writer’s workbench—see, for
example, Erbach (1992), Baldwin et al. (1997), Cunningham et al. (1996), and several papers
in Estival et al. (1997).

A parser constructed using Machine Learning techniques may be impossible to verify
manually, or its verification may require very advanced expertise. While the performance on
test sets reasonably close to training sets is usually demonstrably adequate, such a parser may,
in practice, be not maintainable. Hybrid methods that combine symbolic and statistical tools
offer an interesting compromise, particularly when a parser based on linguistic foundations is
being augmented by considering statistical data. See, for example, Voutilainen & Padró
(1997) and “Balancing” (1994).

Test suites are fairly widely used to test and validate parsers. The TSNLP project produced
well-known test suites intended to be broad-coverage, multi-purpose, multi-user, multi-
lingual, and reusable (Lehmann, 1996). An important issue in the TSNLP design was to
consider the benefits of using a test suite rather than a corpus. Some of the advantages are as
follows (Balkan et al. 1994a, b).
Control over test data. Test suites allow for systematic construction of test data focused

upon specific phenomena. The phenomena may be tested alone or in combination with
others.

Systematic coverage of phenomena. Tests suites may provide test items that systematically
test variations over a specific phenomenon.

Non-redundant representation of phenomena. Systematically constructed test suites test a
phenomenon only once.

Negative examples. Testing negative examples may be useful in diagnostic evaluation of any
NLP application. Ungrammatical test items may be included in a test suite.

Annotation of test items. Test suites may be annotated with items specifically relevant to
diagnostic evaluation.

Balkan et al. (1994c) identified potential shortcomings of test suites: too little coverage;
lack of systematicity; lack of documentation and annotation; too much system-specificity,
which prevents reusability; too much difficulty in interpreting the testing results. The TSNLP
method is designed to optimize control over test data, progressivity, and systematicity in order
to construct a test suite that is adequately broad-coverage and offers the advantages over
corpora stated above (Lehmann, op. cit.) while also avoiding the shortcomings listed. The
TSNLP design requires linguistic phenomena to be tested in isolation, not in combination, and
so each test item contains only one phenomenon that distinguishes it from other similar test
items. The TSNLP data are designed to test exhaustively the linguistic phenomenon covered,
including the treatment of closed class items in a language. The TSNLP suite is thus very fine-
grained and pinpoints problems very precisely. The test items for the basic sentence
phenomena covered (complementation, modification, diathesis, modality, tense and aspect,
clause type, coordination, and negation) are exhaustively complete. Given such a robust and
precise diagnostic tool, the difficulty in parser maintenance is to identify the places in the



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

parser responsible for errors in test runs. Grammar rules that encode intuitive relationships
between syntactic units and employ meaningful names facilitate correction.

This paper presents a parsing system that we believe to be sufficiently natural and intuitive
to be readily maintained and expanded. Our research group has used this system for over a
decade, and it has been occasionally used by other researchers. It had been tested, adapted,
and extended in non-trivial ways—see, for example, Delisle et al. (1994) and Barker (1998).
It is still in use and has been very recently ported to LPA Prolog in Windows NT. It has been
recently comprehensively retested; the findings have been incorporated in an even more
accurate grammar. We briefly discuss the system in Section 2, and we show its representation
of linguistic knowledge in Section 3. Section 4 argues that, as our work with the parser has
demonstrated, intuitiveness and naturalness have a beneficial effect on improving coverage
and performance. In Section 5, we offer a few simple conclusions.

2. The Text Analysis Project

The development of an AI system often requires the building of a new knowledge base.
Knowledge bases have been constructed by a cycle of interviewing experts, building a
prototype, testing, then re-interviewing the expert. Knowledge acquisition, therefore, remains
a difficult, expensive, and labour-intensive task. This is commonly called the knowledge
acquisition bottleneck—see (Buchanan & Wilkins, 1993). Applications that analyze text for
the purpose of knowledge acquisition aim to automatically, or semi-automatically, extract
knowledge contained in written texts and encode it in a knowledge base. The TANKAi project
(Barker et al., 1998) seeks to build a model of a technical domain by semi-automatically
processing written text that describes the domain. No other source of domain-specific
knowledge is available.

DIPETTii is a broad-coverage parser of English technical text (Delisle, 1994), and is used
primarily in the TANKA project. Broad-coverage parsing is required to parse large-scale
technical text. The accuracy and completeness of a semantic representation generated by
TANKA is partly determined by the accuracy of DIPETT’s syntactic analysis of the text.
DIPETT is a theory-neutral parser, in that it does not presuppose any particular linguistic
theory of language, and it has a broad surface-syntactic coverage of English. The core of
DIPETT’s grammar is based on Quirk et al. (1985), a standard academic grammar of English,
and on Winograd (1983). DIPETT is particularly rich in “look-ahead” and heuristics for
efficient parsing of complex syntactic structures.

3. Linguistic Knowledge and the DIPETT Parser

We consider DIPETT robust because of its broad coverage and its handling of extra-
grammatical data. DIPETT almost never rejects a fully or nearly correct input in English,
producing at least a partial analysis. We will look at DIPETT as a domain-independent stand-
alone syntactic processor, unrelated to a specific application or performance task. We will
present some high-level technical comments (section 3.1), the underlying linguistic
knowledge (section 3.2), and the partial-parsing facility (section 3.3).

3.1 A Few Technical Details

DIPETT has been implemented in Prolog. Its underlying grammar, expressed by means of
DCG rules, encompasses much of one of the standard academic grammars of English,
described by Quirk et al. (1973, 1985). Its syntactic analyses employ their terminology.

i Text Analysis for Knowledge Acquisition
ii Domain Independent Parser of English Technical Text



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

DIPETT is a surface-syntactic parser, in that it does not account for many lexically motivated
semantic restrictions on grammaticality, presented by Quirk et al. It recognizes most of the
structural variety, but it overgenerates by accepting semantically anomalous constructions (an
inevitable limitation of parsers not “primed” with rich semantic information, for example in
an extended lexicon). DIPETT is a working computational model of a sizable subset of the
English surface syntax.

A detailed classification of parsers has been proposed by M. A. Covington in 1993 (it was
circulated in the ‘comp.ai.nat-lang’ Usenet newsgroup). The classification helps list,
systematically, a parser's main technical and algorithmic aspects. DIPETT’s characteristics are
shown in bold.

CRITERIA RELATING TO GRAMMATICAL RELATIONS

Constituency or dependency?

Is the goal of parsing (a) to segment the input string into constituents, or (b) to link
heads to their dependents (arguments)? Parsers based on X-bar theory of course do a
combination of the two. DIPETT: constituency.

Continuous or discontinuous phrases?

Does the parser require every constituent to be continuous? Some free-word-order
parsers do not. (Applicable to dependency as well as constituency grammars: in
dependency grammar, a constituent consists of any head plus all its dependents, their
dependents, and so on recursively.) DIPETT: continuous.

Complete, partial, or no linear order?

Does the parser require fixed linear order of the elements of each constituent (or
dependents of each head)? DIPETT: complete order.

CRITERIA RELATING TO SEQUENCE OF EXECUTION

Rule invocation strategy: top-down, bottom-up, or mixed?

Does the parser choose grammar rules on the basis of what it is looking for or on the
basis of what it has found in the input? Left-corner parsing is an example of a mixed
strategy (invoke a rule bottom-up and finish it top-down). DIPETT: top-down.

Completion: incremental or all-at-once?

Given a rule such as A → B C D, does the parser complete the A constituent in a
single step after parsing B, C, and D, or does it add B, C, and D to the A one by one?
(The analogous question can be asked for dependency grammar.) DIPETT: all-at-
once.

Access to the input string: left-to-right sequential, random access, or what?

Most parsers accept words sequentially from left to right. DIPETT: left-to-right.

CRITERIA RELATING TO NONDETERMINISM

Handling of nondeterminacy: backtracking? look-ahead? concurrency?

For example, Prolog DCGs backtrack as needed; Marcus’s parser uses look-ahead; and
Earley’s algorithm pursues all alternatives concurrently. DIPETT: backtracking and
a few look-ahead mechanisms.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

Limits on nondeterminacy, if any?

Marcus’s parser has a strict limit on look-ahead; most other parsers have no limits on
(simulated) nondeterminism. DIPETT: mixed, with limits for some mechanisms.

Mechanism to prevent duplication of work, if any?

The choices are: no chart; a passive chart that records only completed substructures; or
an active chart that also records structures under construction. DIPETT: passive
chart.

Other operations or tests during parsing?

Examples include feature unification or ATN register operations. DIPETT: Prolog’s
term unification (it can be treated as simplified feature unification).

Another technical element worth mentioning is the solution selection strategy. DIPETT
produces what we call a “first good parse”—a syntactically acceptable, and usually
semantically adequate, analysis. This is based on DIPETT’s linguistic knowledge, look-ahead
mechanisms and other heuristics. In a trade-off between efficiency and completeness, we
chose to have one result that need not, inevitably, be the best parse possible. DIPETT’s
fundamental assumption of knowledge-scant analysis makes exhaustive search for an optimal
parse entirely unrealistic.

Left recursion—a problem for top-down parser—is handled in DIPETT via two special
parameters in a relevant subset of its DCG rules. The first of these parameters ensures that the
calling rule (the parent predicate) only refers to itself if a token has been consumed in the
input string. The second parameter counts the number of times a rule has been called in
succession.

Yet another DIPETT’s mechanism helps control potentially infinite searches. A CPU time
limit, set at the beginning of a parsing session, ensures that no parsing run will ever take more
than that predetermined limit; a partial parse may result if the limit has been reached even if a
full parse tree could have been found given more time.

3.2 Linguistic Knowledge

The account of the English grammar in Quirk et al. avoids commitment to any formal
theory of syntax, and builds on a tradition of broadly intuitive constituency analysis of the
English sentence. DIPETT inherits this attitude. Just as their grammar is accessible to an
educated non-linguist, our parser can be fairly easily understood and customized by
programmers with a little knowledge of formal languages but almost no linguistic
background. DIPETT does have a solid theoretical basis, but—in contrast with parsers built to
give credence to some formal theory of syntax—this basis is not the raison d’être of our
system. The complete DIPETT system contains several thousand lines of Prolog code and a
few fragments in C. The core of its grammar—DCG rules and look-ahead mechanisms—
resides in a well separated fragment of the program, so that linguistic maintenance is
simplified. The DCG rules are well commented and contain detailed references to Quirk et al.

No clear, well-established methodology exists for determining the linguistic coverage of a
parser. DIPETT’s purpose was to cover a substantial domain-independent subset of English
focussing on expository technical texts. Grammars presented in the application-oriented NLP
literature had been too narrow or too ad hoc, or too domain-dependent. Designing wide
syntactic coverage is a demanding enterprise. The first author had invested a year in devising
the parser’s core, relying on several general and NLP-oriented English grammars, especially
Quirk et al., and on a few relatively large, syntactically varied, documents used for testing.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

The reliance on Quirk et al. was an important design choice right from the earliest stages of
DIPETT’s development. Here is an example, derived from Quirk et al. (1973; 9.19):

“There are three common correlative pairs: either..or, where either anticipates the
alternative introduced by or; both..and, where both anticipates the addition introduced
by and; and neither..nor, where neither negates the first clause and anticipates the
additional negation introduced by nor.”

Our example shows DIPETT’s rule for the correlative conjunction of noun phrases using
both..and. DIPETT’s rule shows that for noun phrases, the conjunction both is followed by a
noun phrase nucleus and its modifiers, which may be singular or plural. The conjunction and
is anticipated as described above by Quirk et al., as is the final noun phrase nucleus and
modifiers. The number of the resulting noun phrase is calculated by the action plur_rule_n.
For the conjunction and, as shown in the example below, the resulting conjuncted noun phrase
is necessarily plural.

either_or__np(POS,conj_nps(both_and,NUM,[Np_e, Np_o]),NUM) -->

conj(both), np_nucleus_and_mod(POS, Np_e, Num_e),

conj(and), np_nucleus_and_mod(POS, Np_o, Num_o),

{plur_rule_n(Num_e, Num_o, and, NUM)}.

The example sentences given by Quirk et al. (1973; 9.19) for noun phrases conjuncted by
the correlative both..and are “He smoked both cigars and cigarettes.” and “Both Bob and
Peter damaged the furniture.” For the example noun phrase “both cigars and cigarettes” the
data structure generated for the parse tree represents a noun phrase that consists of two
separate noun phrases conjoined by the correlative both_and:

conj_nps(both_and, pl, [cigars, cigarettes])

where cigars and cigarettes are the parse trees for these (very simple) noun phrases. The
whole parse tree for the sentence “He smoked both cigars and cigarettes.” shows this single
conjoined noun phrase as the object of the verb smoke, as shown in Figure 1 (next page).
DIPETT’s parse tree output identifies the complete sentence structure, in this case a single
declarative main clause with an SVO clause structure.

DIPETT builds parse trees that are highly detailed, and the constituents are all labelled with
terms derived directly from Quirk et al.’s terminology. Parse trees show the subject, predicate,
clause structure, complements and modifiers of each clause, as well as the head of each
constituent. Also shown are the values of grammatical parameters, such as verb tense,
modality and voice, and noun and pronoun person and number. DIPETT’s parse trees display
such linguistic phenomena as complex sentences, subordination, relative clauses, nominal
clauses in a clear and easily readable manner.

Intuitiveness and, for what it is worth, “naturalness” of a syntactic description embodied in
a parser is, in our opinion, advantageous from the software engineering point of view. A
parser based on an esoteric syntactic theory, especially one with few very powerful rules and
many locally enforced restrictions, makes it difficult to apply the principles of software
development and maintenance.

A case in point is a recent evaluation and ensuing adaptation of DIPETT, which has been
carried out as an exercise in software maintenance. A non-trivial test suite has been derived
from Quirk et al., which was treated as a high-level specification of the parser’s behaviour.
Another test suite has been acquired from the TSNLP project to provide an alternative set of
test data.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

parse_tree__decla_or_imper
simple_sentence

structure
single_main_clause

declarative
statement

subj
entity

ref
pers_pron he

number sg3
predicate

regular
verb smoke

tense past_simple
neg yes
trans tr_intr

voice active
complement

svo
conj_nps both_and pl

entity
head_noun

noun
n cigar countnoun

number pl
entity

head_noun
noun

n cigarette countnoun
number pl

end_of_input period

Figure 1. DIPETT’s parse tree for the sentence “He smoked both cigars and cigarettes.”

3.3 Partial Parsing

DIPETT’s robustness includes its capability of handling extra-grammatical inputs. While
those are usually ungrammatical, data taken from free text may not always be covered by
DIPETT’s rather strict, though broad, grammar. DIPETT does not attempt parse fitting or any
other kind of global repair. Instead, partial parsing (also called fragmentary parsing) is
activated after full parsing has failed or timed out. In the partial-parsing mode, DIPETT uses a
subset of its grammar rules, trying to recognize either a simple sentence or a sequence of
major phrasal constituents: verb phrases, noun phrases, prepositional phrases, adjectival and
adverbial phrases. The parser skips tokens for which it cannot find a grammatical role. Partial
parsing identifies parsable fragments that, not surprisingly, play a significant role in the
semantic analysis stages of the TANKA system. It is also interesting that DIPETT’s partial
parsing strategy occasionally boosts full parsing: a rule for simple sentences, out of reach
during full parsing, may succeeds in this mode. The fewer fragments DIPETT produces, the
more likely their usefulness. Figure 2 (next page) shows an example of a partial parse, given a
low time limit.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

parse_tree__frag_series

sentence_fragment
entity

determinatives
postdeter

closed
quant most

head_noun
noun

n owner countnoun
noun_modifiers

pre_modif
n car countnoun

number pl

sentence_fragment
predicate

regular
verb follow

tense imp
neg yes
advs carefully

tokens carefully
trans tr_intr

voice active

sentence_fragment
entity

determinatives
deter the
postdeter

genitive maker_s
head_noun

noun
n suggestion countnoun

number pl
np_postmodifiers

pp for
entity

determinatives
deter the

attributes
attrs

adj proper pos
tokens proper

head_noun
noun

n care countnoun
number sg3
np_postmodifiers

pp of
entity

determinatives
deter their

head_noun
noun

n car countnoun
number pl

end_of_input period

Figure 2. DIPETT’s partial parse for the sentence “Most car owners carefully follow the
maker’s suggestions for the proper care of their cars.” consists of 3 fragments.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

4. Improvements and Evaluations

The goal of our diagnostic evaluation exercise (Scarlett, 2000; Scarlett & Szpakowicz,
2000) was to produce an improved DIPETT, that is, to extend DIPETT’s coverage and
improve even more the quality of the parse trees generated. The TSNLP group has provided
an excellent test suite for such purposes, and certainly a broad-coverage parser should be able
to parse all of the TSNLP test sentences. A diagnostic evaluation would be incomplete if the
TSNLP data were not considered. The TSNLP suite may be useful for highlighting
deficiencies in a grammar, but it lacks the benefits of parsing corpus data, and the coverage of
the downloaded tsdb(1)iii database test items cannot be considered truly broad unless it were
extended as envisaged by its design. To augment the coverage provided by the TSNLP suite,
we proposed to design a collection of test sentences that was annotated and organized
according to a formal English grammar description. Quirk et al.’s grammar was chosen as the
source. The grammatical and starred example sentences were extracted and organized by
topic, then used to test DIPETT’s performance on the distribution of syntactic structures.

The Quirk test sentences were extracted from Quirk et al. (1985) chapters 2 and 3. The
chapter 2 sentences cover a general outline of English grammar and of its major concepts and
categories. The chapter 3 sentences cover the grammar of verb phrases. These sentences were
augmented with selections from chapter 5 of Quirk et al. (1973) that illustrate the basic
constituents of a noun phrase. DIPETT version 3 produced full parse trees for 79% of the
grammatical Quirk sentences but only 65% of the grammatical TSNLP sentences. This result
was unexpected because the TSNLP sentences are shorter, simpler, and narrower in their
coverage of phenomena and phenomena interaction than are the Quirk sentences.

We modified DIPETT’s grammar to optimize performance on the TSNLP suite.
Modifications to DIPETT were made as unobtrusively as possible to minimize the risk of
introducing errors and side effects. The following modifications were made to DIPETT’s
grammar to produce DIPETT version 4:

• Extended correlative conjunctions for noun phrases to include “both..and”.

• Corrected parsing of passive sentences and allowed for nil passive subject.

• Added the progressive form of the auxiliary verb be.

• Completed the tense table (modal, aspect, and tense combinations).

• Added missing negative contractions.

• Fixed the parsing of “used to” in the passive, stative, and in aspect and tense
combinations.

• Relative clauses, allowed comma delimiters, and relative clauses marked by a preposition
followed by a wh-word.

• Added support for the mandative subjunctive.

• Allowed declarative statements terminated by a question mark (for the TSNLP S_Types-
Questions-Y/N_questions-Non_inverted-Non-tagged test items).

iii The TSNLP database at http://tsnlp.dfki.uni-sb.de/tsnlp/tsdb/tsdb.cgi?language=english



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

We also tested how the improved version 4 of DIPETT performed in comparison with version
3. In particular we looked at the percentage of full parses (as opposed to partial or fragmentary
parses). Table 1 presents the results.

ENGLISH TECHNICAL TEXT % full parses,
VERSION 3

% full parses,
VERSION 4

QUIRK (578 grammatical sentences; rich in
syntactic structure; phenomena interaction not

controlled)
79.07% 85.12%

TSNLP (1143 grammatical sentences; basic
sentence phenomena; controlled phenomena

interaction)
65.18% 91.43%

CLOUDS (513 sentences; junior science reader on
weather phenomena; simple syntax) 74.5% 71.2%

ENGINES (967 sentences; small engines mechanic
manual; moderate to difficult syntax) 58.2% 58.7%

QUIZ (766 sentences; user guide on Cognos’
PowerHouse Quiz report generator software; difficult

syntax)
44.9% 42.4%

TAXES (304 sentences; tax declaration guide;
difficult syntax) 45.1% 46.1%

“Home-made” Test Suite (150 sentences; wide
variety of syntactic phenomena, from trivial to very

difficult)
83.3% 82%

Table 1. Two versions of DIPETT compared.

These results confirm that we managed to improve the syntactic coverage—more
syntactically accurate parse trees and fewer spurious trees—without losing any syntactic
phenomena. This was achieved painlessly, following the approach outlined in this paper.

The percentage of full parses is still relatively low for the ENGINES text, and particularly
for the QUIZ and TAXES texts. That is because these texts, syntactically quite involved, test
DIPETT to the limit, especially in view of the fact that it is a surface parser with no semantic
means of improving performance. For such texts, however, the percentage of partial parses



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

increases and makes it possible to recover a major part of the structure of syntactically
difficult sentences. In general, DIPETT manages to parse at least 95% of any English text, just
with varying proportion of full parses. For the last five texts from Table 1, partial parsing
performed in addition to the full parses listed, gives the results shown in Table 2. That is,
DIPETT parsed between 91% and 99% of these texts. Depending on syntactic complexity,
unedited input text may get between 40% and 70% of full, usually semantically acceptable,
parses.

ENGLISH TECHNICAL
TEXT % full parses % partial parses Total %

CLOUDS 71.2%
27.5% 98.7%

ENGINES 58.7% 38.6% 97.3%

QUIZ 42.4% 52.7% 95.1%

TAXES 46.1% 45.1% 91.2%

“Home-made” Test Suite 82% 17.3% 99.3%

Table 2. Full and partial parsing (VERSION 4).

5. Conclusions

Armed with our experience with a robust broad-coverage parser, we have argued for the
importance of a clear, intuitive linguistic basis in parser engineering. We have explained why
such linguistic “naturalness” is also beneficial to software engineering practice, which in turn
plays a vital role in the development of robust natural language processing systems. We
realize that quantitative support for our arguments would be hard to provide, but software
engineering (and, specifically, parser engineering) is still not a completely objective business.

Parsing engineering has not lost importance with the advent of the Internet. On the
contrary, there is a myriad of applications in which text plays a crucial role. Processors of
natural languages have never been more needed. Text miners, key phrase extractor, translator
and summarizers developed in the recent years are essentially based on shallow, text
skimming strategies. The next generation of such tools should operate at a deeper level of
linguistic processing. We are convinced that linguistic knowledge will be built into such tools
with the invaluable help of parser engineering tools and methodologies.

Acknowledgments

This research is supported by the Natural Sciences and Engineering Research Council of
Canada.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

References

“Balancing” (1994). Proceedings of the ACL Workshop "The Balancing Act" (Combining
Symbolic and Statistical Approaches to Language), July 1994, Las Cruces, NM, USA.

BALDWIN, B., C. DORAN, J. REYNAR, B. SRINIVAS, M.NIV & M. WASSON (1997).
EAGLE: An Extensible Architecture for General Linguistic Engineering. Proceedings of the
RIAO-97 Conference, pp.271-283.

BALKAN, L., MEIJER, S., ARNOLD, D., DAUPHIN, E., ESTIVAL, D., FALKEDAL, K.,
LEHMANN, S., REGNIER-PROST, S. (1994a). Test Suite Design Guidelines and
Methodology. Report to LRE 62-089 (D-WP2.1). University of Essex, UK.

BALKAN, L., MEIJER, S., ARNOLD, D., DAUPHIN, E., ESTIVAL, D., FALKEDAL, K.,
LEHMANN, S., NETTER, K., REGNIER-PROST, S. (1994b). Issues in Test Suite Design.
Report to LRE 62-089 (D-WP2.1). University of Essex, UK.

BALKAN, L., NETTER, K., ARNOLD, D., MEIJER, S. (1994c). TSNLP: Test Suites for
Natural Language Processing. Proceedings of the Language Engineering Convention,
ELSNET, Centre for Cognitive Science, University of Edinburgh, pp. 17-22.

BARKER, K. (1998). Semi-Automatic Recognition of Semantic Relationships in English
Technical Texts. PhD thesis, Department of Computer Science, University of Ottawa.

BARKER K., S. DELISLE & S. SZPAKOWICZ (1998). Test-Driving TANKA : Evaluating a
Semi-automatic System of Text Analysis for Knowledge Acquisition. Proceedings of the
12th Biennial Conference of the Canadian Society for Computational Studies of Intelligence
(CAI-1998), Lecture Notes in Artificial Intelligence #1418, Springer, pp.60-71.

BLACK, E., J. LAFFERTY & S. ROUKOS (1992). Development and Evaluation of a Broad-
coverage Probabilistic Grammar of English-language Computer Manuals. Proceedings of
the 30th ACL Conference, pp.185-192.

BOGURAEV, B., J. CARROLL, E. BRISCOE & C. GROVER (1988). Software Support for
Practical Grammar Development. Proceedings of the COLING-88 Conference, pp.54-58.

BUCHANAN, B.G. & D.C. WILKINS (1993). Readings in Knowledge Acquisition and
Learning (Automating the Construction and Improvement of Expert Systems), Morgan
Kaufmann Publishers.

CHARNIAK, E. (1997). Statistical Parsing with a Context-free Grammar and Word Statistics.
Proceedings of the AAAI-97 Conference, pp.598-603.

COLLINS, M. (1997). Three Generative, Lexicalised Models for Statistical Parsing.
Proceedings of the EACL-97 Conference, pp.16-23.

CUNNINGHAM, H., Y. WILKS & R.J. GAIZAUSKAS (1996). GATE — a General
Architecture for Text Engineering. Proceedings of the COLING-96 Conference, pp.1057-
1060.

DELISLE, S. (1994). Text Processing without A-Priori Domain Knowledge: Semi-Automatic
Linguistic Analysis for Incremental Knowledge Acquisition, Ph.D. thesis, Department of
Computer Science, University of Ottawa.

DELISLE, S., K. BARKER, J.-F. DELANNOY, S. MATWIN & S. SZPAKOWICZ (1994).
From Text to Horn Clauses: Combining Linguistic Analysis and Machine Learning,
Proceedings of the 10th Canadian Artificial Intelligence Conference — CAI-94, pp.9-16.

ERBACH, G. (1992). A Tool for Grammar Engineering. Proceedings of the 3rd ANLP
Conference, pp.243-244.



1st workshop on RObust Methods in Analysis of Natural language Data, Lausanne, October 19-20 2000

ESTIVAL, D., A. LAVELLI, K. NETTER & F. PIANESI, eds (1997). Proceedings of the
Computational Environments for Grammar Development and Linguistic Engineering
Workshop of the ACL-EACL 1997 Conference.

HATZIVASSILOGLOU, V. (1994). Do we Need Linguistics when we Have Statistics? (A
Comparative Analysis of the Contributions of Linguistic Cues to a Statistical Word
Grouping System. Proceedings of the Combining Symbolic and Statistical Approaches to
Language Workshop (the Balancing Act), pp.43-52.

LAWRENCE, S., S. FONG & C.L. GILES (1996). Natural Language Grammatical Inference:
A Comparison of Recurrent Neural Networks and Machine Learning Methods. Symbolic,
Connectionist, and Statistical Approaches to Learning for Natural Language Processing.
Lecture Notes in AI, edited by S. Wermter, E. Riloff & G. Scheler, Springer Verlag, pp.33-
47.

LEHMANN, S., OOPEN, S. REGNIER-PROST, S., NETTER, K., LUX, V., KLEIN, J.,
FALKEDAL, L., FOUVRY, F., ESTIVAL, D., DAUPHIN, E., COMPAGNION, H.,
BAUR, J., BALKAN, L. & ARNOLD, D. (1996). TSNLP – Test Suites for Natural
Language Processing. Proceedings of the COLING-96 Conference, pp. 711-716.

LI, L., D.A. DAHL, L.M. NORTON, M.C. LINEBARGER & D. CHEN (1998). A Test
Environment for Natural Language Understanding Systems. Proceedings of the COLING-
ACL’98 Conference, pp.763-767.

MAGERMAN, D.M. (1994). Natural Language Parsing as Statistical Pattern Recognition,
Ph.D. thesis, Stanford University.

NETTER, K. & F. PIANESI (1997). The preface to Estival et al. (1997), pp.iii-v.

QUIRK, R. & GREENBAUM, S. (1973). A University Grammar of English, Longman.

QUIRK, R., GREENBAUM, S., LEECH, G., & SVARTVIK, J. (1985). A Comprehensive
Grammar of the English Language, Longman.

SCARLETT, E. & S. SZPAKOWICZ (2000). The Power of the TSNLP: Lessons from a
Diagnostic Evaluation of a Broad-Coverage Parser. Proceedings of the 13th Biennial
Conference of the Canadian Society for Computational Studies of Intelligence (CAI-2000),
Lecture Notes in Artificial Intelligence #1822, Springer, pp.138-150.

SCARLETT, E. (2000). An Evaluation of a Rule-Based Parser of English Sentences. Master’s
thesis, Department of Computer Science, University of Ottawa.

SCHMIDT, P., S. RIEDER, A. THEOFILIDIS & T. DECLERCK (1996). Lean Formalisms,
Linguistic Theory, and Applications, Grammar Development in ALEP. Proceedings of
COLING-96 Conference, pp.286-291.

SRINIVAS, B., C. DORAN & S. KULICK (1995). Heuristics and Parse Ranking.
Proceedings of the ACL/SIGPARSE 4th International Workshop on Parsing Technologies.

VOLK, M. (1992). The Role of Testing in Grammar Engineering. Proceedings of the 3rd

ANLP Conference, pp.257-258.

VOUTILAINEN, A. & L. PADRÓ. (1997). Developing a Hybrid NP Parser. Proceedings of
the 5th Conference on Applied Natural Language Processing, pp.80-87.

WINOGRAD, T. (1983). Language as a Cognitive Process (Volume 1: Syntax), Addison-
Wesley.

ZELLE J.M. & R.J. MOONEY (1994). Inducing Deterministic Prolog Parsers from
Treebanks: A Machine Learning Approach. Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-1994), pp.748-753.


