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Abstract

We present the traffic analysis problem and expose the most important protocols, attacks and
design issues. Afterwards, we propose directions for further research.

As we are mostly interested in efficient and practical Internet based protocols, most of the empha-
sis is placed on mix based constructions. The presentation is informal in that no complex definitions
and proofs are presented, the aim being more to give a thorough introduction than to present deep
new insights.

1 Introduction

Privacy is becoming a critical issue on the Internet. Polls constantly remind us that users feel that one of
the most important barriers to using the Internet is the fearof having their privacy violated. Unfortunately,
this isn’t unjustified as marketers and national security agencies have been very aggressive in monitoring
user activity1.

Two things can happen as a result of this lack of privacy: either the Internet’s popularity diminishes
or, as seems more likely, the Internet becomes the most pervasive surveillance system ever. The problem
studied in this text isn’t a purely theoretic one, in fact some would argue that it is a crucial one to solve if
the online world is to continue expanding andimproving. In any case, from both theoretical and practical
perspectives, it certainly deserves to receive much more attention than it has gotten so far.

1.1 Desirable Properties

Our goal is to protect users againsttraffic analysis. That is, we don’t want an adversary that can monitor
and/or compromise certain parts of the systems to be able to match a message sender with the recipient
(sender-recipient matchings).

A related problem is that ofnetwork unobservabilitywhich attempts to hide all communication pat-
terns. (how many, at what time and to whom/from whom messagesare sent and received). Notice that
network unobservability implies the ineffectiveness of traffic analysis.

Whereas message privacy can be obtained using encryption, it’s much harder to protect sender and/or
recipient privacy; especially in large open networks. The number of different assumptions and settings
is huge which makes it difficult to define and reason about the problem in a rigorous manner.

1See http://www.freedom.net and http://www.inf.tu-dresden.de/˜hf2/anon for examples.

1



As with many constructions in cryptography, there are efficiency, practicality/security tradeoffs to be
made. For example, if efficiency and practicality weren’t issues, we could broadcast messages in order
to protect recipient privacy.

Notice that the problem definition isn’t entirely trivial. We can’t provide ”perfect” privacy since the
number of possible senders and recipients is bounded. So, for example, if there are only two parties on
the network, an attacker having access to this information can trivially determine who is communicat-
ing with whom : : : The best we can hope for is to make all possible sender-recipient matchings look
equally likely. That is, the attacker’sview2’s statistical distribution should be independent from theac-
tual sender-recipient matchings. The protocol of subsection 2.2 has this strong property whereas those
of subsection 2.3 usually don’t. Unfortunately, there are no satisfactory definitions/methods providing a
solid framework in which to analyze protocols that fall short of the optimal performance3 and we usually
need to rely on more or less ad-hoc arguments.

1.2 Overview

A concise literature review can be found in section 2. A comprehensive listing of attacks against mix-
networks is presented in section 3. Design issues related tolarge mix based networks are given in section
4. We propose directions for further research in section 5 and conclude in section 6.

2 Literature Review

Before delving more deeply into the problem, we briefly review some privacy protecting mechanisms.
Although the link between these and sender-recipient privacy can be tenuous in certain instances, we
believe that some of the ideas used in these techniques mightbe useful.

2.1 Related Problems� Secure Multi Party Computations (SMPC)[14] :A group of users, each having a private input,
want to securely compute a function of their private inputs.At the end of the protocol, all users
should know only the value of the function. That is, each userwill not have gained any information
about the other users’ private inputs apart from what can be deduced from the function’s value.� Oblivious RAM [22]: Code privacy can be protected by using a tamper resistant cryptographic
processor. The protocol is such than an outside party looking at the memory accesses (reads and
writes) can’t gain any information about what is being computed and how it is being computed.
The code’s privacy is protected which could be useful to prevent reverse engineering and software
piracy.� Private Information Retrieval(PIR) [10, 11, 12] :A user privately queries one or many disjoint
databases. By privately, we mean that the database(s) will not have any information about what
element the user has queried.

2By view, we mean all the information available to the attacker.
3i.e. protocols in which traffic analysis can help in obtaining somenon-trivial information about sender-recipient matchings.
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� Oblivious Transfers [36]: This problem has many versions which are equivalent in that one
implies the other. We mention a flavor which is related to PIRsand is referred to as1 out of n
oblivious transfer. These protocols have very similar properties as PIRs, the major difference being
that the database privacy is also protected: the user doesn’t gain any information about the other
entries in the database.� Steganography [27] :Steganography is the branch of information privacy that attempts to hide
information within publicly observable data (e.g. using digital watermarking [40], subliminal
channels [39], etc.).

2.2 Dining-Cryptographer Networks (dc-nets)[9, 41]

The goal here is to have one participant anonymously broadcast a message. If the message is aimed at
one user, the sender can encrypt the message by, for example,using an asymmetric crypto-system. Since
the message is received by all parties, recipient anonymityis trivially maintained.

LetP = fP1; P2; : : : ; Png be the set of participants and let(F;�) be a finite Abelian (commutative)
group (for example (Zm;+)) in which all computations will be carried out. The protocol goes as follows:

1. Initialization: Each participant securely shares secret keys (chosen at random fromF ) with some
other participants. We denote the secret key shared byPy andPz by Ky;z(= Kz;y) and define
the setG composed of all pairs(Py; Pz) such thatPy andPz share a secret key. Notice that if(Py; Pz) 2 G then(Pz; Py) 2 G.

2. Message Transmission:In order to send a messageM , Pi broadcasts:M � X8j s.t.fPi;Pjg2Gsign(i� j) �Ki;j
Wheresign(x) = 1 if x > 1 and�1 otherwise.

3. “Noise” Transmission: All other participants,Pj , broadcast:X8k s.t.fPj ;Pkg2Gsign(j � k) �Kj;k
4. Computing the Message:All interested participants can obtainM by adding (�) all broadcasted

messages. The fact that the sum of all broadcasted message equalsM can be seen by noting that
all terms exceptM cancel out because ofsign(). (i.e. for each term of the formsign(j � l) �Kj;l
we havesign(l � j) �Kl;j = sign(l � j) �Kj;l = �sign(j � l) �Kj;l.)

In order to quantify the scheme’s security, we define a graph havingn vertices, labelled by1; 2; : : : ; n
(each representing a participant), with edges between nodes i andj if and only ifPi andPj share a secret
key. For example, if all participants share a secret key, thegraph will be fully connected.
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Fact 2.1 If the graph obtained by removing the vertices corresponding to the participants controlled by
an adversary is connected then the protocol protects senderanonymity. (Note that we assume that the
broadcasted values are known to the attacker.)

This analysis is tight in that if the graph isn’t connected, an attacker can determine from which of the
disconnected parts of the graph the sender is from.

2.2.1 Drawbacks

Unfortunately, the protocol has serious drawbacks:

1. Secure and reliable broadcast channel:To protect against active adversaries4, we need to rely
on physical devices because secure and reliable broadcast mechanisms can’t be constructed by
algorithmic means. This problem can be partially fixed by thetechnique of Waidner [41] that uses
a fail-stop broadcast.

2. Channel jamming:If many participants try to send a message at the same time, all is lost as the
sum of all broadcasted values will equal the sum of the messages (e.g.M1�M2� : : :�Mj). An
even bigger problem is if a participant acts maliciously anddeliberately sends channel jamming
messages; this allows him to compute the legitimate messagewhile the other users can’t gain any
information.

3. Number of messages:Every user needs to participate every time a message is broadcasted which
is a problem both in terms of efficiency and robustness. This is an unrealistic constraint in large
networks.

4. Shared secret keys:The number of keys to share could be too large for practical purposes (need a
new key for each transmission). Note that pseudo-random numbers can be used as keys to alleviate
this problem. The fact that many users need to share secret keys with (possibly many) participants
is also a serious problem in terms of practicality.

Despite these problems, dc-nets are useful in many situations (e.g [19]), and, as far as efficiency is
concerned, for certain underlying network topologies (e.g. rings), the complexity is acceptable. Also
note that dc-nets can be used in conjunction with other sender-recipient privacy protecting mechanisms
such as mix networks. For example, a certain number of users can transmit information to a mix network
using a dc-net. In this setting, even if the mix network security is violated, the attacker can only ascertain
that the sender of a given message is one of the parties using the dc-net5.

2.3 Mixes

A mix node is a processor that takes as input a certain number of messages which it modifies and outputs
in a random order. The messages are modified and reordered in such a way that it is nearly impossible
to correlate a message that ”comes in” with a message that ”goes out”. The mix nodes can be used to
prevent traffic analysis in roughly the following manner:

4adversaries capable of adding and removing messages from the communication channels.
5Assuming that the dc-net’s security hasn’t been compromised.
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1. The message will be sent through a series of mix nodes (a route), sayi1; i2; : : : ; id. The user
encrypts the message with nodeid’s key, encrypts the result with nodeid�1’s key and so on with
the remaining keys.

2. The mix nodes receive a certain number of these messages which they decrypt6, randomly reorder
and send to the next nodes in the routes.

Note that each mix node knows only the previous and next node in a received message’s route. (The
entry and exit node know the source (sender) and destination(recipient) of the message respectively.)
Hence, unless the route only goes through a single node, compromising a mix node doesn’t trivially
enable an attacker to violate sender-recipient privacy.

2.3.1 Different Approaches to Route Selection

The route that a message will follow can be determined in a fewways:� Cascade [23, 24]:The route can be constant, that is, it doesn’t change. In thissetting, the attacker
knows the entry, exit and intermediate nodes. This kind of mix network is usually referred to as
“mix-cascade”. Although they are easier to implement and manage, mix-cascades aremucheasier
to traffic analyze.� Random Order:The routes can also be chosen at random, that is, the user choosesi1; i2; : : : ; id
uniformly at random. This type of mix network is usually referred to as “mix-net”.� Other Methods:One can think of many other ways of choosing routes, for example, A) part of the
route could be fixed B) the route could be chosen at random froma set of pre-determined choices
C) the route could be chosen at random subject to some restriction (e.g. mixes not all in the same
jurisdiction).

In the following, we consider only mix-nets although some comments/attacks will apply to other
route selection mechanisms.

2.3.2 Different Approaches to Flushing Mix Nodes

Many approaches to “flushing” messages can be used:� Message threshold:The mix nodes wait until they receive a certain number of messages before
”releasing” all of them at the same time.� Message Pool [13]:The flushing algorithm for mixmaster [13] has two parameters: the pool sizen
and the probability of sendingp. The nodes wait until they haven messages in their pool at which
time, they shuffle the messages and send each one with probability p (e.g. if p = 1 the scheme is
identical to the message threshold approach). Note that unsent and newly received messages are
placed in the pool.

6They remove a layer of encryption.
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� Stop and Go [29]:Kesdogan et al. give an interesting scheme in which messageswait random
times at a nodes before being released (note that the waitingperiod is determined by the sender).
In this setting, the attacker has a probability of success: If an empty node (i.e. one not currently
processing any message) receives a message and does not receive another one before sending the
decrypted message, the attacker can easily “follow” the message – routing the message through
this node doesn’t “help”. Perhaps the most interesting contribution of this paper is that a statistical
analysis is used to determine the probability of this happening.� Other : There are many other reasonable algorithms for doing this, for example mix nodes could
receive a random number of messages and output a constant number of them (using dummy mes-
sages to fill the gaps).

2.3.3 Mix Networks in Other Settings

Many researchers have studied how mixes can be used within existing networks such as ISDN, Internet
and GSM (see for example [31, 32, 33, 34]). Although these arevery interesting papers, they don’t
provide any deep insights about traffic analysis.

2.3.4 Robust Mixes

Very recently, researchers [1, 2, 17, 25, 30] have invented robust mixes, in which messages are properly
delivered to the recipient even if a certain number of mix nodes aremisbehaving. Unfortunately, the
constructions don’t seem practical for most real-world situations since a large number of the mix nodes,
a bulletin board and a public key crypto-system are required.

We note that a mix network that works even if a certain number of nodesare not forwarding the mes-
sageswas proposed in [32, 34]. This construction, although it doesn’t have many of the nice properties
of robust mixes, can be very attractive as it works with classical mix networks (don’t need bulletin board,
public key crypto-system).

2.4 Rackoff and Simon’s analysis

In [37], Rackoff and Simon provide a solid theoretic framework in which we can reason about sender-
recipient privacy. Using complex arguments about rapidly converging Markov processes, they are able to
prove that an attacker can’t successfully traffic analyze a specific type of mix network (with constrained
user behavior). Unfortunately, the setting is of limited practical interest: it’s synchronous, all participants
need to send a message, mix-nodes process at most two messages at a time and the routes are constrained.
Furthermore, although the constructions are efficient (from a complexity theorist’s point of view), they
do not seem amenable to real-world implementation. In spiteof these shortcomings, their work provides
the only known solid theoretic foundation for reasoning about traffic analysis.
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3 Attacks

The attacks mentioned in this section aren’t based on any specific implementation7, instead, we give
attacks that can be mounted on the high level descriptions ofthe schemes. We assume there are no
implementation weaknesses, for example, we assume that messages coming in a mix node can’t be
correlated with a message going out (by a passive external adversary). Note that securely implementing
cryptographic protocols is an extremely difficult task evenfor protocols that seem very simple like the
Diffie-Hellman key exchange [18] and so will not be discussedas it is beyond the scope of this work.

In order to give a list of attacks, it is important to solidly define what assumption are made about the
attacker’s power. We consider the following attacker properties:� Internal-External: An adversary can compromise communication mediums (external) and mix

nodes, recipients and senders (internal).� Passive-Active:An active adversary can arbitrarily modify the computations and messages (adding
and deleting) whereas a passive adversary can only listen. For example, an external active adver-
sary can remove and add messages from the wire(s) he controlsand a passive internal adversary
can easily correlate messages coming in a compromised node with messages going out (but can’t
modify them).� Static-Adaptive: Static adversaries choose the resources they compromise before the protocol
starts and can’t change them once the protocol has started. Adaptive adversaries on the other
hand are allowed to change the resources they control while the protocol is being executed. They
can, for example, ”follow” messages.

An adversary can, of course, have any combination of these properties. For example, he could control
a mix node in a passive manner and actively control wires. Note that there might be other relevant attacker
properties (these are the ones usually considered in theoretical cryptography).

We warn the reader that the immunization mechanisms presented in the following subsections are by
no means comprehensive and many details are omitted.

3.1 Brute Force Attack

The brute force attack is very instructive because it can help in determining how much, where and when
to use dummy traffic. Dummy messages are messages that are sent through the network in order to
complicate the attacker’s task. On the Internet, mix network operators sometimes need to pay for each
message and so we want to be sure the dummy messages have a goodsecurity to cost ratio.

The idea behind this attack is very simple: follow every possible path the message could have taken
(passive external adversary). If the mix isn’t well designed and the attacker is extremely lucky, he can
link sender and recipient. In most cases however, the attacker will be able to construct a list of possible
recipients.

We present the attack in a setting in which each mix node waitsuntil it receivest messages before
flushing them (i.e. sending allt messages). In addition, we assume that each message goes through
exactlyd mix nodes. The attack can be carried out in any setting however the analysis then becomes a
bit more involved.

7for an attack on an RSA based implementation of a mix see [35].
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1. The attacker first follows a message from a sender to a first mix node.

2. The attacker then followsevery(t) message that the first node releases. The adversary needs to
follow messages going to anywhere betweent and1 different nodes. If all messages are sent to
either the same mix node or recipients, the attacker only needs to monitor one node. On the other
hand, if all t messages are sent to different nodes, the attacker needs to observet different mix
nodes.

3. The process continues like this until messages reach thedth level nodes. The attacker then need
only ”follow” messages leaving the mix network (i.e. going to recipients).

What can the attacker learn from such an attack ? In the worst case, the attacker only needs to follow
one path and can match a sender with a recipient. In the best case, the attacker needs to followtd�1
paths through the mix network andtd messages to the outside world and so can match one sender withtd possible recipients. Although the worst case is unacceptable, by adding dummy traffic intelligently,
we can make the worst case scenario as good as needed. We propose adding dummy messages in the
following manner:� We make sure that each mix node “sprays” its message around adequately. That is, the nodes

should ensure that at leastt0 different mix nodes receive one of its messages (dummy or real).� We make sure that each mix node sends at leastt00 messages outside the mix network every time it
sends messages. These should be sent to participating users(or content providers).

The attacker now follows, at the very least,t0 different paths through the mix network, and, at the
last node, follows messages going tot0 � t00 distinct recipients (assuming that the final destinations are all
different). Hence, the attacker can only match one sender with t0 � t00 recipients. Note that the probability
that an attacker only needs to followt0 � t00 is extremely small (ift� t0; t00), and will generally be much
larger. Furthermore, if the mix nodes collaborate when choosing who receives dummy messages this
bound can easily be increased.

In addition (or in replacement of) to dummy traffic, the userscan create routes of random length to
fool adversaries. If the routes are arbitrarily large, in order to accurately match one sender with a set of
possible recipients, the attacker needs to follow an arbitrarily large number of paths.

The attack can be carried out by passive, static, external adversaries, capable of taping the required
wires. (If the attacker can’t tap a significant number of wires, the probability of him being able to
follow all paths is very low.) Note that if the attacker can’ttap a relevant wire, he won’t be able to
produce a complete potential recipient list since the pathsgoing through the missing wires are lost. A
passive, external, adaptive adversary is better suited to this problem as he can ”follow” the messages,
compromising only the relevant channels (wires).

Since the previous scheme is very simple, it’s easy to calculate security/practicality tradeoffs and
compare mix-networks with respect to their resistance to brute force attacks. For example it allows us to
answer questions like:� Are busy networks with few nodes more resistant to brute force attacks than quiet networks with

many nodes ?� How helpful is dummy traffic if it’s used in a particular manner ?
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(Note that if the brute force attack is carried out many times, the techniques of subsection 3.4.3 can
be used.)

3.2 The Node Flushing Attack (a.k.a. Spam attack, Flooding attack, n-1 attack)

First mentioned in [7], the flush attack is very effective andcan be mounted by an active external adver-
sary. If the nodes wait till they havet messages before ”flushing”, an attacker can sendt � 1 messages
and easily associate messages leaving the node with those having entered. This can be seen by noting
that the adversary will be able to match his inputs with the messages leaving the node.

Dummy traffic can make things a bit more difficult for the attacker since he can’t distinguish them
from legitimate messages. Unfortunately, if dummy traffic is only used in specific instances, as proposed
in subsection 3.1, an attacker can choose his messages so that dummy traffic isn’t used.

Another potential solution is to authenticate each messagewhich allows nodes to detect flushing
attempts. Unfortunately, this entails authenticating each message and detecting flushing attempts which
could be computationally infeasible. We remark that simple-minded implementations of this solution
can be broken by message playback attacks. Authentication and privacy protection are two seemingly
contradictory requirements however using Chaumian blinding [8] or Brands credentials [5] we can satisfy
both requirements.

Stop-and-Go mix nodes (in which a message waits a random amount of time) canpartially solve this
problem. Unfortunately, they only have ”probabilistic” security.

There are some similarities with denial of service attacks [6, 15]. Hence, ift is very large, using
hashcach [3] or pricing functions [20] might be effective solutions.

Yet another option is to “re-mix” the messages, that is, the mix nodes use the same mechanism as
the user to send the messages to the next nodes – “recursive mixing”. This feature is implemented in
mixmaster[13].

Notice that by encrypting the traffic between mix nodes, the attacker looses the ability to easily
recognizehis messages (the partial (< t� 1 spams) node flushing attack isn’t as effective).

3.3 Timing Attacks

If the different routes that can be taken require different amounts of time, the system could be vulnerable
to timing attacks. Precisely, given the set of messages coming in the network and the set of message
going out of the network (as well as the arrival, departure times respectively), route timing information
might be useful in correlating the messages in the two sets.

For example, suppose there are two routes, one taking 2 second and the other 4 seconds and assume
that the two messages coming in the network arrive at 0:00 and0:01 and that the two messages leave
the network at 0:03 and 0:04. The attacker doesn’t need to carry out expensive computations in order to
correlate the messages coming in with the messages going out: : :

Remark also that an attacker having access to just one of the communicating parties might be able
to infer which route is taken by simply computing theround trip time. That is, calculating the time it
takes to receive a reply. This attack is interesting in that even if one of the parties uses “constant link
padding8” the attack is still effective.

8The flow of messages between the participant and the first nodeis constant.
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The attack motivates the use of mix nodes that wait variable amounts of time before flushing mes-
sages. We remark that randomly increasing the latency doesn’t completely solve the problem since an
attacker might be able to rule out some routes (e.g. if a message exits the mix network faster than the
minimum time needed to go through some routes then these routes can be ruled out). Hence, the min-
imum time needed to go through each route should be the same. (It’s not clear if this can be directly
used in real-world situations since some routes could be very slow – because of mix node processing
speed, speed of the communication wires, number of mix nodesin the route, etc.). This kind of attack is
mentioned in [28, 38].

3.4 Contextual Attacks

These are the most dangerous attacks and, unfortunately, they are very difficult to model in a rigorous
manner. The problem is that real-world users don’t behave like those in the idealized model. We remark
that this class of attack is particularly effective for real-time interactive communications.

3.4.1 Communication Pattern Attacks

By simply looking at the communication patterns (when userssend and receive), one can find out a
lot of useful information. Communicating participants normally don’t “talk” at the same time, that is,
when one party is sending, the other is usually silent. The longer an attacker can observe this type of
communication synchronization, the less likely it’s just an uncorrelated random pattern.

This attack can be mounted by a passive adversary that can monitor entry and exit mix nodes. Law
enforcement officials might be quite successful mounting this kind of attack as they often have a-priori
information: they usually have a hunch that two parties are communicating and just want to confirm their
suspicion.

3.4.2 Packet Counting Attacks

These types of attacks are similar to the other contextual attacks in that they exploit the fact that some
communications are easy to distinguish from others. If a participant sends a non-standard (i.e. unusual)
number of messages, a passive external attacker can spot these messages coming out of the mix-network.
In fact, unless all users send the same number of messages, this type of attack allows the adversary to
gain non-trivial information.

A partial solution is to have parties only send standard numbers of messages but this isn’t a viable
option in many settings.

The packet counting and communication pattern attacks can be combined to get a “message fre-
quency” attack (this might require more precise timing information).

Communication pattern, packet counting and message frequency attacks are sometimes referred to as
traffic shaping attacks and are usually dealt with by imposing rigid structure9 on user communications[4].
Notice that protocols achieving “network unobservability” are immune to these attacks.

9It’s not clear whether this is a viable option for large Internet based systems.
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3.4.3 Intersection Attack

An attacker having information about what users are active at any given time can, through repeated
observations, determine what users communicate with each other. This attack is based on the observation
that users typically communicate with a relatively small number of parties. For example, the typical user
usually queries the same web sites in different sessions (his queries aren’t random). By performing an
operation similar to an intersection on the sets of active users at different times it is probable that the
attacker can gain interesting information. The intersection attack is a well known open problem and
seems extremely difficult to solve in an efficient manner.

3.5 Denial of Service Attacks

By rendering some mix nodes in-operational, an active adversary might obtain some information about
the routes used by certain users. It seems highly probable that users that have their routes “destroyed”
will behave differently than parties that haven’t. Networkunobservability or “client challenges10” (e.g.
[3, 20, 26]) might be required to properly solve this problemfor real-time interactive communications.

3.6 Active Attacks Exploiting User Reactions

Active adversaries might be able to gain non-trivial sender-recipient matching information by exploiting
the fact that user behavior depends on the message received.A variation on the following attack can even
be used against dc-nets that don’t use a secure broadcast channel (see [41]).

1. The adversary first intercepts a messageM just before it enters the mix net.

2. M is then sent to a set of possible recipients. The parties not expecting to receive this message
message will probably react in a different manner than a party expecting it.

The attacker can use this to get some sender-recipient matching information. Note that if the nodes
in the route authenticate the messages the attack is prevented.

3.7 The “Sting” Attack

If one of the party involved in a dialog is corrupt, he might beable to, in a sense, “encode” information in
his messages (see [28]). For example, government agencies might set up a fake “bomb making instruction
web sites” and try to find out who accesses it. Many methods foridentifying a user querying the web
page come to mind: varying the reply latency, sending messages of a specific length, etc.

In some situations, it might be even easier to compromise user privacy. For example, if the sting web
site gives fake information pertaining to financial fraud, the user might (non-anonymously) act upon this
information at which point he can be arrested.

10Prevention mechanisms for denial of service attacks.
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3.8 The “Send n’ Seek” Attack

This attack is, in a sense, the opposite of the “sting” attackof subsection 3.7. Instead of having the recip-
ient try to find the sender’s identity, it’s the sender that attempts to uncover the recipient’s identity. This
attack is particularly dangerous against non-interactiveprocesses. For example, privacy protecting e-mail
systems (see for example [21]) can be attacked by sending an easily identifiable number of messages and
trying to identify these messages at suspect destinations (e.g. POP boxes). Notice that the terms sender
and recipient are used very loosely here; the sender refers to the party initiating the connection.

3.9 Attacks Based on the Message’s Distinguishing Features

If the user’s (unencrypted) messages have distinguishing characteristics, the recipient (and maybe the
last node, depending on whether the message is encrypted) might be able to link the message with one or
many individuals. For example, analyzing writing styles probably reveals non-trivial information about
the sender.

3.10 Message Delaying

The attacker can withhold messages until he can obtain enough resources (i.e. wires, nodes, etc.) or until
the network becomes easier to monitor or to see if the possible recipients receive other messages, etc.
In view of this attack, it makes sense to have the mix nodes verify authenticated timing information (the
authenticated timing information could be inserted in the message by the sender or the nodes).

3.11 Message Tagging [16]

An active internal adversary that has control of the first andlast node in a message route, can tag (i.e.
slightly modify) messages at the first node in such a way that the exit node can spot them. Since the entry
node knows the sender and the exit node the recipient, the system is broken.

A solution to this problem is to make it difficult to tag messages. The techniques that can be used to
do this depend on the implementation and so are not discussedhere.

A slight variant of this attack can be mounted by an active external adversary if the messages don’t
have a rigid structure. Remark that this attack has many similarities with subliminal channels [39]; this
observation forms the basis of some of the following variations:� Shadow Messages:If an adversary sends messages that follow the same path as the message being

followed, it can easily transmit some information to the output. For example, the attacker can just
replay the message in such a way that it can spot them leaving the mix network (e.g. varying the
message frequency).� Message Delaying:The attacker can delay messages to obtain some information.These delays
can presumably detected.� Broadcast: An attacker can broadcast messages notifying his accomplices that a particular mes-
sage has entered the network. This isn’t a particularly powerful attack but it could be virtually
impossible to detect.
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The message tagging based attacks motivate using extremelyrigid message structure and authenti-
cating timing information (in order to prevent message delays and message playbacks).

3.12 Partial or Probabilistic Attacks

Most of the preceding attacks can be carried out partially, that is, the attacker can obtain partial or
probabilistic information. For example, he could deduce information of the form: with probabilityp, A
is communicating with B or A is communicating with one of the users in a group. These attacks haven’t
been addressed so far and seem very promising, especially when carried out a large number of times.

3.13 Approaches to Modeling Attacks

The previous attacks have assumed that the adversary controlled all the required resources (wires, nodes).
When only considering static adversaries, it might make sense to calculate the probability that the re-
quired resources are controlled. This approach is especially relevant when the adversary just wants to
obtaina sender-recipient matching.

Unfortunately, assuming static adversaries doesn’t seem helpful for making design decisions (i.e.
how much dummy traffic); it might however help us in determining if there is a reasonable threat that the
system can be broken.

4 Mix Network Design Issues

In this section, we present issues related to mix-network design.

4.1 Anonymity versus Pseudonymity

Probably the most important design issue is that of anonymity versus pseudonymity. Note that by
pseudonymous, we mean that some node(s) knows the user’s pseudonym (it can’t link a pseudonym
with a real-world identity). Another option is to have the user be anonymous in the mix network but
be pseudonymous in its dealings with other users (half-pseudonymity). Half-pseudonymity won’t be
discussed in any detail because its properties are similar to the pseudonymity ones. Here are the most
important advantages of both anonymity and pseudonymity:� Anonymity

1. Provides better security since if a pseudonym (nym) is linked with a user, all future uses of
the nym can be linked to the user.� Pseudonymity

1. We get the best of both worlds: privacy protection and accountability (and openness). Since
pseudonyms (nyms) have a persistent nature, long term relationships and trust can be culti-
vated. (half pseudonymity also)

2. Pseudonym based business models (for mix node operators)are more attractive than anonymity
based ones.
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3. Abuse control is easier to deal with when nyms are used.

4. Authentication (verifying that someone has the right to use the network) is easier: either
Brands credentials [5] or Chaumian blinding [8] needs to be used11 when using anonymity.

5. Allows non-interactive processes (e.g. e-mail).

4.2 Packet Sizes

In many situations, using different message sizes yield substantial performance improvements. For ex-
ample TCP/IP connections require on average one small control packet for every two (large) data packet.
It might be inefficient for small messages to be padded or large packets split up in order to get a message
of the correct size. As usual in cryptography, we have a security/performance tradeoff: Using more than
one message size gives better performance but worse security. We strongly suspect however that there
are techniques which improve the security properties of themultiple packet size option (e.g. randomly
expanding small messages.).

4.3 Dummy Messages

Dummy traffic is often used in an unstructured manner and so might not be as effective as it could be,
we note the following observations:

1. If a node sends its message to less thant0 nodes we suggest sending dummy messages in such a
way thatt0 nodes receive messages. The largert0, the harder it is to mount the brute search attacks.

2. Each node should send messages to at leastt00 destinations outside the mix network (dummy mes-
sages should be used to fill the gaps). The largert00, the harder it is to mount the brute search attack.
Furthermore, this technique also seems to complicate attacks in which the adversary monitors the
exit nodes.

3. In order to randomize the user’s communication patterns,we should seriously consider having
the user send dummy traffic to the entry node. The challenge here is to have good security and
minimize the amount of dummy messages used (see [4]).

4. Dummy messages could also be used to reduce the amount of time messages stay at a given node.
It seems that waiting for messages to enter a mix node before sendingb (b > ) has similar
security properties as waiting to receiveb messages before releasing them. This trick could be
used to reduce the time messages wait at nodes.

4.4 Routing

For large Internet based systems especially, having the user choose the nodes in his route randomly
doesn’t seem like a viable option because:

1. The nodes and users must “know12” each other node which might be impractical.
11both of these techniques are patented.
12e.g. know the IP address, Port number and status.
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2. Some servers are far from each other and it doesn’t make sense from a performance view point to
have, for example, a route consisting of nodes in Australia,Canada, South Africa and China.

3. Nodes should be “socially” independent. Ideally, the nodes in a route should belong to different
organizations and be located in different legal jurisdiction. The whole idea behind using more than
one node is that none of them have enough information to determine sender-recipient matchings.
Hence, if all nodes in a route belong to the same organizationwe might as well just use a single
node. The motivation for having nodes in different legal jurisdiction is that more than one subpoena
needs to be obtained to legally compromise nodes.

Creating good network topologies and route finding algorithms with respect to security and efficiency
doesn’t seem entirely trivial.

Note also that in order to limit the number of public key operations executed, some systems (e.g.
[21]) use static routes that allows mix nodes to associate each message with a connection identifier
which makes some of the attacks mentioned previously a lot easier to carry out.

4.5 Node Flushing Algorithm

As seen in subsection 2.3.2, there are many different approaches to flushing nodes. Again, there is a
security/practicality tradeoff: the longer messagescanstay in mix-nodes the better the security (in most
settings).

4.6 Query Servers and Privacy Protection

In many situations, the user needs to retrieve some information from a query server, for example network
configuration information, pseudonym public keys, etc. These queries shouldn’t erode privacy: the query
servers shouldn’t obtain non-trivial information about sender-recipient matchings. The obvious approach
to this problem is to have the user download the entire databases (the answer to every possible query)
but unfortunately, the amount of data to transfer might be too large. We suspect that private informa-
tion retrieval protocols [10, 11] might be very useful in these situations. This design issue illustrates a
fundamental security principle:

A system is only as secure as its weakest link.

5 Directions for Further Research

Probably the most important direction for further researchin this field is that of attacks. As it seems
unlikely that we can obtain Rackoff-Simon [37] type bounds for real-world implementations, it’s a good
idea to find and rigorously analyze as many attacks as possible and either :� Try to immunize our protocols against these attacks.� Detect when the attack is mountable and take the appropriatemeasures.

The new and clever attacks that will be effective against mixnetworks will probably be empirical in
nature. Mathematical analysis of mix network traffic seems like the most promising avenue for mounting
attacks. Perhaps ideas from the field of pattern recognitionand measure theory could be used: : :
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We now give a listing of some other relevant problems (in no particular order):

1. Most of the attacks mentioned are aimed; what about a more general class of attack in which an
attacker doesn’t require a particular sender-recipient matching but would settle for an arbitrary one
?

2. The best we can hope for is that the attacker’s view be independent from the sender-recipient
matchings. Is it possible to obtain weaker results in which the view is slightly biased? Such a
result would allow us to determine how much information the attacker needs to gather in order to
get a “convincing” sender recipient linking (instead of relying on ad-hoc arguments).

3. Another possible avenue of research is formalizing the effectiveness of a given adversary in break-
ing the protocol. That is working with a more precise adversary descriptions; Instead of active,
static and internal adversaries, we could have adversariestaping two specific communication chan-
nels, having total control of a particular mix node, etc. It’s not clear how this would help us in de-
signing good protocols, however it might be useful when certain parts of the network are thought
to be compromised.

4. It’s not clear at all what real-world adversary can do. Canthey tap wires and compromise nodes at
will ? It would be very instructive to know what can be done, the level of sophistication required
and the computational resources needed (memory, CPU cycles, network access, etc.).

5. It would be extremely useful to determine when the mix-network is vulnerable or, more generally,
what security mix-networks provide in different situations.

6. All issues mentioned in section 4 need to be thoroughly analyzed.

7. Caching popular content would improve security and it’s not clear what the best way to go about
doing this is.

8. Perhaps the exit nodes can perform some computations for the users. For example, the TCP control
messages could be handled by the exit mix node (i.e. the control messages would not be handled
by the user).

9. Heaps of security and efficiency problems arise when incorporating privacy protecting mechanisms
within existing protocols (e.g. http, telnet, etc.).

10. A detailed specification (e.g. within IETF) could be devised to help mix-network designers. This
would protect mix-network operators from known attacks andgive attackers a precise model to
“study” (thus helping us improve the specification: : : )

6 Conclusion

We have given an introduction to the traffic-analysis problem by presenting the most important construc-
tions, attacks, design issues and direction for further research. It is hoped that research addressing some
of the problems exposed in this work will allow us to stop using terms such as : “seems”, “probably”, “I
suspect” in our discussions about traffic analysis.

16



Acknowledgements

We would like to thank Adam Back, Adam Shostack, Anton Stiglic, Frédéric Légaré, Michael Freedman
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