Results 1 - 10
of
363
Fast Planning Through Planning Graph Analysis
- ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partial-order plan, or states that no valid pla ..."
Abstract
-
Cited by 1171 (3 self)
- Add to MetaCart
We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partial-order plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the total-order planner, Prodigy, and the partial-order planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.
The FF planning system: Fast plan generation through heuristic search
- Journal of Artificial Intelligence Research
, 2001
"... We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be ind ..."
Abstract
-
Cited by 830 (55 self)
- Add to MetaCart
(Show Context)
We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines Hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP.
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract
-
Cited by 515 (4 self)
- Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
The Fast Downward planning system
- Journal of Artifical Intelligence Research
, 2006
"... Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planne ..."
Abstract
-
Cited by 347 (29 self)
- Add to MetaCart
(Show Context)
Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planners such as HSP and FF, Fast Downward is a progression planner, searching the space of world states of a planning task in the forward direction. However, unlike other PDDL planning systems, Fast Downward does not use the propositional PDDL representation of a planning task directly. Instead, the input is first translated into an alternative representation called multivalued planning tasks, which makes many of the implicit constraints of a propositional planning task explicit. Exploiting this alternative representation, Fast Downward uses hierarchical decompositions of planning tasks for computing its heuristic function, called the causal graph heuristic, which is very different from traditional HSP-like heuristics based on ignoring negative interactions of operators. In this article, we give a full account of Fast Downward’s approach to solving multi-valued planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving
CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 2004
"... Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dep ..."
Abstract
-
Cited by 317 (4 self)
- Add to MetaCart
(Show Context)
Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence.
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract
-
Cited by 187 (18 self)
- Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NP-completeness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, time-varying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
Complexity Results for SAS+ Planning
- COMPUTATIONAL INTELLIGENCE
, 1993
"... We have previously reported a number of tractable planning problems defined in the SAS+ formalism. This report complements these results by providing a complete map over the complexity of SAS+ planning under all combinations of the previously considered restrictions. We analyze the complexity ..."
Abstract
-
Cited by 186 (24 self)
- Add to MetaCart
We have previously reported a number of tractable planning problems defined in the SAS+ formalism. This report complements these results by providing a complete map over the complexity of SAS+ planning under all combinations of the previously considered restrictions. We analyze the complexity both of finding a minimal plan and of finding any plan. In contrast to other complexity surveys of planning we study not only the complexity of the decision problems but also of the generation problems. We prove that the SAS+-PUS problem is the maximal tractable problem under the restrictions we have considered if we want to generate minimal plans. If we are satisfied with any plan, then we can generalize further to the SAS+-US problem, which we prove to be the maximal tractable problem in this case.
The Metric-FF planning system: Translating ”ignoring delete lists” to numeric state variables.
- Journal Artificial Intelligence Research (JAIR)
, 2003
"... Abstract Planning with numeric state variables has been a challenge for many years, and was a part of the 3rd International Planning Competition (IPC-3). Currently one of the most popular and successful algorithmic techniques in STRIPS planning is to guide search by a heuristic function, where the ..."
Abstract
-
Cited by 179 (12 self)
- Add to MetaCart
Abstract Planning with numeric state variables has been a challenge for many years, and was a part of the 3rd International Planning Competition (IPC-3). Currently one of the most popular and successful algorithmic techniques in STRIPS planning is to guide search by a heuristic function, where the heuristic is based on relaxing the planning task by ignoring the delete lists of the available actions. We present a natural extension of "ignoring delete lists" to numeric state variables, preserving the relevant theoretical properties of the STRIPS relaxation under the condition that the numeric task at hand is "monotonic". We then identify a subset of the numeric IPC-3 competition language, "linear tasks", where monotonicity can be achieved by preprocessing. Based on that, we extend the algorithms used in the heuristic planning system FF to linear tasks. The resulting system Metric-FF is, according to the IPC-3 results which we discuss, one of the two currently most efficient numeric planners.
Constructing Conditional Plans by a Theorem-Prover
- Journal of Artificial Intelligence Research
, 1999
"... The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial sta ..."
Abstract
-
Cited by 155 (6 self)
- Add to MetaCart
The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial state and the outcomes of nondeterministic changes in the system. This setting raises the questions of how to represent the plans and how to perform plan search. The answers are quite different from those in the simpler classical framework. In this paper, we approach conditional planning from a new viewpoint that is motivated by the use of satisfiability algorithms in classical planning. Translating conditional planning to formulae in the propositional logic is not feasible because of inherent computational limitations. Instead, we translate conditional planning to quantified Boolean formulae. We discuss three formalizations of conditional planning as quantified Boolean formulae, and pr...
Planning with Pattern Databases
- PROCEEDINGS OF THE 6TH EUROPEAN CONFERENCE ON PLANNING (ECP-01)
, 2001
"... Heuristic search planning eectively #12;nds solutions for large planning problems, but since the estimates are either not admissible or too weak, optimal solutions are found in rare cases only. In contrast, heuristic pattern databases are known to signi#12;cantly improve lowerbound estimates for opt ..."
Abstract
-
Cited by 130 (18 self)
- Add to MetaCart
Heuristic search planning eectively #12;nds solutions for large planning problems, but since the estimates are either not admissible or too weak, optimal solutions are found in rare cases only. In contrast, heuristic pattern databases are known to signi#12;cantly improve lowerbound estimates for optimally solving challenging single-agent problems like the 24-Puzzle or Rubik's Cube.
This paper studies the eect of pattern databases in the context of deterministic planning. Given afixed state description based on instantiated predicates, we provide a general abstraction scheme to automatically create admissible domain-independent memory-based heuristics for planning problems, where abstractions are found in factorizing the planning space. We evaluate the impact of pattern database heuristics in A* and hill climbing algorithms for a collection of benchmark domains.