Results 1 - 10
of
1,241
Xen and the art of virtualization
- IN SOSP
, 2003
"... Numerous systems have been designed which use virtualization to subdivide the ample resources of a modern computer. Some require specialized hardware, or cannot support commodity operating systems. Some target 100 % binary compatibility at the expense of performance. Others sacrifice security or fun ..."
Abstract
-
Cited by 2010 (35 self)
- Add to MetaCart
(Show Context)
Numerous systems have been designed which use virtualization to subdivide the ample resources of a modern computer. Some require specialized hardware, or cannot support commodity operating systems. Some target 100 % binary compatibility at the expense of performance. Others sacrifice security or functionality for speed. Few offer resource isolation or performance guarantees; most provide only best-effort provisioning, risking denial of service. This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality. This is achieved by providing an idealized virtual machine abstraction to which operating systems such as Linux, BSD and Windows XP, can be ported with minimal effort. Our design is targeted at hosting up to 100 virtual machine instances simultaneously on a modern server. The virtualization approach taken by Xen is extremely efficient: we allow operating systems such as Linux and Windows XP to be hosted simultaneously for a negligible performance overhead — at most a few percent compared with the unvirtualized case. We considerably outperform competing commercial and freely available solutions in a range of microbenchmarks and system-wide tests.
Language-Based Information-Flow Security
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2003
"... Current standard security practices do not provide substantial assurance that the end-to-end behavior of a computing system satisfies important security policies such as confidentiality. An end-to-end confidentiality policy might assert that secret input data cannot be inferred by an attacker throug ..."
Abstract
-
Cited by 827 (57 self)
- Add to MetaCart
Current standard security practices do not provide substantial assurance that the end-to-end behavior of a computing system satisfies important security policies such as confidentiality. An end-to-end confidentiality policy might assert that secret input data cannot be inferred by an attacker through the attacker's observations of system output; this policy regulates information flow.
From System F to Typed Assembly Language
- ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1998
"... ..."
(Show Context)
Automatic predicate abstraction of C programs
- IN PROC. ACM PLDI
, 2001
"... Model checking has been widely successful in validating and debugging designs in the hardware and protocol domains. However, state-space explosion limits the applicability of model checking tools, so model checkers typically operate on abstractions of systems. Recently, there has been significant in ..."
Abstract
-
Cited by 488 (33 self)
- Add to MetaCart
(Show Context)
Model checking has been widely successful in validating and debugging designs in the hardware and protocol domains. However, state-space explosion limits the applicability of model checking tools, so model checkers typically operate on abstractions of systems. Recently, there has been significant interest in applying model checking to software. For infinite-state systems like software, abstraction is even more critical. Techniques for abstracting software are a prerequisite to making software model checking a reality. We present the first algorithm to automatically construct a predicate abstraction of programs written in an industrial programming language such as C, and its implementation in a tool-- C2bp. The C2bp tool is part of the SLAM toolkit, which uses a combination of predicate abstraction, model checking, symbolic reasoning, and iterative refinement to statically check temporal safety properties of programs. Predicate abstraction of software has many applications, including detecting program errors, synthesizing program invariants, and improving the precision of program analyses through predicate sensitivity. We discuss our experience applying the C2bp predicate abstraction tool to a variety of problems, ranging from checking that list-manipulating code preserves heap invariants to finding errors in Windows NT device drivers.
Automatically validating temporal safety properties of interfaces
, 2001
"... We present a process for validating temporal safety properties of software that uses a well-defined interface. The process requires only that the user state the property of interest. It then automatically creates abstractions of C code using iterative refinement, based on the given property. The pro ..."
Abstract
-
Cited by 433 (21 self)
- Add to MetaCart
(Show Context)
We present a process for validating temporal safety properties of software that uses a well-defined interface. The process requires only that the user state the property of interest. It then automatically creates abstractions of C code using iterative refinement, based on the given property. The process is realized in the SLAM toolkit, which consists of a model checker, predicate abstraction tool and predicate discovery tool. We have applied the SLAM toolkit to a number of Windows NT device drivers to validate critical safety properties such as correct locking behavior. We have found that the process converges on a set of predicates powerful enough to validate properties in just a few iterations. 1 Introduction Large-scale software has many components built by many programmers. Integration testing of these components is impossible or ineffective at best. Property checking of interface usage provides a way to partially validate such software. In this approach, an interface is augmented with a set of properties that all clients of the interface should respect. An automatic analysis of the client code then validates that it meets the properties, or provides examples of execution paths that violate the properties. The benefit of such an analysis is that errors can be caught early in the coding process. We are interested in checking that a program respects a set of temporal safety properties of the interfaces it uses. Safety properties are the class of properties that state that "something bad does not happen". An example is requiring that a lock is never released without first being acquired (see [24] for a formal definition). Given a program and a safety property, we wish to either validate that the code respects the property, or find an execution path that shows how the code violates the property.
Formal certification of a compiler back-end, or: programming a compiler with a proof assistant
- IN PROC. 33RD ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES (POPL ’06
, 2006
"... This paper reports on the development and formal certification (proof of semantic preservation) of a compiler from Cminor (a C-like imperative language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a certified compile ..."
Abstract
-
Cited by 289 (15 self)
- Add to MetaCart
(Show Context)
This paper reports on the development and formal certification (proof of semantic preservation) of a compiler from Cminor (a C-like imperative language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a certified compiler is useful in the context of formal methods applied to the certification of critical software: the certification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well.
Protecting privacy using the decentralized label model
- ACM Transactions on Software Engineering and Methodology
, 2000
"... Stronger protection is needed for the confidentiality and integrity of data, because programs containing untrusted code are the rule rather than the exception. Information flow control allows the enforcement of end-to-end security policies, but has been difficult to put into practice. This article d ..."
Abstract
-
Cited by 288 (27 self)
- Add to MetaCart
Stronger protection is needed for the confidentiality and integrity of data, because programs containing untrusted code are the rule rather than the exception. Information flow control allows the enforcement of end-to-end security policies, but has been difficult to put into practice. This article describes the decentralized label model, a new label model for control of information flow in systems with mutual distrust and decentralized authority. The model improves on existing multilevel security models by allowing users to declassify information in a decentralized way, and by improving support for fine-grained data sharing. It supports static program analysis of information flow, so that programs can be certified to permit only acceptable information flows, while largely avoiding the overhead of run-time checking. The article introduces the language Jif, an extension to Java that provides static checking of information flow using the decentralized label model.
The Design and Implementation of a Certifying Compiler
, 1998
"... This paper presents the design and implementation of a com-piler that translates programs written in a type-safe subset of the C programming language into highly optimized DEC Alpha assembly language programs, and a certifier that automatically checks the type safety and memory safety of any assembl ..."
Abstract
-
Cited by 275 (10 self)
- Add to MetaCart
(Show Context)
This paper presents the design and implementation of a com-piler that translates programs written in a type-safe subset of the C programming language into highly optimized DEC Alpha assembly language programs, and a certifier that automatically checks the type safety and memory safety of any assembly language program produced by the compiler. The result of the certifier is either a formal proof of type safety or a counterexample pointing to a potential violation of the type system by the target program. The ensemble of the compiler and the certifier is called a certifying compiler. Several advantages of certifying compilation over previous approaches can be claimed. The notion of a certify-ing compiler is significantly easier to employ than a formal compiler verification, in part because it is generally easier to verify the correctness of the result of a computation than to prove the correctness of the computation itself. Also, the approach can be applied even to highly optimizing compilers, as demonstrated by the fact that our compiler generates target code, for a range of realistic C programs, which is competitive with both the cc and gee compilers with all op-timizations enabled. The certifier also drastically improves the effectiveness of compiler testing because, for each test case, it statically signals compilation errors that might oth-erwise require many executions to detect. Finally, this ap-proach is a practical way to produce the safety proofs for a Proof-Carrying Code system, and thus may be useful in a system for safe mobile code.
Secrecy by Typing in Security Protocols
- Journal of the ACM
, 1998
"... We develop principles and rules for achieving secrecy properties in security protocols. Our approach is based on traditional classification techniques, and extends those techniques to handle concurrent processes that use shared-key cryptography. The rules have the form of typing rules for a basic co ..."
Abstract
-
Cited by 273 (10 self)
- Add to MetaCart
We develop principles and rules for achieving secrecy properties in security protocols. Our approach is based on traditional classification techniques, and extends those techniques to handle concurrent processes that use shared-key cryptography. The rules have the form of typing rules for a basic concurrent language with cryptographic primitives, the spi calculus. They guarantee that, if a protocol typechecks, then it does not leak its secret inputs.