• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

Training Support Vector Machine: An application to Face Detection (0)

by E Osuna, R Freund, F Girosi
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 727
Next 10 →

LIBSVM: A library for support vector machines,”

by Chih-Chung Chang , Chih-Jen Lin - ACM Transactions on Intelligent Systems and Technology, , 2011
"... Abstract LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information. ..."
Abstract - Cited by 6496 (83 self) - Add to MetaCart
Abstract LIBSVM is a library for support vector machines (SVM). Its goal is to help users to easily use SVM as a tool. In this document, we present all its implementation details. For the use of LIBSVM, the README file included in the package and the LIBSVM FAQ provide the information.

A tutorial on support vector machines for pattern recognition

by Christopher J. C. Burges - Data Mining and Knowledge Discovery , 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract - Cited by 3393 (12 self) - Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

Rapid object detection using a boosted cascade of simple features

by Paul Viola, Michael Jones - ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 , 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract - Cited by 3283 (9 self) - Add to MetaCart
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "Integral Image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers[6]. The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.
(Show Context)

Citation Context

... boosting process, which selects a new weak classifier, can be viewed as a feature selection process. AdaBoost provides an effective learning algorithm and strong bounds on generalization performance =-=[13, 9, 10]-=-. The third major contribution of this paper is a method for combining successively more complex classifiers in a cascade structure which dramatically increases the speed of the detector by focusing a...

Making Large-Scale SVM Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 1861 (17 self) - Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, off-the-shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SV M light V2.0, which make large-scale SVM training more practical. The results give guidelines for the application of SVMs to large domains.

Gradient-based learning applied to document recognition

by Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - Proceedings of the IEEE , 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract - Cited by 1533 (84 self) - Add to MetaCart
Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of two dimensional (2-D) shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN’s), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank check is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.

Neural Network-Based Face Detection

by Henry A. Rowley, Shumeet Baluja, Takeo Kanade - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1998
"... We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present ..."
Abstract - Cited by 1206 (22 self) - Add to MetaCart
We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.

Robust Real-time Object Detection

by Paul Viola, Michael Jones - International Journal of Computer Vision , 2001
"... This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features ..."
Abstract - Cited by 1184 (4 self) - Add to MetaCart
This paper describes a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image ” which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a method for combining classifiers in a “cascade ” which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. A set of experiments in the domain of face detection are presented. The system yields face detection performace comparable to the best previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15 frames per second. 1.
(Show Context)

Citation Context

... boosting process, which selects a new weak classifier, can be viewed as a feature selection process. AdaBoost provides an effective learning algorithm and strong bounds on generalization performance =-=[14, 9, 10]-=-. The third major contribution of this paper is a method for combining successively more complex classifiers in a cascade structure which dramatically increases the speed of the detector by focussing ...

Visual categorization with bags of keypoints

by Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cédric Bray - In Workshop on Statistical Learning in Computer Vision, ECCV , 2004
"... Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors of im ..."
Abstract - Cited by 1005 (14 self) - Add to MetaCart
Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors of image patches. We propose and compare two alternative implementations using different classifiers: Naïve Bayes and SVM. The main advantages of the method are that it is simple, computationally efficient and intrinsically invariant. We present results for simultaneously classifying seven semantic visual categories. These results clearly demonstrate that the method is robust to background clutter and produces good categorization accuracy even without exploiting geometric information. 1.
(Show Context)

Citation Context

...eciding whether or not a member of one visual category is present in a given image. Most previous work on detection has centered on machine learning approaches to detecting faces, cars or pedestrians =-=[1]-=--[6] While it would be possible to perform generic categorization by applying a detector for each class of interest to a given image, this approach becomes inefficient given a large number of classes....

A Comparison of Methods for Multiclass Support Vector Machines

by Chih-Wei Hsu, Chih-Jen Lin - IEEE TRANS. NEURAL NETWORKS , 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract - Cited by 952 (22 self) - Add to MetaCart
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such “all-together” methods. We then compare their performance with three methods based on binary classifications: “one-against-all,” “one-against-one,” and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the “one-against-one” and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.
(Show Context)

Citation Context

...ing binary SVM, a main difficulty is on the density of the kernel matrix as in general is not zero. Thus currently the decomposition method is the major method to solve binary support vector machines =-=[21]-=-, [13], [22], [24]. It is an iterative process where in each iteration the index set of variables are separated to two sets and , where is the working set. Then in that iteration variables correspondi...

Detecting faces in images: A survey

by Ming-hsuan Yang, David J. Kriegman, Narendra Ahuja - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract - Cited by 839 (4 self) - Add to MetaCart
Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its three-dimensional position, orientation, and the lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.
(Show Context)

Citation Context

...s and other kernel methods have been proposed. These methods implicitly project patterns to a higher dimensional space and then form a decision surface between the projected face and nonface patterns =-=[107]-=-. 2.4.1 Eigenfaces An early example of employing eigenvectors in face recognition was done by Kohonen [80] in which a simple neural network is demonstrated to perform face recognition for aligned and ...

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University