Results 1  10
of
529
LanguageBased InformationFlow Security
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2003
"... Current standard security practices do not provide substantial assurance that the endtoend behavior of a computing system satisfies important security policies such as confidentiality. An endtoend confidentiality policy might assert that secret input data cannot be inferred by an attacker throug ..."
Abstract

Cited by 827 (57 self)
 Add to MetaCart
Current standard security practices do not provide substantial assurance that the endtoend behavior of a computing system satisfies important security policies such as confidentiality. An endtoend confidentiality policy might assert that secret input data cannot be inferred by an attacker through the attacker's observations of system output; this policy regulates information flow.
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 408 (42 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Probabilistic Simulations for Probabilistic Processes
, 1994
"... Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed ..."
Abstract

Cited by 361 (19 self)
 Add to MetaCart
(Show Context)
Several probabilistic simulation relations for probabilistic systems are defined and evaluated according to two criteria: compositionality and preservation of "interesting" properties. Here, the interesting properties of a system are identified with those that are expressible in an untimed version of the Timed Probabilistic concurrent Computation Tree Logic (TPCTL) of Hansson. The definitions are made, and the evaluations carried out, in terms of a general labeled transition system model for concurrent probabilistic computation. The results cover weak simulations, which abstract from internal computation, as well as strong simulations, which do not.
Relations in Concurrency
"... The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the seman ..."
Abstract

Cited by 305 (36 self)
 Add to MetaCart
The theme of this paper is profunctors, and their centrality and ubiquity in understanding concurrent computation. Profunctors (a.k.a. distributors, or bimodules) are a generalisation of relations to categories. Here they are first presented and motivated via spans of event structures, and the semantics of nondeterministic dataflow. Profunctors are shown to play a key role in relating models for concurrency and to support an interpretation as higherorder processes (where input and output may be processes). Two recent directions of research are described. One is concerned with a language and computational interpretation for profunctors. This addresses the duality between input and output in profunctors. The other is to investigate general spans of event structures (the spans can be viewed as special profunctors) to give causal semantics to higherorder processes. For this it is useful to generalise event structures to allow events which “persist.”
Bisimulation can't be traced
, 1995
"... In the concurrent language CCS, hvo programs are considered the same if they are bzsimilar. Several years and many researchers have demonstrated that the theory of bisimulation is mathematically appealing and useful in practice. However, bisimulation makes too many distinctions between programs. W ..."
Abstract

Cited by 242 (2 self)
 Add to MetaCart
In the concurrent language CCS, hvo programs are considered the same if they are bzsimilar. Several years and many researchers have demonstrated that the theory of bisimulation is mathematically appealing and useful in practice. However, bisimulation makes too many distinctions between programs. We consider the problem of adding operations to CCS to make bisimulation fully abstract. We define the class of GSOS operations, generalizing the style and technical advantages of CCS operations. We characterize GSOS congruence in as a bisimulationlike relation called ready simulation. Bisimulation is strictly finer than ready simulation, and hence
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 235 (48 self)
 Add to MetaCart
(Show Context)
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.
Reactive, Generative and Stratified Models of Probabilistic Processes
 Information and Computation
, 1990
"... ion Let E; E 0 be PCCS expressions. The intermodel abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ..."
Abstract

Cited by 195 (8 self)
 Add to MetaCart
(Show Context)
ion Let E; E 0 be PCCS expressions. The intermodel abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ones, thereby abstracting away from the relative probabilities between different actions. We can now define 'GR ('G (P )) as the reactive transition system that can be inferred from P 's generative transition system via IMARGR . By the same procedure as described at the end of Section 3.1, 'GR can be extended to a mapping 'GR : j GG ! j GR . Write P GR ¸ Q if P; Q 2 Pr are reactive bisimulation equivalent with respect to the transitions derivable from G+IMARGR , i.e. the theory obtained by adding IMARGR to the rules of Figure 7. The equivalence GR ¸ is defined just like R ¸ but using the cPDF ¯GR instead of ¯R . ¯GR is defined by ¯GR (P; ff; S) = X i2I R (=I G ) fj p i j G+ I...
Probabilistic noninterference for multithreaded programs.
 In Proc. IEEE Computer Sec. Foundations Workshop,
, 2000
"... ..."
Structural Operational Semantics
 Handbook of Process Algebra
, 1999
"... Structural Operational Semantics (SOS) provides a framework to give an operational semantics to programming and specification languages, which, because of its intuitive appeal and flexibility, has found considerable application in the theory of concurrent processes. Even though SOS is widely use ..."
Abstract

Cited by 152 (20 self)
 Add to MetaCart
Structural Operational Semantics (SOS) provides a framework to give an operational semantics to programming and specification languages, which, because of its intuitive appeal and flexibility, has found considerable application in the theory of concurrent processes. Even though SOS is widely used in programming language semantics at large, some of its most interesting theoretical developments have taken place within concurrency theory. In particular, SOS has been successfully applied as a formal tool to establish results that hold for whole classes of process description languages. The concept of rule format has played a major role in the development of this general theory of process description languages, and several such formats have been proposed in the research literature. This chapter presents an exposition of existing rule formats, and of the rich body of results that are guaranteed to hold for any process description language whose SOS is within one of these formats. As far as possible, the theory is developed for SOS with features like predicates and negative premises.