Results 1 - 10
of
433
Extended Static Checking for Java
, 2002
"... Software development and maintenance are costly endeavors. The cost can be reduced if more software defects are detected earlier in the development cycle. This paper introduces the Extended Static Checker for Java (ESC/Java), an experimental compile-time program checker that finds common programming ..."
Abstract
-
Cited by 638 (24 self)
- Add to MetaCart
(Show Context)
Software development and maintenance are costly endeavors. The cost can be reduced if more software defects are detected earlier in the development cycle. This paper introduces the Extended Static Checker for Java (ESC/Java), an experimental compile-time program checker that finds common programming errors. The checker is powered by verification-condition generation and automatic theoremproving techniques. It provides programmers with a simple annotation language with which programmer design decisions can be expressed formally. ESC/Java examines the annotated software and warns of inconsistencies between the design decisions recorded in the annotations and the actual code, and also warns of potential runtime errors in the code. This paper gives an overview of the checker architecture and annotation language and describes our experience applying the checker to tens of thousands of lines of Java programs.
KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs
"... We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentally-intensive programs. We used KLEE to thoroughly check all 89 stand-alone programs in the GNU COREUTILS utility suite, which form the cor ..."
Abstract
-
Cited by 557 (15 self)
- Add to MetaCart
(Show Context)
We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentally-intensive programs. We used KLEE to thoroughly check all 89 stand-alone programs in the GNU COREUTILS utility suite, which form the core user-level environment installed on millions of Unix systems, and arguably are the single most heavily tested set of open-source programs in existence. KLEE-generated tests achieve high line coverage — on average over 90% per tool (median: over 94%) — and significantly beat the coverage of the developers’ own hand-written test suite. When we did the same for 75 equivalent tools in the BUSYBOX embedded system suite, results were even better, including 100 % coverage on 31 of them. We also used KLEE as a bug finding tool, applying it to 452 applications (over 430K total lines of code), where it found 56 serious bugs, including three in COREUTILS that had been missed for over 15 years. Finally, we used KLEE to crosscheck purportedly identical BUSYBOX and COREUTILS utilities, finding functional correctness errors and a myriad of inconsistencies.
Automatic predicate abstraction of C programs
- IN PROC. ACM PLDI
, 2001
"... Model checking has been widely successful in validating and debugging designs in the hardware and protocol domains. However, state-space explosion limits the applicability of model checking tools, so model checkers typically operate on abstractions of systems. Recently, there has been significant in ..."
Abstract
-
Cited by 488 (33 self)
- Add to MetaCart
(Show Context)
Model checking has been widely successful in validating and debugging designs in the hardware and protocol domains. However, state-space explosion limits the applicability of model checking tools, so model checkers typically operate on abstractions of systems. Recently, there has been significant interest in applying model checking to software. For infinite-state systems like software, abstraction is even more critical. Techniques for abstracting software are a prerequisite to making software model checking a reality. We present the first algorithm to automatically construct a predicate abstraction of programs written in an industrial programming language such as C, and its implementation in a tool-- C2bp. The C2bp tool is part of the SLAM toolkit, which uses a combination of predicate abstraction, model checking, symbolic reasoning, and iterative refinement to statically check temporal safety properties of programs. Predicate abstraction of software has many applications, including detecting program errors, synthesizing program invariants, and improving the precision of program analyses through predicate sensitivity. We discuss our experience applying the C2bp predicate abstraction tool to a variety of problems, ranging from checking that list-manipulating code preserves heap invariants to finding errors in Windows NT device drivers.
Cyclone: A safe dialect of C
"... Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design ..."
Abstract
-
Cited by 401 (24 self)
- Add to MetaCart
(Show Context)
Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design, and shows how Cyclone avoids them, without giving up C's hallmark control over low-level details such as data representation and memory management.
Enforcing High-Level Protocols in Low-Level Software
, 2001
"... The reliability of infrastructure software, such as operating systems and web servers, is often hampered by the mismanagement of resources, such as memory and network connections. The Vault programming language allows a programmer to describe resource management protocols that the compiler can stati ..."
Abstract
-
Cited by 382 (9 self)
- Add to MetaCart
(Show Context)
The reliability of infrastructure software, such as operating systems and web servers, is often hampered by the mismanagement of resources, such as memory and network connections. The Vault programming language allows a programmer to describe resource management protocols that the compiler can statically enforce. Such a protocol can specify that operations must be performed in a certain order and that certain operations must be performed before accessing a given data object. Furthermore, Vault enforces statically that resources cannot be leaked. We validate the utility of our approach by enforcing protocols present in the interface between the Windows 2000 kernel and its device drivers.
Mining Specifications
, 2002
"... Program verification is a promising approach to improving program quality, because it can search all possible program executions for specific errors. However, the need to formally describe correct behavior or errors is a major barrier to the widespread adoption of program verification, since program ..."
Abstract
-
Cited by 366 (6 self)
- Add to MetaCart
Program verification is a promising approach to improving program quality, because it can search all possible program executions for specific errors. However, the need to formally describe correct behavior or errors is a major barrier to the widespread adoption of program verification, since programmers historically have been reluctant to write formal specifications. Automating the process of formulating specifications would remove a barrier to program verification and enhance its practicality.
EXE: Automatically generating inputs of death
- In Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS
, 2006
"... This article presents EXE, an effective bug-finding tool that automatically generates inputs that crash real code. Instead of running code on manually or randomly constructed input, EXE runs it on symbolic input initially allowed to be anything. As checked code runs, EXE tracks the constraints on ea ..."
Abstract
-
Cited by 349 (21 self)
- Add to MetaCart
This article presents EXE, an effective bug-finding tool that automatically generates inputs that crash real code. Instead of running code on manually or randomly constructed input, EXE runs it on symbolic input initially allowed to be anything. As checked code runs, EXE tracks the constraints on each symbolic (i.e., input-derived) memory location. If a statement uses a symbolic value, EXE does not run it, but instead adds it as an input-constraint; all other statements run as usual. If code conditionally checks a symbolic expression, EXE forks execution, constraining the expression to be true on the true branch and false on the other. Because EXE reasons about all possible values on a path, it has much more power than a traditional runtime tool: (1) it can force execution down any feasible program path and (2) at dangerous operations (e.g., a pointer dereference), it detects if the current path constraints allow any value that causes a bug. When a path terminates or hits a bug, EXE automatically generates a test case by solving the current path constraints to find concrete values using its own co-designed constraint solver, STP. Because EXE’s constraints have no approximations, feeding this concrete input to an uninstrumented version of the checked code will cause it to follow the same path and hit the same bug (assuming deterministic code).
Improving the reliability of commodity operating systems
, 2003
"... drivers remain a significant cause of system failures. In Windows XP, for example, drivers account for 85 % of recently reported failures. This article describes Nooks, a reliability subsystem that seeks to greatly enhance operating system (OS) reliability by isolating the OS from driver failures. T ..."
Abstract
-
Cited by 317 (14 self)
- Add to MetaCart
drivers remain a significant cause of system failures. In Windows XP, for example, drivers account for 85 % of recently reported failures. This article describes Nooks, a reliability subsystem that seeks to greatly enhance operating system (OS) reliability by isolating the OS from driver failures. The Nooks approach is practical: rather than guaranteeing complete fault tolerance through a new (and incompatible) OS or driver architecture, our goal is to prevent the vast majority of driver-caused crashes with little or no change to the existing driver and system code. Nooks isolates drivers within lightweight protection domains inside the kernel address space, where hardware and software prevent them from corrupting the kernel. Nooks also tracks a driver’s use of kernel resources to facilitate automatic cleanup during recovery. To prove the viability of our approach, we implemented Nooks in the Linux operating system and used it to fault-isolate several device drivers. Our results show that Nooks offers a substantial increase in the reliability of operating systems, catching and quickly recovering from many faults that would otherwise crash the system. Under a wide range and number of fault conditions, we show that Nooks recovers automatically from 99 % of the faults that otherwise cause Linux to crash.
ESP: Path-Sensitive Program Verification in Polynomial Time
, 2002
"... In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which the proper ..."
Abstract
-
Cited by 299 (4 self)
- Add to MetaCart
(Show Context)
In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which the property-related behavior differs along the arms of the branch, we can design an algorithm that is accurate enough to verify the program with respect to the given property, without paying the potentially exponential cost of full pathsensitive analysis. We have implemented this “property simulation ” algorithm as part of a partial verification tool called ESP. We present the results of applying ESP to the problem of verifying the file I/O behavior of a version of the GNU C compiler (gcc, 140,000 LOC). We are able to prove that all of the 646 calls to fprintf in the source code of gcc are guaranteed to print to valid, open files. Our results show that property simulation scales to large programs and is accurate enough to verify meaningful properties.