Results 1 - 10
of
1,246
What is Twitter, a Social Network or a News Media?
"... Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological charac ..."
Abstract
-
Cited by 991 (12 self)
- Add to MetaCart
(Show Context)
Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological characteristics of Twitter and its power as a new medium of information sharing. We have crawled the entire Twitter site and obtained 41.7 million user profiles, 1.47 billion social relations, 4, 262 trending topics, and 106 million tweets. In its follower-following topology analysis we have found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks [28]. In order to identify influentials on Twitter, we have ranked users by the number of followers and by PageRank and found two rankings to be similar.
The network paradigm in organizational research: A review and typology',
- Journal of Management,
, 2003
"... In this paper, we review and analyze the emerging network paradigm in ..."
Abstract
-
Cited by 296 (10 self)
- Add to MetaCart
(Show Context)
In this paper, we review and analyze the emerging network paradigm in
Twitterrank: finding topic-sensitive influential twitterers
- IN IN PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING
, 2010
"... This paper focuses on the problem of identifying influential users of micro-blogging services. Twitter, one of the most notable micro-blogging services, employs a social-networking model called “following”, in which each user can choose who she wants to “follow” to receive tweets from without requir ..."
Abstract
-
Cited by 285 (12 self)
- Add to MetaCart
(Show Context)
This paper focuses on the problem of identifying influential users of micro-blogging services. Twitter, one of the most notable micro-blogging services, employs a social-networking model called “following”, in which each user can choose who she wants to “follow” to receive tweets from without requiring the latter to give permission first. In a dataset prepared for this study, it is observed that (1) 72.4 % of the users in Twitter follow more than 80 % of their followers, and (2) 80.5 % of the users have 80 % of users they are following follow them back. Our study reveals that the presence of “reciprocity” can be explained by phenomenon of homophily [14]. Based on this finding, TwitterRank, an extension of PageRank algorithm, is proposed to measure the influence of users in Twitter. TwitterRank measures the influence taking
Friendship and Mobility: User Movement In Location-Based Social Networks
"... Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basi ..."
Abstract
-
Cited by 237 (0 self)
- Add to MetaCart
(Show Context)
Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basic laws govern human motion and dynamics. We find that humans experience a combination of periodic movement that is geographically limited and seemingly random jumps correlated with their social networks. Short-ranged travel is periodic both spatially and temporally and not effected by the social network structure, while long-distance travel is more influenced by social network ties. We show that social relationships can explain about 10 % to 30 % of all human movement, while periodic behavior explains 50 % to 70%. Based on our findings, we develop a model of human mobility that combines periodic short range movements with travel due to the social network structure. We show that our model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance than present models of human mobility.
The spread of behavior in an online social network experiment,”
- Science
, 2010
"... How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social s ..."
Abstract
-
Cited by 213 (4 self)
- Add to MetaCart
(Show Context)
How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social space. A competing hypothesis argues that when behaviors require social reinforcement, a network with more clustering may be more advantageous, even if the network as a whole has a larger diameter. I investigated the effects of network structure on diffusion by studying the spread of health behavior through artificially structured online communities. Individual adoption was much more likely when participants received social reinforcement from multiple neighbors in the social network. The behavior spread farther and faster across clustered-lattice networks than across corresponding random networks.
Collective classification in network data
, 2008
"... Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification te ..."
Abstract
-
Cited by 178 (32 self)
- Add to MetaCart
(Show Context)
Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such data. In this report, we attempt to provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and real-world data.
New specifications for exponential random graph models
, 2004
"... The most promising class of statistical models for expressing structural properties of social networks observed at one moment in time, is the class of Exponential Random Graph Models (ERGMs), also known as p ∗ models. The strong point of these models is that they can represent a variety of structura ..."
Abstract
-
Cited by 168 (27 self)
- Add to MetaCart
(Show Context)
The most promising class of statistical models for expressing structural properties of social networks observed at one moment in time, is the class of Exponential Random Graph Models (ERGMs), also known as p ∗ models. The strong point of these models is that they can represent a variety of structural tendencies, such as transitivity, that define complicated dependence patterns not easily modeled by more basic probability models. Recently, MCMC algorithms have been developed which produce approximate Maximum Likelihood estimators. Applying these models in their traditional specification to observed network data often has led to problems, however, which can be traced back to the fact that important parts of the parameter space correspond to nearly degenerate distributions, which may lead to convergence problems of estimation algorithms, and a poor fit to empirical data. This paper proposes new specifications of Exponential Random Graph Models. These specifications represent structural properties such as transitivity and heterogeneity of degrees by more complicated graph statistics than the traditional star and triangle counts. Three kinds of statistic are proposed: geometrically weighted degree distributions, alternating k-triangles, and alternating independent two-paths. Examples are presented both of modeling graphs and digraphs, in which the new specifications lead to much better results than the earlier existing specifications of the ERGM. It is concluded that the new specifications increase the range and applicability of the ERGM as a tool for the statistical analysis of social networks.
Feedback Effects between Similarity and Social Influence in Online Communities
"... A fundamental open question in the analysis of social networks is to understand the interplay between similarity and social ties. People are similar to their neighbors in a social network for two distinct reasons: first, they grow to resemble their current friends due to social influence; and second ..."
Abstract
-
Cited by 164 (8 self)
- Add to MetaCart
(Show Context)
A fundamental open question in the analysis of social networks is to understand the interplay between similarity and social ties. People are similar to their neighbors in a social network for two distinct reasons: first, they grow to resemble their current friends due to social influence; and second, they tend to form new links to others who are already like them, a process often termed selection by sociologists. While both factors are present in everyday social processes, they are in tension: social influence can push systems toward uniformity of behavior, while selection can lead to fragmentation. As such, it is important to understand the relative effects of these forces, and this has been a challenge due to the difficulty of isolating and quantifying them in real settings. We develop techniques for identifying and modeling the interactions between social influence and selection, using data from online communities where both social interaction and changes in behavior over time can be measured. We find clear feedback effects between the two factors, with rising similarity between two individuals serving, in aggregate, as an indicator of future interaction — but with similarity then continuing to increase steadily, although at a slower rate, for long periods after initial interactions. We also consider the relative value of similarity and social influence in modeling future behavior. For instance, to predict the activities that an individual is likely to do next, is it more useful to know
Influence and correlation in social networks
- In Proc. of the 14th ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD’08
"... In many online social systems, social ties between users play an important role in dictating their behavior. One of the ways this can happen is through social influence, the phenomenon that the actions of a user can induce his/her friends to behave in a similar way. In systems where social influence ..."
Abstract
-
Cited by 161 (1 self)
- Add to MetaCart
(Show Context)
In many online social systems, social ties between users play an important role in dictating their behavior. One of the ways this can happen is through social influence, the phenomenon that the actions of a user can induce his/her friends to behave in a similar way. In systems where social influence exists, ideas, modes of behavior, or new technologies can diffuse through the network like an epidemic. Therefore, identifying and understanding social influence is of tremendous interest from both analysis and design points of view. This is a difficult task in general, since there are factors such as homophily or unobserved confounding variables that can induce statistical correlation between the actions of friends in a social network. Distinguishing influence from these is essentially the problem of distinguishing correlation from causality, a notoriously hard statistical problem. In this paper we study this problem systematically. We define fairly general models that replicate the aforementioned sources of social correlation. We then propose two simple tests that can identify influence as a source of social correlation when the time series of user actions is available. We give a theoretical justification of one of the tests by proving that with high probability it succeeds in ruling out influence in a rather general model of social correlation. We also simulate our tests on a number of examples designed by randomly generating actions of nodes on a real social network (from Flickr) according to one of several models. Simulation results confirm that our test performs well on these data. Finally, we apply them to real tagging data on Flickr, exhibiting that while there is significant social correlation in tagging behavior on this system, this correlation cannot be attributed to social influence.
Planetary-Scale Views on a Large Instant-Messaging Network
"... We present a study of anonymized data capturing a month of high-level communication activities within the whole of the Microsoft Messenger instant-messaging system. We examine characteristics and patterns that emerge from the collective dynamics of large numbers of people, rather than the actions an ..."
Abstract
-
Cited by 161 (6 self)
- Add to MetaCart
(Show Context)
We present a study of anonymized data capturing a month of high-level communication activities within the whole of the Microsoft Messenger instant-messaging system. We examine characteristics and patterns that emerge from the collective dynamics of large numbers of people, rather than the actions and characteristics of individuals. The dataset contains summary properties of 30 billion conversations among 240 million people. From the data, we construct a communication graph with 180 million nodes and 1.3 billion undirected edges, creating the largest social network constructed and analyzed to date. We report on multiple aspects of the dataset and synthesized graph. We find that the graph is well-connected and robust to node removal. We investigate on a planetary-scale the oft-cited report that people are separated by “six degrees of separation” and find that the average path length among Messenger users is 6.6. We also find that people tend to communicate more with each other when they have similar age, language, and location, and that cross-gender conversations are both more frequent and of longer duration than conversations with the same gender.