Results 1 - 10
of
1,105
Fast approximate energy minimization via graph cuts
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract
-
Cited by 2120 (61 self)
- Add to MetaCart
(Show Context)
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an α-βswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an α-expansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time compl ..."
Abstract
-
Cited by 1315 (53 self)
- Add to MetaCart
(Show Context)
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper
A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless Networks
"... An ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discove ..."
Abstract
-
Cited by 1311 (3 self)
- Add to MetaCart
(Show Context)
An ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad-hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines routing protocols for ad-hoc networks and evaluates these protocols based on a given set of parameters. The paper provides an overview of eight different protocols by presenting their characteristics and functionality, and then provides a comparison and discussion of their respective merits and drawbacks.
What energy functions can be minimized via graph cuts?
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract
-
Cited by 1047 (23 self)
- Add to MetaCart
(Show Context)
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract
-
Cited by 1010 (20 self)
- Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm in [2].
NeXt generation/dynamic spectrum access/cognitive Radio Wireless Networks: A Survey
- COMPUTER NETWORKS JOURNAL (ELSEVIER
, 2006
"... Today's wireless networks are characterized by a fixed spectrum assignment policy. However, a large portion of the assigned spectrum is used sporadically and geographical variations in the utilization of assigned spectrum ranges from 15% to 85% with a high variance in time. The limited availabl ..."
Abstract
-
Cited by 746 (15 self)
- Add to MetaCart
Today's wireless networks are characterized by a fixed spectrum assignment policy. However, a large portion of the assigned spectrum is used sporadically and geographical variations in the utilization of assigned spectrum ranges from 15% to 85% with a high variance in time. The limited available spectrum and the ine#ciency in the spectrum usage necessitate a new communication paradigm to exploit the existing wireless spectrum opportunistically. This new networking paradigm is referred to as NeXt Generation (xG) Networks as well as Dynamic Spectrum Access (DSA) and cognitive radio networks. The term xG networks is used throughout the paper. The novel functionalities and current research challenges of the xG networks are explained in detail. More specifically, a brief overview of the cognitive radio technology is provided and the xG network architecture is introduced. Moreover, the xG network functions such as spectrum management, spectrum mobility and spectrum sharing are explained in detail. The influence of these functions on the performance of the upper layer protocols such as routing and transport are investigated and open research issues in these areas are also outlined. Finally, the cross-layer design challenges in xG networks are discussed.
A new approach to the maximum flow problem
- JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract
-
Cited by 672 (33 self)
- Add to MetaCart
(Show Context)
All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow in the original network and pushes local flow excess toward the sink along what are estimated to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n³) time bound on an n-vertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm running in O(nm log(n²/m)) time on an n-vertex, m-edge graph. This is as fast as any known method for any graph density and faster on graphs of moderate density. The algorithm also admits efticient distributed and parallel implementations. A parallel implementation running in O(n²log n) time using n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin algorithm, which also uses n processors but requires O(n²) space.
Routing in a Delay Tolerant Network
, 2004
"... We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no con ..."
Abstract
-
Cited by 621 (8 self)
- Add to MetaCart
(Show Context)
We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no contemporaneous end-to-end path may ever exist. This situation limits the applicability of traditional routing approaches that tend to treat outages as failures and seek to find an existing end-to-end path. We propose a framework for evaluating routing algorithms in such environments. We then develop several algorithms and use simulations to compare their performance with respect to the amount of knowledge they require about network topology. We find that, as expected, the algorithms using the least knowledge tend to perform poorly. We also find that with limited additional knowledge, far less than complete global knowledge, efficient algorithms can be constructed for routing in such environments. To the best of our knowledge this is the first such investigation of routing issues in DTNs.
Pregel: A system for large-scale graph processing
- IN SIGMOD
, 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract
-
Cited by 496 (0 self)
- Add to MetaCart
(Show Context)
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model suitable for this task. Programs are expressed as a sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, send messages to other vertices, and modify its own state and that of its outgoing edges or mutate graph topology. This vertex-centric approach is flexible enough to express a broad set of algorithms. The model has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier. Distributionrelated details are hidden behind an abstract API. The result is a framework for processing large graphs that is expressive and easy to program.
Graphcut textures: Image and video synthesis using graph cuts
- ACM Transactions on Graphics, SIGGRAPH 2003
, 2003
"... This banner was generated by merging the source images in Figure 6 using our interactive texture merging technique. In this paper we introduce a new algorithm for image and video texture synthesis. In our approach, patch regions from a sample image or video are transformed and copied to the output a ..."
Abstract
-
Cited by 490 (9 self)
- Add to MetaCart
This banner was generated by merging the source images in Figure 6 using our interactive texture merging technique. In this paper we introduce a new algorithm for image and video texture synthesis. In our approach, patch regions from a sample image or video are transformed and copied to the output and then stitched together along optimal seams to generate a new (and typically larger) output. In contrast to other techniques, the size of the patch is not chosen a-priori, but instead a graph cut technique is used to determine the optimal patch region for any given offset between the input and output texture. Unlike dynamic programming, our graph cut technique for seam optimization is applicable in any dimension. We specifically explore it in 2D and 3D to perform video texture synthesis in addition to regular image synthesis. We present approximative offset search techniques that work well in conjunction with the presented patch size optimization. We show results for synthesizing regular, random, and natural images and videos. We also demonstrate how this method can be used to interactively merge different images to generate new scenes.