Results 1 - 10
of
113
Cartel: a distributed mobile sensor computing system
- In 4th ACM SenSys
, 2006
"... CarTel is a mobile sensor computing system designed to collect, process, deliver, and visualize data from sensors located on mobile units such as automobiles. A CarTel node is a mobile embedded computer coupled to a set of sensors. Each node gathers and processes sensor readings locally before deliv ..."
Abstract
-
Cited by 327 (30 self)
- Add to MetaCart
(Show Context)
CarTel is a mobile sensor computing system designed to collect, process, deliver, and visualize data from sensors located on mobile units such as automobiles. A CarTel node is a mobile embedded computer coupled to a set of sensors. Each node gathers and processes sensor readings locally before delivering them to a central portal, where the data is stored in a database for further analysis and visualization. In the automotive context, a variety of on-board and external sensors collect data as users drive. CarTel provides a simple query-oriented programming interface, handles large amounts of heterogeneous data from sensors, and handles intermittent and variable network connectivity. CarTel nodes rely primarily on opportunistic wireless (e.g., Wi-Fi, Bluetooth) connectivity—to the Internet, or to “data mules ” such as other CarTel nodes, mobile phone flash memories, or USB keys—to communicate with the portal. CarTel applications run on the portal, using a delaytolerant continuous query processor, ICEDB, to specify how the mobile nodes should summarize, filter, and dynamically prioritize data. The portal and the mobile nodes use a delaytolerant network stack, CafNet, to communicate. CarTel has been deployed on six cars, running on a small scale in Boston and Seattle for over a year. It has been used to analyze commute times, analyze metropolitan Wi-Fi deployments, and for automotive diagnostics.
Impact of human mobility on the design of opportunistic forwarding algorithms
- In Proc. IEEE Infocom
, 2006
"... Abstract — Studying transfer opportunities between wireless devices carried by humans, we observe that the distribution of the inter-contact time, that is the time gap separating two contacts of the same pair of devices, exhibits a heavy tail such as one of a power law, over a large range of value. ..."
Abstract
-
Cited by 257 (15 self)
- Add to MetaCart
Abstract — Studying transfer opportunities between wireless devices carried by humans, we observe that the distribution of the inter-contact time, that is the time gap separating two contacts of the same pair of devices, exhibits a heavy tail such as one of a power law, over a large range of value. This observation is confirmed on six distinct experimental data sets. It is at odds with the exponential decay implied by most mobility models. In this paper, we study how this new characteristic of human mobility impacts a class of previously proposed forwarding algorithms. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the delay performance of these algorithms. We make recommendation for the design of well founded opportunistic forwarding algorithms, in the context of human carried devices. I.
Impact of human mobility on opportunistic forwarding algorithms
- IEEE Trans. Mob. Comp
, 2007
"... Abstract — We study data transfer opportunities between wireless devices carried by humans. We observe that the distribution of the inter-contact time (the time gap separating two contacts between the same pair of devices) may be well approximated by a power law over the range [10 minutes; 1 day]. T ..."
Abstract
-
Cited by 232 (21 self)
- Add to MetaCart
Abstract — We study data transfer opportunities between wireless devices carried by humans. We observe that the distribution of the inter-contact time (the time gap separating two contacts between the same pair of devices) may be well approximated by a power law over the range [10 minutes; 1 day]. This observation is confirmed using eight distinct experimental data sets. It is at odds with the exponential decay implied by the most commonly used mobility models. In this paper, we study how this newly uncovered characteristic of human mobility impacts one class of forwarding algorithms previously proposed. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the performance in terms of the delivery delay of these algorithms. We make recommendations for the design of well founded opportunistic forwarding algorithms, in the context of human carried devices. I.
Energy conservation in wireless sensor networks: A survey
"... In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifeti ..."
Abstract
-
Cited by 227 (11 self)
- Add to MetaCart
In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.
Intelligent fluid infrastructure for embedded networks
- In Proc. ACM MobiSys’04
, 2004
"... Computer networks have historically considered support for mobile devices as an extra overhead to be borne by the system. Recently however, researchers have proposed methods by which the network can take advantage of mobile components. We exploit mobility to develop a fluid infrastructure: mobile co ..."
Abstract
-
Cited by 131 (7 self)
- Add to MetaCart
(Show Context)
Computer networks have historically considered support for mobile devices as an extra overhead to be borne by the system. Recently however, researchers have proposed methods by which the network can take advantage of mobile components. We exploit mobility to develop a fluid infrastructure: mobile components are deliberately built into the system infrastructure for enabling specific functionality that is very hard to achieve using other methods. Built-in intelligence helps our system adapt to run time dynamics when pursuing pre-defined performance objectives. Our approach yields significant advantages for energy constrained systems, sparsely deployed networks, delay tolerant networks, and in security sensitive situations. We first show why our approach is advantageous in terms of network lifetime and data fidelity. Second, we present adaptive algorithms that are used to control mobility. Third, we design the communication protocol supporting a fluid infrastructure and long sleep durations on energy-constrained devices. Our algorithms are not based on abstract radio range models or idealized unobstructed environments but founded on real world behavior of wireless devices. We implement a prototype system in which infrastructure components move autonomously to carry out important networking tasks. The prototype is used to validate and evaluate our suggested mobility control methods.
Erasure-coding based routing for opportunistic networks
, 2005
"... mobility is a challenging problem because disconnections are prevalent and lack of knowledge about network dynamics hinders good decision making. Current approaches are primarily based on redundant transmissions. They have either high overhead due to excessive transmissions or long delays due to the ..."
Abstract
-
Cited by 126 (4 self)
- Add to MetaCart
(Show Context)
mobility is a challenging problem because disconnections are prevalent and lack of knowledge about network dynamics hinders good decision making. Current approaches are primarily based on redundant transmissions. They have either high overhead due to excessive transmissions or long delays due to the possibility of making wrong choices when forwarding a few redundant copies. In this paper, we propose a novel forwarding algorithm based on the idea of erasure codes. Erasure coding allows use of a large number of relays while maintaining a constant overhead, which results in fewer cases of long delays. We use simulation to compare the routing performance of using erasure codes in DTN with four other categories of forwarding algorithms proposed in the literature. Our simulations are based on a real-world mobility trace collected in a large outdoor wild-life environment. The results show that the erasure-coding based algorithm provides the best worst-case delay performance with a fixed amount of overhead. We also present a simple analytical model to capture the delay characteristics of erasure-coding based forwarding, which provides insights on the potential of our approach.
Multiple controlled mobile elements (data mules) for data collection in sensor networks
- In DCOSS
, 2005
"... Abstract. Recent research has shown that using a mobile element to collect and carry data mechanically from a sensor network has many advantages over static multihop routing. We have an implementation as well employing a single mobile element. But the network scalability and traffic may make a singl ..."
Abstract
-
Cited by 120 (1 self)
- Add to MetaCart
Abstract. Recent research has shown that using a mobile element to collect and carry data mechanically from a sensor network has many advantages over static multihop routing. We have an implementation as well employing a single mobile element. But the network scalability and traffic may make a single mobile element insufficient. In this paper we investigate the use of multiple mobile elements. In particular, we present load balancing algorithm which tries to balance the number of sensor nodes each mobile element services. We show by simulation the benefits of load balancing. 1
Controllably Mobile Infrastructure for Low Energy Embedded Networks
- IEEE Transactions on Mobile Computing
, 2006
"... Abstract—We discuss the use of mobility to enhance network performance for a certain class of applications in sensor networks. A major performance bottleneck in sensor networks is energy since it is impractical to replace the batteries in embedded sensor nodes post-deployment. A significant portion ..."
Abstract
-
Cited by 94 (1 self)
- Add to MetaCart
(Show Context)
Abstract—We discuss the use of mobility to enhance network performance for a certain class of applications in sensor networks. A major performance bottleneck in sensor networks is energy since it is impractical to replace the batteries in embedded sensor nodes post-deployment. A significant portion of the energy expenditure is attributed to communications and, in particular, the nodes close to the sensor network gateways used for data collection typically suffer a large overhead as these nodes must relay data from the remaining network. Even with compression and in-network processing to reduce the amount of communicated data, all the processed data must still traverse these nodes to reach the gateway. We discuss a network infrastructure based on the use of controllably mobile elements to reduce the communication energy consumption at the energy constrained nodes and, thus, increase useful network lifetime. In addition, our approach yields advantages in delay-tolerant networks and sparsely deployed networks. We first show how our approach helps reduce energy consumption at battery constrained nodes. Second, we describe our system prototype which utilizes our proposed approach to improve the energy performance. As part of the prototyping effort, we experienced several interesting design choices and trade-offs that affect system capabilities and performance. We describe many of these design challenges and discuss the algorithms developed for addressing these. In particular, we focus on network protocols and motion control strategies. Our methods are tested using a practical system and do not assume idealistic radio range models or operation in unobstructed environments. Index Terms—Mobile networking, controlled mobility, wireless sensor networks. 1
Data collection in wireless sensor networks with mobile elements: A survey
- ACM Trans. Sensor Networks
"... Wireless sensor networks (WSNs) have emerged as an effective solution for a wide range of applications. Most of the traditional WSN architectures consist of static nodes which are densely deployed over a sensing area. Recently, several WSN architectures based on mobile elements (MEs) have been propo ..."
Abstract
-
Cited by 34 (4 self)
- Add to MetaCart
(Show Context)
Wireless sensor networks (WSNs) have emerged as an effective solution for a wide range of applications. Most of the traditional WSN architectures consist of static nodes which are densely deployed over a sensing area. Recently, several WSN architectures based on mobile elements (MEs) have been proposed. Most of them exploit mobility to address the problem of data collection in WSNs. In this paper we first define WSNs with MEs and provide a comprehensive taxonomy of their architectures, based on the role of the MEs. Then, we present an overview of the data collection process in such scenario, and identify the corresponding issues and challenges. On the basis of these issues, we provide an extensive survey of the related literature. Finally, we compare the underlying approaches and solutions, with hints to open problems and future research directions.
An adaptive data-transfer protocol for sensor networks with Data Mules
- In IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks
, 2007
"... Abstract In this paper we deal with energy-efficient data collection in sparse sensor networks with data mules. We analyze the problem of optimal data transfer from sensors to data mules, and derive an upper bound for the performance of ARQ-based data-transfer protocols. This analysis shows that pr ..."
Abstract
-
Cited by 27 (8 self)
- Add to MetaCart
(Show Context)
Abstract In this paper we deal with energy-efficient data collection in sparse sensor networks with data mules. We analyze the problem of optimal data transfer from sensors to data mules, and derive an upper bound for the performance of ARQ-based data-transfer protocols. This analysis shows that protocols currently used have low performance, which results in unnecessary energy consumption. Based on these results we define and evaluate an Adaptive Data Transfer (ADT) protocol that is able to combine efficiency and adaptability to external conditions. Simulation results show that ADT not only reduces significantly the average data-transfer time in comparison with previous protocols, but also provides quasi-optimal performance. In addition, it is able to react quickly to variations in the external conditions and adapt to new conditions in a limited time.