Results 1 - 10
of
131
Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks
, 2001
"... Intermittently connected mobile networks are sparse wireless networks where most of the time there does not exist a complete path from the source to the destination. These networks ..."
Abstract
-
Cited by 503 (10 self)
- Add to MetaCart
Intermittently connected mobile networks are sparse wireless networks where most of the time there does not exist a complete path from the source to the destination. These networks
Efficient routing in intermittently connected mobile networks: The multiple-copy case
, 2008
"... Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc net ..."
Abstract
-
Cited by 303 (18 self)
- Add to MetaCart
Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc networks, etc. In this context, conventional routing schemes fail, because they try to establish complete end-to-end paths, before any data is sent. To deal with such networks researchers have suggested to use flooding-based routing schemes. While flooding-based schemes have a high probability of delivery, they waste a lot of energy and suffer from severe contention which can significantly degrade their performance. Furthermore, proposed efforts to reduce the overhead of flooding-based schemes have often been plagued by large delays. With this in mind, we introduce a new family of routing schemes that “spray ” a few message copies into the network, and then route each copy independently towards the destination. We show that, if carefully designed, spray routing not only performs significantly fewer transmissions per message, but also has lower average delivery delays than existing schemes; furthermore, it is highly scalable and retains good performance under a large range of scenarios. Finally, we use our theoretical framework proposed in our 2004 paper to analyze the performance of spray routing. We also use this theory to show how to choose the number of copies to be sprayed and how to optimally distribute these copies to relays.
Social Network Analysis for Routing in Disconnected Delay-tolerant MANETs
, 2007
"... Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move fr ..."
Abstract
-
Cited by 276 (1 self)
- Add to MetaCart
Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. This paper presents a multidisciplinary solution based on the consideration of the socalled small world dynamics which have been proposed for economy and social studies and have recently revealed to be a successful approach to be exploited for characterising information propagation in wireless networks. To this purpose, some bridge nodes are identified based on their centrality characteristics, i.e., on their capability to broker information exchange among otherwise disconnected nodes. Due to the complexity of the centrality metrics in populated networks the concept of ego networks is exploited where nodes are not required to exchange information about the entire network topology, but only locally available information is considered. Then SimBet Routing is proposed which exploits the exchange of pre-estimated ‘betweenness’ centrality metrics and locally determined social ‘similarity’ to the destination node. We present simulations using real trace data to demonstrate that SimBet Routing results in delivery performance close to Epidemic Routing but with significantly reduced overhead. Additionally, we show that Sim-Bet Routing outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.
DTN routing as a resource allocation problem
- IN PROC. ACM SIGCOMM
, 2007
"... Routing protocols for disruption-tolerant networks (DTNs) use a variety of mechanisms, including discovering the meeting probabilities among nodes, packet replication, and network coding. The primary focus of these mechanisms is to increase the likelihood of finding a path with limited information, ..."
Abstract
-
Cited by 248 (12 self)
- Add to MetaCart
(Show Context)
Routing protocols for disruption-tolerant networks (DTNs) use a variety of mechanisms, including discovering the meeting probabilities among nodes, packet replication, and network coding. The primary focus of these mechanisms is to increase the likelihood of finding a path with limited information, and so these approaches have only an incidental effect on routing such metrics as maximum or average delivery delay. In this paper, we present rapid, an intentional DTN routing protocol that can optimize a specific routing metric such as the worst-case delivery delay or the fraction of packets that are delivered within a deadline. The key insight is to treat DTN routing as a resource allocation problem that translates the routing metric into per-packet utilities which determine how packets should be replicated in the system. We evaluate rapid rigorously through a prototype deployed over a vehicular DTN testbed of 40 buses and simulations based on real traces. To our knowledge, this is the first paper to report on a routing protocol deployed on a real DTN at this scale. Our results suggest that rapid significantly outperforms existing routing protocols for several metrics. We also show empirically that for small loads RAPID is within 10 % of the optimal performance.
The ONE Simulator for DTN Protocol Evaluation
- In Proceedings of the 2nd International Conference on Simulation Tools and Techniques (SIMUtools
, 2009
"... Delay-tolerant Networking (DTN) enables communication in sparse mobile ad-hoc networks and other challenged environments where traditional networking fails and new routing and application protocols are required. Past experience with DTN routing and application protocols has shown that their performa ..."
Abstract
-
Cited by 156 (13 self)
- Add to MetaCart
(Show Context)
Delay-tolerant Networking (DTN) enables communication in sparse mobile ad-hoc networks and other challenged environments where traditional networking fails and new routing and application protocols are required. Past experience with DTN routing and application protocols has shown that their performance is highly dependent on the underlying mobility and node characteristics. Evaluating DTN protocols across many scenarios requires suitable simulation tools. This paper presents the Opportunistic Networking Environment (ONE) simulator specifically designed for evaluating DTN routing and application protocols. It allows users to create scenarios based upon different synthetic movement models and real-world traces and offers a framework for implementing routing and application protocols (already including six well-known routing protocols). Interactive visualization and post-processing tools support evaluating experiments and an emulation mode allows the ONE simulator to become part of a real-world DTN testbed. We show sample simulations to demonstrate the simulator’s flexible support for DTN protocol evaluation.
Practical routing in delay-tolerant networks
- IEEE Transactions on Mobile Computing
"... Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which “routers ” will be connec ..."
Abstract
-
Cited by 137 (0 self)
- Add to MetaCart
(Show Context)
Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which “routers ” will be connected at any given time. Prior approaches have focused either on epidemic message replication or on knowledge of the connectivity schedule. The epidemic approach of replicating messages to all nodes is expensive and does not appear to scale well with increasing load. It can, however, operate without any prior network configuration. The alternatives, by requiring a priori connectivity knowledge, appear infeasible for a self-configuring network. In this paper we present a practical routing protocol that only uses observed information about the network. We designed a metric that estimates how long a message will have to wait before it can be transferred to the next hop. The topology is distributed using a link-state routing protocol, where the link-state packets are “flooded ” using epidemic routing. The routing is recomputed when connections are established. Messages are exchanged if the topology suggests that a connected node is “closer ” than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires a significantly smaller quantity of buffer, suggesting that our approach will scale with the number of messages in the network, where replication approaches may not.
Contention-Aware Performance Analysis of Mobility-Assisted Routing
"... A large body of work has theoretically analyzed the performance of mobility-assisted routing schemes for intermittently connected mobile networks. However, the vast majority of these prior studies have ignored wireless contention. Recent papers have shown through simulations that ignoring contention ..."
Abstract
-
Cited by 96 (7 self)
- Add to MetaCart
A large body of work has theoretically analyzed the performance of mobility-assisted routing schemes for intermittently connected mobile networks. However, the vast majority of these prior studies have ignored wireless contention. Recent papers have shown through simulations that ignoring contention leads to inaccurate and misleading results, even for sparse networks. In this paper, we analyze the performance of routing schemes under contention. First, we introduce a mathematical framework to model contention. This framework can be used to analyze any routing scheme with any mobility and channel model. Then, we use this framework to compute the expected delays for different representative mobility-assisted routing schemes under random direction, random waypoint and community-based mobility models. Finally, we use these delay expressions to optimize the design of routing schemes while demonstrating that designing and optimizing routing schemes using analytical expressions which ignore contention can lead to suboptimal or even erroneous behavior.
Modeling timevariant user mobility in wireless mobile networks
- in Proc. IEEE INFOCOM
, 2007
"... Abstract — Realistic mobility models are important to understand the performance of routing protocols in wireless ad hoc networks, especially when mobility-assisted routing schemes are employed, which is the case, for example, in delay-tolerant networks (DTNs). In mobility-assisted routing, messages ..."
Abstract
-
Cited by 86 (8 self)
- Add to MetaCart
(Show Context)
Abstract — Realistic mobility models are important to understand the performance of routing protocols in wireless ad hoc networks, especially when mobility-assisted routing schemes are employed, which is the case, for example, in delay-tolerant networks (DTNs). In mobility-assisted routing, messages are stored in mobile nodes and carried across the network with nodal mobility. Hence, the delay involved in message delivery is tightly coupled with the properties of nodal mobility. Currently, commonly used mobility models are simplistic random i.i.d. model that do not reflect realistic mobility characteristics. In this paper we propose a novel time-variant community mobility model. In this model, we define communities that are visited often by the nodes to capture skewed location visiting preferences, and use time periods with different mobility parameters to create periodical re-appearance of nodes at the same location. We have clearly observed these two properties based on analysis of empirical WLAN traces. In addition to the proposal of a realistic mobility model, we derive analytical expressions to highlight the impact on the hitting time and meeting times if these mobility characteristics are incorporated. These quantities in turn determine the packet delivery delay in mobility-assisted routing settings. Simulation studies show our expressions have error always under 20%, and in 80 % of studied cases under 10%. I.
Social Network Analysis for Information Flow in Disconnected Delay-Tolerant MANETs
"... Abstract—Message delivery in sparse mobile ad hoc networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes ma ..."
Abstract
-
Cited by 58 (0 self)
- Add to MetaCart
(Show Context)
Abstract—Message delivery in sparse mobile ad hoc networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. We cast this challenge as an information flow problem in a social network. This paper presents social network analysis metrics that may be used to support a novel and practical forwarding solution to provide efficient message delivery in disconnected delay-tolerant MANETs. These metrics are based on social analysis of a node’s past interactions and consists of three locally evaluated components: a node’s “betweenness ” centrality (calculated using ego networks), a node’s social “similarity ” to the destination node, and a node’s tie strength relationship with the destination node. We present simulations using three real trace data sets to demonstrate that by combining these metrics delivery performance may be achieved close to Epidemic Routing but with significantly reduced overhead. Additionally, we show improved performance when compared to PRoPHET Routing. Index Terms—Delay- and disruption-tolerant networks, MANETs, sparse networks, ego networks, social network analysis.
EncounterBased Routing in Dtns
- ACM SIGMOBILE Mobile Computing and Comm. Rev
, 2009
"... Abstract—Current work in routing protocols for delay and disruption tolerant networks leverage epidemic-style algorithms that trade off injecting many copies of messages into the network for increased probability of message delivery. However, such techniques can cause a large amount of contention in ..."
Abstract
-
Cited by 57 (6 self)
- Add to MetaCart
(Show Context)
Abstract—Current work in routing protocols for delay and disruption tolerant networks leverage epidemic-style algorithms that trade off injecting many copies of messages into the network for increased probability of message delivery. However, such techniques can cause a large amount of contention in the network, increase overall delays, and drain each mobile node’s limited battery supply. We present a new DTN routing algorithm, called Encounter-Based Routing (EBR), which maximizes delivery ratios while minimizing overhead and delay. Furthermore, we present a means of securing EBR against black hole denialof-service attacks. EBR achieves up to a 40 % improvement in message delivery over the current state-of-the-art, as well as achieving up to a 145 % increase in goodput. Also, we further show how EBR outperforms other protocols by introduce three new composite metrics that better characterize DTN routing performance. I.