Results 11 - 20
of
1,216
On the Accuracy of MANET Simulators
, 2002
"... The deployment of wireless applications or protocols in the context of Mobile Ad-hoc NETworks (MANETs), often requires to step through a simulation phase. For the results of the simulation to be meaningful, it is important that the model on which is based the simulator matches as closely as possible ..."
Abstract
-
Cited by 130 (1 self)
- Add to MetaCart
(Show Context)
The deployment of wireless applications or protocols in the context of Mobile Ad-hoc NETworks (MANETs), often requires to step through a simulation phase. For the results of the simulation to be meaningful, it is important that the model on which is based the simulator matches as closely as possible the reality. In this paper we present the simulation results of a straightforward algorithm using several popular simulators (OPNET Modeler, NS-2, GloMoSim). The results tend to show that significant divergences exist between the simulators. This can be explained partly by the mismatching of the modelisation of each simulator and also by the di#erent levels of detail provided to implement and configure the simulated scenarios.
Mobility Helps Security in Ad Hoc Networks
, 2003
"... Contrary to the common belief that mobility makes security more difficult to achieve, we show that node mobility can, in fact, be useful to provide security in ad hoc networks. We propose a technique in which security associations between nodes are established, when they are in the vicinity of each ..."
Abstract
-
Cited by 124 (7 self)
- Add to MetaCart
(Show Context)
Contrary to the common belief that mobility makes security more difficult to achieve, we show that node mobility can, in fact, be useful to provide security in ad hoc networks. We propose a technique in which security associations between nodes are established, when they are in the vicinity of each other, by exchanging appropriate cryptographic material. We show that this technique is generic, by explaining its application to fully self-organized ad hoc networks and to ad hoc networks placed under an (off-line) authority. We also propose an extension of this basic mechanism, in which a security association can be established with the help of a "friend". We show that our mechanism can work in any network configuration and that the time necessary to set up the security associations is strongly influenced by several factors, including the size of the deployment area, the mobility patterns, and the number of friends; we provide a detailed investigation of this influence.
AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks
- EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
, 2005
"... In this paper we describe AntHocNet, an algorithm for routing in mobile ad hoc networks. It is a hybrid algorithm, which combines reactive route setup with proactive route probing, maintenance and improvement. The algorithm is based on the Nature-inspired Ant Colony Optimization framework. Paths are ..."
Abstract
-
Cited by 108 (16 self)
- Add to MetaCart
In this paper we describe AntHocNet, an algorithm for routing in mobile ad hoc networks. It is a hybrid algorithm, which combines reactive route setup with proactive route probing, maintenance and improvement. The algorithm is based on the Nature-inspired Ant Colony Optimization framework. Paths are learned by guided Monte Carlo sampling using ant-like agents communicating in a stigmergic way. In an extensive set of simulation experiments, we compare AntHocNet with AODV, a reference algorithm in this research area. We show that our algorithm can outperform AODV on different evaluation criteria. AntHocNet’s performance advantage is visible over a broad range of possible network scenarios, and increases for larger, sparser and more mobile networks. AntHocNet is also more scalable than AODV.
Perfect Simulation and Stationarity of a Class of Mobility Models
- in IEEE Infocom
, 2005
"... Abstract — We define “random trip", a generic mobility model for independent mobiles that contains as special cases: the random waypoint on convex or non convex domains, random walk with reflection or wrapping, city section, space graph and other models. We use Palm calculus to study the model ..."
Abstract
-
Cited by 106 (3 self)
- Add to MetaCart
Abstract — We define “random trip", a generic mobility model for independent mobiles that contains as special cases: the random waypoint on convex or non convex domains, random walk with reflection or wrapping, city section, space graph and other models. We use Palm calculus to study the model and give a necessary and sufficient condition for a stationary regime to exist. When this condition is satisfied, we compute the stationary regime and give an algorithm to start a simulation in steady state (perfect simulation). The algorithm does not require the knowledge of geometric constants. For the special case of random waypoint, we provide for the first time a proof and a sufficient and necessary condition of the existence of a stationary regime. Further, we extend its applicability to a broad class of non convex and multi-site examples, and provide a ready-to-use algorithm for perfect simulation. For the special case of random walks with reflection or wrapping, we show that, in the stationary regime, the mobile location is uniformly distributed and is independent of the speed vector, and that there is no speed decay. Our framework provides a rich set of well understood models that can be used to simulate mobile networks with independent node movements. Our perfect sampling is implemented to use with ns-2, and it is freely available to download from
A community based mobility model for ad hoc network research
- in Proceedings of ACM REALMAN
, 2006
"... Validation of mobile ad hoc network protocols relies almost exclusively on simulation. The value of the validation is, therefore, highly dependent on how realistic the movement models used in the simulations are. Since there is a very limited number of available real traces in the public domain, syn ..."
Abstract
-
Cited by 106 (7 self)
- Add to MetaCart
(Show Context)
Validation of mobile ad hoc network protocols relies almost exclusively on simulation. The value of the validation is, therefore, highly dependent on how realistic the movement models used in the simulations are. Since there is a very limited number of available real traces in the public domain, synthetic models for movement pattern generation must be used. However, most widely used models are currently very simplistic, their focus being ease of implementation rather than soundness of foundation. As a consequence, simulation results of protocols are often based on randomly generated movement patterns and, therefore, may differ considerably from those that can be obtained by deploying the system in real scenarios. Movement is strongly affected by the needs of humans to socialise or cooperate, in one form or another. Fortunately, humans are known to associate in particular ways that can be mathematically modelled and that have been studied in social sciences for years. In this paper we propose a new mobility model founded on social network theory. The model allows collections of hosts to be grouped together in a way that is based on social relationships among the individuals. This grouping is then mapped to a topographical space, with movements influenced by the strength of social ties that may also change in time. We have validated our model with real traces by showing that the synthetic mobility traces are a very good approximation of human movement patterns. We have also run simulations of AODV and DSR routing protocols on the mobility model and show how the message delivery ratio is affected by this type of mobility. 1.
A Peer-to-Peer Spatial Cloaking Algorithm for Anonymous Location-based Services
- In: ACM GIS. (2006
, 2006
"... This paper tackles a major privacy threat in current location-based services where users have to report their exact locations to the database server in order to obtain their desired services. For example, a mobile user asking about her nearest restaurant has to report her exact location. With untrus ..."
Abstract
-
Cited by 105 (10 self)
- Add to MetaCart
(Show Context)
This paper tackles a major privacy threat in current location-based services where users have to report their exact locations to the database server in order to obtain their desired services. For example, a mobile user asking about her nearest restaurant has to report her exact location. With untrusted service providers, reporting private location information may lead to several privacy threats. In this paper, we present a peer-to-peer (P2P) spatial cloaking algorithm in which mobile and stationary users can entertain location-based services without revealing their exact location information. The main idea is that before requesting any location-based service, the mobile user will form a group from her peers via single-hop communication and/or multihop routing. Then, the spatial cloaked area is computed as the region that covers the entire group of peers. Two modes of operations are supported within the proposed P2P spatial cloaking algorithm, namely, the on-demand mode and the proactive mode. Experimental results show that the P2P spatial cloaking algorithm operated in the on-demand mode has lower communication cost and better quality of services than the proactive mode, but the on-demand incurs longer response time.
Pocket switched networks: Real-world mobility and its consequences for opportunistic forwarding
, 2005
"... ..."
SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-hoc Networks
- In IEEE Wireless Communications and Neworking Conference (WCNC 2004
, 2004
"... In an ad-hoc network, intermediate nodes on a communication path are expected to forward packets of other nodes so that the mobile nodes can communicate beyond their wireless transmission range. However, because wireless mobile nodes are usually constrained by limited power and computation resources ..."
Abstract
-
Cited by 92 (1 self)
- Add to MetaCart
(Show Context)
In an ad-hoc network, intermediate nodes on a communication path are expected to forward packets of other nodes so that the mobile nodes can communicate beyond their wireless transmission range. However, because wireless mobile nodes are usually constrained by limited power and computation resources, a selfish node may be unwilling to spend its resources in forwarding packets which are not of its direct interest, even though it expects other nodes to forward its packets to the destination. It has been shown that the presence of such selfish nodes degrades the overall performance of a non-cooperative ad hoc network.
Crossing Over the Bounded Domain: From Exponential to Power-law Inter-meeting Time in MANET
, 2007
"... Inter-meeting time between mobile nodes is one of the key metrics in a Mobile Ad-hoc Network (MANET) and central to the end-to-end delay and forwarding algorithms. It is typically assumed to be exponentially distributed in many performance studies of MANET or numerically shown to be exponentially di ..."
Abstract
-
Cited by 77 (5 self)
- Add to MetaCart
(Show Context)
Inter-meeting time between mobile nodes is one of the key metrics in a Mobile Ad-hoc Network (MANET) and central to the end-to-end delay and forwarding algorithms. It is typically assumed to be exponentially distributed in many performance studies of MANET or numerically shown to be exponentially distributed under most existing mobility models in the literature. However, recent empirical results show otherwise: the inter-meeting time distribution in fact follows a power-law. This outright discrepancy potentially undermines our understanding of the performance tradeoffs in MANET obtained under the exponential distribution of the inter-meeting time, and thus calls for further study on the power-law inter-meeting time including its fundamental cause, mobility modeling, and its effect. In this paper, we rigorously prove that a finite domain, on which most of the current mobility models are defined, plays an important role in creating the exponential tail of the inter-meeting time. We also prove that by simply removing the boundary in a simple two-dimensional isotropic random walk model, we are able to obtain the empirically observed power-law decay of the inter-meeting time. We then discuss the relationship between the size of the boundary and the relevant timescale of the network scenario under consideration. Our results thus provide guidelines on the design of new mobility models with power-law inter-meeting time distribution, new protocols including packet forwarding algorithms, as well as their performance analysis.
SeRLoc: Robust localization for wireless sensor networks
- ACM Transactions on Sensor Networks (TOSN
, 2005
"... Many distributed monitoring applications of Wireless Sensor Networks (WSNs) require the location information of a sensor node. In this article, we address the problem of enabling nodes of Wireless Sensor Networks to determine their location in an untrusted environment, known as the secure localizati ..."
Abstract
-
Cited by 76 (7 self)
- Add to MetaCart
Many distributed monitoring applications of Wireless Sensor Networks (WSNs) require the location information of a sensor node. In this article, we address the problem of enabling nodes of Wireless Sensor Networks to determine their location in an untrusted environment, known as the secure localization problem. We propose a novel range-independent localization algorithm called SeRLoc that is well suited to a resource constrained environment such as a WSN. SeRLoc is a distributed algorithm based on a two-tier network architecture that allows sensors to passively determine their location without interacting with other sensors. We show that SeRLoc is robust against known attacks on a WSNs such as the wormhole attack, the Sybil attack, and compromise of network entities and analytically compute the probability of success for each attack. We also compare the performance of SeRLoc with state-of-the-art range-independent localization schemes and show that SeRLoc has better performance.