Results 1  10
of
501
Robot Motion Planning: A Distributed Representation Approach
, 1991
"... We propose a new approach to robot path planning that consists of building and searching a graph connecting the local minima of a potential function defined over the robot’s configuration space. A planner based on this approach has been implemented. This planner is considerably faster than previous ..."
Abstract

Cited by 402 (26 self)
 Add to MetaCart
(Show Context)
We propose a new approach to robot path planning that consists of building and searching a graph connecting the local minima of a potential function defined over the robot’s configuration space. A planner based on this approach has been implemented. This planner is considerably faster than previous path planners and solves problems for robots with many more degrees of freedom (DOFs). The power of the planner derives both from the "good " properties of the potential function and from the efficiency of the techniques used to escape the local minima of this function. The most powerful of these techniques is a Monte Carlo technique that escapes local minima by executing Brownian motions. The overall approach is made possible by the systematic use of distributed representations (bitmaps) for the robot’s work space and configuration space. We have experimented with the planner using several computersimulated robots, including rigid objects with 3 DOFs (in 2D work space) and 6 DOFs (in 3D work space) and manipulator arms with 8, 10, and 31 DOFs (in 2D and 3D work spaces). Some of the most significant experiments are reported in this article.
Metaheuristics in combinatorial optimization: Overview and conceptual comparison
 ACM COMPUTING SURVEYS
, 2003
"... The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important meta ..."
Abstract

Cited by 314 (17 self)
 Add to MetaCart
The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics from a conceptual point of view. We outline the different components and concepts that are used in the different metaheuristics in order to analyze their similarities and differences. Two very important concepts in metaheuristics are intensification and diversification. These are the two forces that largely determine the behaviour of a metaheuristic. They are in some way contrary but also complementary to each other. We introduce a framework, that we call the I&D frame, in order to put different intensification and diversification components into relation with each other. Outlining the advantages and disadvantages of different metaheuristic approaches we conclude by pointing out the importance of hybridization of metaheuristics as well as the integration of metaheuristics and other methods for optimization.
Simulated annealing: Practice versus theory
 Mathl. Comput. Modelling
, 1993
"... this paper "ergodic" is used in a very weak sense, as it is not proposed, theoretically or practically, that all states of the system are actually to be visited ..."
Abstract

Cited by 223 (18 self)
 Add to MetaCart
this paper "ergodic" is used in a very weak sense, as it is not proposed, theoretically or practically, that all states of the system are actually to be visited
Iterated local search
 Handbook of Metaheuristics, volume 57 of International Series in Operations Research and Management Science
, 2002
"... Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions th ..."
Abstract

Cited by 172 (15 self)
 Add to MetaCart
(Show Context)
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of stateoftheart results without the use of too much problemspecific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the art algorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance. O.M. acknowledges support from the Institut Universitaire de France. This work was partially supported by the “Metaheuristics Network”, a Research Training Network funded by the Improving Human Potential programme of the CEC, grant HPRNCT199900106. The information provided is the sole responsibility of the authors and does not reflect the Community’s opinion. The Community is not responsible for any use that might be made of data appearing in this publication. 1 1
An Empirical Study of Algorithms for Point Feature Label Placement
, 1994
"... A major factor affecting the clarity of graphical displays that include text labels is the degree to which labels obscure display features (including other labels) as a result of spatial overlap. Pointfeature label placement (PFLP) is the problem of placing text labels adjacent to point features on ..."
Abstract

Cited by 160 (8 self)
 Add to MetaCart
A major factor affecting the clarity of graphical displays that include text labels is the degree to which labels obscure display features (including other labels) as a result of spatial overlap. Pointfeature label placement (PFLP) is the problem of placing text labels adjacent to point features on a map or diagram so as to maximize legibility. This problem occurs frequently in the production of many types of informational graphics, though it arises most often in automated cartography. In this paper we present a comprehensive treatment of the PFLP problem, viewed as a type of combinatorial optimization problem. Complexity analysis reveals that the basic PFLP problem and most interesting variants of it are NPhard. These negative results help inform a survey of previously reported algorithms for PFLP; not surprisingly, all such algorithms either have exponential time complexity or are incomplete. To solve the PFLP problem in practice, then, we must rely on good heuristic methods. We pr...
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 145 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
The traveling salesman problem
, 1994
"... This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances. Extensive computational results are reported on most of the algorithms described. Optimal solutions are reported for instances with sizes up to several thousand nodes as well as heuristic solutions with provably very high quality for larger instances. This is a preliminary version of one of the chapters of the volume “Networks”
Efficient GraphBased Energy Minimization Methods In Computer Vision
, 1999
"... ms (we show that exact minimization in NPhard in these cases). These algorithms produce a local minimum in interesting large move spaces. Furthermore, one of them nds a solution within a known factor from the optimum. The algorithms are iterative and compute several graph cuts at each iteration. Th ..."
Abstract

Cited by 113 (6 self)
 Add to MetaCart
ms (we show that exact minimization in NPhard in these cases). These algorithms produce a local minimum in interesting large move spaces. Furthermore, one of them nds a solution within a known factor from the optimum. The algorithms are iterative and compute several graph cuts at each iteration. The running time at each iteration is eectively linear due to the special graph structure. In practice it takes just a few iterations to converge. Moreover most of the progress happens during the rst iteration. For a certain piecewise constant prior we adapt the algorithms developed for the piecewise smooth prior. One of them nds a solution within a factor of two from the optimum. In addition we develop a third algorithm which nds a local minimum in yet another move space. We demonstrate the eectiveness of our approach on image restoration, stereo, and motion. For the data with ground truth, our methods signicantly outperform standard methods. Biographical Sketch Olga
Unsupervised Texture Segmentation in a Deterministic Annealing Framework
, 1998
"... We present a novel optimization framework for unsupervised texture segmentation that relies on statistical tests as a measure of homogeneity. Texture segmentation is formulated as a data clustering problem based on sparse proximity data. Dissimilarities of pairs of textured regions are computed from ..."
Abstract

Cited by 104 (9 self)
 Add to MetaCart
(Show Context)
We present a novel optimization framework for unsupervised texture segmentation that relies on statistical tests as a measure of homogeneity. Texture segmentation is formulated as a data clustering problem based on sparse proximity data. Dissimilarities of pairs of textured regions are computed from a multiscale Gabor filter image representation. We discuss and compare a class of clustering objective functions which is systematically derived from invariance principles. As a general optimization framework we propose deterministic annealing based on a meanfield approximation. The canonical way to derive clustering algorithms within this framework as well as an efficient implementation of meanfield annealing and the closely related Gibbs sampler are presented. We apply both annealing variants to Brodatzlike microtexture mixtures and realword images.
LargeStep Markov Chains for the Traveling Salesman Problem
 Complex Systems
, 1991
"... We introduce a new class of Markov chain Monte Carlo search procedures, leading to more powerful optimization methods than simulated annealing. The main idea is to embed deterministic local search techniques into stochastic algorithms. The Monte Carlo explores only local optima, and it is able to ma ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
(Show Context)
We introduce a new class of Markov chain Monte Carlo search procedures, leading to more powerful optimization methods than simulated annealing. The main idea is to embed deterministic local search techniques into stochastic algorithms. The Monte Carlo explores only local optima, and it is able to make large, global changes, even at low temperatures, thus overcoming large barriers in configuration space. We test these procedures in the case of the Traveling Salesman Problem. The embedded local searches we use are 3opt and LinKernighan. The large change or step consists of a special kind of 4change followed by localopt minimization. We test this algorithm on a number of instances. The power of the method is illustrated by solving to optimality some large problems such as the LIN318, the AT&T532, and the RAT783 problems. For even larger instances with randomly distributed cities, the Markov chain procedure improves 3opt by over 1.6%, and LinKernighan by 1.3%, leading to a new best h...