Results 1  10
of
266
A tutorial on crosslayer optimization in wireless networks
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2006
"... This tutorial paper overviews recent developments in optimization based approaches for resource allocation problems in wireless systems. We begin by overviewing important results in the area of opportunistic (channelaware) scheduling for cellular (singlehop) networks, where easily implementable my ..."
Abstract

Cited by 248 (29 self)
 Add to MetaCart
(Show Context)
This tutorial paper overviews recent developments in optimization based approaches for resource allocation problems in wireless systems. We begin by overviewing important results in the area of opportunistic (channelaware) scheduling for cellular (singlehop) networks, where easily implementable myopic policies are shown to optimize system performance. We then describe key lessons learned and the main obstacles in extending the work to general resource allocation problems for multihop wireless networks. Towards this end, we show that a cleanslate optimization based approach to the multihop resource allocation problem naturally results in a “loosely coupled” crosslayer solution. That is, the algorithms obtained map to different layers (transport, network, and MAC/PHY) of the protocol stack are coupled through a limited amount of information being passed back and forth. It turns out that the optimal scheduling component at the MAC layer is very complex and thus needs simpler (potentially imperfect) distributed solutions. We demonstrate how to use imperfect scheduling in the crosslayer framework and describe recently developed distributed algorithms along these lines. We conclude by describing a set of open research problems.
Fair Resource Allocation in Wireless Networks using Queuelengthbased Scheduling and Congestion Control
"... We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriate ..."
Abstract

Cited by 202 (45 self)
 Add to MetaCart
We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different receiver. The channel conditions may be timevarying and different for different receivers. It is wellknown that appropriately chosen queuelength based policies are throughputoptimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queuelengthbased scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queuelength stability.
Energy optimal control for time varying wireless networks
 IEEE Trans. Inform. Theory
, 2006
"... Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum p ..."
Abstract

Cited by 184 (50 self)
 Add to MetaCart
Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum possible value achieved by an algorithm optimized with complete knowledge of future events. Proximity to this optimal solution is shown to be inversely proportional to network delay. We then present a similar algorithm that solves the related problem of maximizing network throughput subject to peak and average power constraints. The techniques used in this paper are novel and establish a foundation for stochastic network optimization.
A Distributed CSMA Algorithm for Throughput and Utility Maximization in Wireless Networks
"... In multihop wireless networks, designing distributed scheduling algorithms to achieve the maximal throughput is a challenging problem because of the complex interference constraints among different links. Traditional maximalweight (MW) scheduling, although throughputoptimal, is difficult to imple ..."
Abstract

Cited by 181 (8 self)
 Add to MetaCart
In multihop wireless networks, designing distributed scheduling algorithms to achieve the maximal throughput is a challenging problem because of the complex interference constraints among different links. Traditional maximalweight (MW) scheduling, although throughputoptimal, is difficult to implement in distributed networks; whereas a distributed greedy protocol similar to IEEE 802.11 does not guarantee the maximal throughput. In this paper, we introduce an adaptive CSMA scheduling algorithm that can achieve the maximal throughput distributedly under some assumptions. Major advantages of the algorithm include: (1) It applies to a very general interference model; (2) It is simple, distributed and asynchronous. Furthermore, we combine the algorithm with endtoend flow control to achieve the optimal utility and fairness of competing flows. The effectiveness of the algorithm is verified by simulations. Finally, we consider some implementation issues in the setting of 802.11 networks.
On the Complexity of Scheduling in Wireless Networks
 MOBICOM '06
, 2006
"... We consider the problem of throughputoptimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of Khop interference models. We define a Khop interference model as one for which no two links within K hops can successfully transmit at the ..."
Abstract

Cited by 129 (3 self)
 Add to MetaCart
We consider the problem of throughputoptimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of Khop interference models. We define a Khop interference model as one for which no two links within K hops can successfully transmit at the same time (Note that IEEE 802.11 DCF corresponds to a 2hop interference model.). For a given K, a throughputoptimal scheduler needs to solve a maximum weighted matching problem subject to the Khop interference constraints. For K = 1, the resulting problem is the classical Maximum Weighted Matching problem, that can be solved in polynomial time. However, we show that for K> 1, the resulting problems are NPHard and cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, we show that for specific kinds of graphs, that can be used to model the underlying connectivity graph of a wide range of wireless networks, the resulting problems admit polynomial time approximation schemes. We also show that a simple greedy matching algorithm provides a constant factor approximation to the scheduling problem for all K in this case. We then show that under a setting with singlehop traffic and no rate control, the maximal scheduling policy considered in recent related works can achieve a constant fraction of the capacity region for networks whose connectivity graph can be represented using one of the above classes of graphs. These results are encouraging as they suggest that one can develop distributed algorithms to achieve near optimal throughput in case of a wide range of wireless networks.
Joint congestion control, routing and MAC for stability and fairness in wireless networks
 IEEE Journal on Selected Areas in Communications
, 2006
"... In this work, we describe and analyze a joint scheduling, routing and congestion control mechanism for wireless networks, that asymptotically guarantees stability of the buffers and fair allocation of the network resources. The queue lengths serve as common information to different layers of the ne ..."
Abstract

Cited by 126 (23 self)
 Add to MetaCart
(Show Context)
In this work, we describe and analyze a joint scheduling, routing and congestion control mechanism for wireless networks, that asymptotically guarantees stability of the buffers and fair allocation of the network resources. The queue lengths serve as common information to different layers of the network protocol stack. Our main contribution is to prove the asymptotic optimality of a primaldual congestion controller, which is known to model different versions of TCP well.
Distributed link scheduling with constant overhead
 In Proceedings of ACM Sigmetrics
, 2007
"... This paper proposes a new class of simple, distributed algorithms for scheduling in wireless networks. The algorithms generate new schedules in a distributed manner via simple local changes to existing schedules. The class is parameterized by integers k ≥ 1. We show that algorithm k of our class ach ..."
Abstract

Cited by 102 (3 self)
 Add to MetaCart
This paper proposes a new class of simple, distributed algorithms for scheduling in wireless networks. The algorithms generate new schedules in a distributed manner via simple local changes to existing schedules. The class is parameterized by integers k ≥ 1. We show that algorithm k of our class achieves k/(k +2) of the capacity region, for every k ≥ 1. The algorithms have small and constant worstcase overheads: in particular, algorithm k generates a new schedule using (a) time less than 4k + 2 roundtrip times between neighboring nodes in the network, and (b) at most three control transmissions by any given node, for any k. The control signals are explicitly specified, and face the same interference effects as normal data transmissions. Our class of distributed wireless scheduling algorithms are the first ones guaranteed to achieve any fixed fraction of the capacity region while using small and constant overheads that do not scale with network size. The parameter k explicitly captures the tradeoff between control overhead and scheduler throughput performance and provides a tuning knob protocol designers can use to harness this tradeoff in practice. 1.
Lowcomplexity distributed scheduling algorithms for wireless networks
 IEEE/ACM Trans. on Netw
"... Abstract — We consider the problem of distributed scheduling in wireless networks. We present two different algorithms whose performance is arbitrarily close to that of maximal schedules, but which require low complexity due to the fact that they do not necessarily attempt to find maximal schedules. ..."
Abstract

Cited by 81 (6 self)
 Add to MetaCart
Abstract — We consider the problem of distributed scheduling in wireless networks. We present two different algorithms whose performance is arbitrarily close to that of maximal schedules, but which require low complexity due to the fact that they do not necessarily attempt to find maximal schedules. The first algorithm requires each link to collect local queuelength information in its neighborhood, and its complexity is independent of the size and topology of the network. The second algorithm is presented for the nodeexclusive interference model, does not require nodes to collect queuelength information even in their local neighborhoods, and its complexity depends only on the maximum node degree in the network. I.
Opportunistic scheduling with reliability guarantees in cognitive radio networks
 In Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved. International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012 ISSN (Online): 16940814 www.IJCSI.org 73 INFOCOM 2008. The 27th Conference on
, 2008
"... Abstract—We develop opportunistic scheduling policies for cognitive radio networks that maximize the throughput utility of the secondary (unlicensed) users subject to maximum collision constraints with the primary (licensed) users. We consider a cognitive network with static primary users and potent ..."
Abstract

Cited by 79 (8 self)
 Add to MetaCart
Abstract—We develop opportunistic scheduling policies for cognitive radio networks that maximize the throughput utility of the secondary (unlicensed) users subject to maximum collision constraints with the primary (licensed) users. We consider a cognitive network with static primary users and potentially mobile secondary users. We use the technique of Lyapunov Optimization to design an online flow control, scheduling and resource allocation algorithm that meets the desired objectives and provides explicit performance guarantees.
Dynamic algorithms for multicast with intrasession network coding
 In Proc. 43rd Annual Allerton Conference on Communication, Control, and Computing
, 2005
"... We establish, for multiple multicast sessions with intrasession network coding, the capacity region of input rates for which the network remains stable in ergodically timevarying networks. Building on the backpressure approach introduced by Tassiulas et al., we present dynamic algorithms for mult ..."
Abstract

Cited by 71 (11 self)
 Add to MetaCart
(Show Context)
We establish, for multiple multicast sessions with intrasession network coding, the capacity region of input rates for which the network remains stable in ergodically timevarying networks. Building on the backpressure approach introduced by Tassiulas et al., we present dynamic algorithms for multicast routing, network coding, rate control, power allocation, and scheduling that achieves stability for rates within the capacity region. Decisions on routing, network coding, and scheduling between different sessions at a node are made locally at each node based on virtual queues for different sinks. For correlated sources, the sinks locally determine and control transmission rates across the sources. The proposed approach yields a completely distributed algorithm for wired networks. In the wireless case, scheduling and power control among different transmitters are centralized while routing, network coding, and scheduling between different sessions at a given node are distributed. 1