Results 1 - 10
of
238
Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems
, 2001
"... This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for wide-area peer-to-peer applications. Pastry provides application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. ..."
Abstract
-
Cited by 2075 (49 self)
- Add to MetaCart
This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for wide-area peer-to-peer applications. Pastry provides application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. It can be used to support a wide range of peer-to-peer applications like global data storage, global data sharing, and naming. An insert operation in Pastry stores an object at a user-defined number of diverse nodes within the Pastry network. A lookup operation reliably retrieves a copy of the requested object if one exists. Moreover, a lookup is usually routed to the node nearest the client issuing the lookup (by some measure of proximity), among the nodes storing the requested object. Pastry is completely decentralized, scalable, and self-configuring; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on a simulated network of 100,000 nodes confirm Pastry's scalability, its ability to self-configure and adapt to node failures, and its good network locality properties.
Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems
- IN PROC. OF THE 18TH IFIP/ACM INTERNATIONAL CONFERENCE ON DISTRIBUTED SYSTEMS PLATFORMS,
, 2001
"... This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer applications. Pastry performs application-level routing and object location in a potentially very large overlay network of nodes connected via the Intern ..."
Abstract
-
Cited by 1932 (1 self)
- Add to MetaCart
(Show Context)
This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer applications. Pastry performs application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. It can be used to support a variety of peer-to-peer applications, including global data storage, data sharing, group communication and naming. Each node in the Pastry network has a unique identifier (nodeId). When presented with a message and a key, a Pastry node efficiently routes the message to the node with a nodeId that is numerically closest to the key, among all currently live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in the nodeId space, and notifies applications of new node arrivals, node failures and recoveries. Pastry takes into account network locality; it seeks to minimize the distance messages travel, according to a to scalar proximity metric like the number of IP routing hops. Pastry is completely decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on an emulated network of up to 100,000 nodes con£rm Pastry's scalability and efficiency, its ability to self-organize and adapt to node failures, and its good network locality properties.
A Measurement Study of Peer-to-Peer File Sharing Systems
, 2002
"... The popularity of peer-to-peer multimedia file sharing applications such as Gnutella and Napster has created a flurry of recent research activity into peer-to-peer architectures. We believe that the proper evaluation of a peer-to-peer system must take into account the characteristics of the peers th ..."
Abstract
-
Cited by 1254 (15 self)
- Add to MetaCart
(Show Context)
The popularity of peer-to-peer multimedia file sharing applications such as Gnutella and Napster has created a flurry of recent research activity into peer-to-peer architectures. We believe that the proper evaluation of a peer-to-peer system must take into account the characteristics of the peers that choose to participate. Surprisingly, however, few of the peer-to-peer architectures currently being developed are evaluated with respect to such considerations. In this paper, we remedy this situation by performing a detailed measurement study of the two popular peer-to-peer file sharing systems, namely Napster and Gnutella. In particular, our measurement study seeks to precisely characterize the population of end-user hosts that participate in these two systems. This characterization includes the bottleneck bandwidths between these hosts and the Internet at large, IP-level latencies to send packets to these hosts, how often hosts connect and disconnect from the system, how many les hosts share and download, the degree of cooperation between the hosts, and several correlations between these characteristics. Our measurements show that there is significant heterogeneity and lack of cooperation across peers participating in these systems.
Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility
, 2001
"... This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache a ..."
Abstract
-
Cited by 803 (23 self)
- Add to MetaCart
This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache additional copies of popular files. In the PAST system, storage nodes and files are each assigned uniformly distributed identifiers, and replicas of a file are stored at nodes whose identifier matches most closely the file’s identifier. This statistical assignment of files to storage nodes approximately balances the number of files stored on each node. However, non-uniform storage node capacities and file sizes require more explicit storage load balancing to permit graceful behavior under high global storage utilization; likewise, non-uniform popularity of files requires caching to minimize fetch distance and to balance the query load. We present and evaluate PAST, with an emphasis on its storage management and caching system. Extensive tracedriven experiments show that the system minimizes fetch distance, that it balances the query load for popular files, and that it displays graceful degradation of performance as the global storage utilization increases beyond 95%.
SCRIBE: A large-scale and decentralized application-level multicast infrastructure
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC
, 2002
"... This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, ..."
Abstract
-
Cited by 658 (29 self)
- Add to MetaCart
(Show Context)
This paper presents Scribe, a scalable application-level multicast infrastructure. Scribe supports large numbers of groups, with a potentially large number of members per group. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, and leverages Pastry's reliability, self-organization, and locality properties. Pastry is used to create and manage groups and to build efficient multicast trees for the dissemination of messages to each group. Scribe provides best-effort reliability guarantees, but we outline how an application can extend Scribe to provide stronger reliability. Simulation results, based on a realistic network topology model, show that Scribe scales across a wide range of groups and group sizes. Also, it balances the load on the nodes while achieving acceptable delay and link stress when compared to IP multicast.
SplitStream: High-Bandwidth Multicast in Cooperative Environments
- SOSP '03
, 2003
"... In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for application-level multicast in peer-to-peer systems. ..."
Abstract
-
Cited by 578 (17 self)
- Add to MetaCart
In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly available, d d cated infrastructure routers but it poses a problem for application-level multicast in peer-to-peer systems. SplitStreamadV esses this problem by striping the content across a forest of interior-nodno# sjoint multicast trees that d stributes the forward ng load among all participating peers. For example, it is possible to construct efficient SplitStream forests in which each peer contributes only as much forwarding bandH d th as it receives. Furthermore, with appropriate content encod ngs, SplitStream is highly robust to failures because a nod e fai ure causes the oss of a single stripe on average. We present thed#' gnand implementation of SplitStream and show experimental results obtained on an Internet testbed and via large-scale network simulation. The results show that SplitStreamd istributes the forward ing load among all peers and can accommod'9 peers with different band0 d capacities while imposing low overhead for forest constructionand maintenance.
Secure routing for structured peer-to-peer overlay networks
, 2002
"... Structured peer-to-peer overlay networks provide a sub-strate for the construction of large-scale, decentralized applications, including distributed storage, group com-munication, and content distribution. These overlays are highly resilient; they can route messages correctly even when a large fract ..."
Abstract
-
Cited by 473 (12 self)
- Add to MetaCart
(Show Context)
Structured peer-to-peer overlay networks provide a sub-strate for the construction of large-scale, decentralized applications, including distributed storage, group com-munication, and content distribution. These overlays are highly resilient; they can route messages correctly even when a large fraction of the nodes crash or the network partitions. But current overlays are not secure; even a small fraction of malicious nodes can prevent correct message delivery throughout the overlay. This prob-lem is particularly serious in open peer-to-peer systems, where many diverse, autonomous parties without pre-existing trust relationships wish to pool their resources. This paper studies attacks aimed at preventing correct message delivery in structured peer-to-peer overlays and presents defenses to these attacks. We describe and eval-uate techniques that allow nodes to join the overlay, to maintain routing state, and to forward messages securely in the presence of malicious nodes. 1
Distributing Streaming Media Content Using Cooperative Networking
, 2002
"... In this paper, we discuss the problem of distributing streaming media content, both live and on-demand, to a large number of hosts in a scalable way. Our work is set in the context of the traditional client-server framework. Specifically, we consider the problem that arises when the server is overwh ..."
Abstract
-
Cited by 403 (7 self)
- Add to MetaCart
(Show Context)
In this paper, we discuss the problem of distributing streaming media content, both live and on-demand, to a large number of hosts in a scalable way. Our work is set in the context of the traditional client-server framework. Specifically, we consider the problem that arises when the server is overwhelmed by the volume of requests from its clients. As a solution, we propose Cooperative Networking (CoopNet), where clients cooperate to distribute content, thereby alleviating the load on the server. We discuss the proposed solution in some detail, pointing out the interesting research issues that arise, and present a preliminary evaluation using traces gathered at a busy news site during the flash crowd that occurred on September 11, 2001.
Skipnet: A scalable overlay network with practical locality properties
, 2003
"... Abstract: Scalable overlay networks such as Chord, Pastry, and Tapestry have recently emerged as a flexible infrastructure for building large peer-to-peer systems. In practice, two disadvantages of such systems are that it is difficult to control where data is stored and difficult to guarantee that ..."
Abstract
-
Cited by 359 (5 self)
- Add to MetaCart
(Show Context)
Abstract: Scalable overlay networks such as Chord, Pastry, and Tapestry have recently emerged as a flexible infrastructure for building large peer-to-peer systems. In practice, two disadvantages of such systems are that it is difficult to control where data is stored and difficult to guarantee that routing paths remain within an administrative domain. SkipNet is a scalable overlay network that provides controlled data placement and routing locality guarantees by organizing data primarily by lexicographic key ordering. SkipNet also allows for both fine-grained and coarsegrained control over data placement, where content can be placed either on a pre-determined node or distributed uniformly across the nodes of a hierarchical naming subtree. An additional useful consequence of SkipNet’s locality properties is that partition failures, in which an entire organization disconnects from the rest of the system, result in two disjoint, but well-connected overlay networks. 1
SCRIBE: The design of a large-scale event notification infrastructure
- In Networked Group Communication
, 2001
"... This paper presents Scribe, a large-scale event notification infrastructure for topic-based publish-subscribe applications. Scribe supports large numbers of topics, with a potentially large number of subscribers per topic. Scribe is built on top of Pastry, a generic peer-to-peer object location a ..."
Abstract
-
Cited by 344 (12 self)
- Add to MetaCart
(Show Context)
This paper presents Scribe, a large-scale event notification infrastructure for topic-based publish-subscribe applications. Scribe supports large numbers of topics, with a potentially large number of subscribers per topic. Scribe is built on top of Pastry, a generic peer-to-peer object location and routing substrate overlayed on the Internet, and leverages Pastry's reliability, self-organization and locality properties. Pastry is used to create a topic (group) and to build an efficient multicast tree for the dissemination of events to the topic's subscribers (members). Scribe provides weak reliability guarantees, but we outline how an application can extend Scribe to provide stronger ones.