Results 1 -
8 of
8
Team-triggered coordination for real-time control of networked cyberphysical systems
- IEEE Transactions on Automatic Control
, 2013
"... Abstract-This paper studies the real-time implementation of distributed controllers on networked cyber-physical systems. We build on the strengths of event-and self-triggered control to synthesize a unified approach, termed team-triggered, where agents make promises to one another about their futur ..."
Abstract
-
Cited by 3 (2 self)
- Add to MetaCart
(Show Context)
Abstract-This paper studies the real-time implementation of distributed controllers on networked cyber-physical systems. We build on the strengths of event-and self-triggered control to synthesize a unified approach, termed team-triggered, where agents make promises to one another about their future states and are responsible for warning each other if they later decide to break them. The information provided by these promises allows individual agents to autonomously schedule information requests in the future and sets the basis for maintaining desired levels of performance at lower implementation cost. We establish provably correct guarantees for the distributed strategies that result from the proposed approach and examine their robustness against delays, packet drops, and communication noise. The results are illustrated in simulations of a multi-agent formation control problem.
Stabilization of Networked Distributed Systems with Partial and Event-Based Couplings
"... The stabilization problem of networked distributed systems with partial and event-based couplings is investigated. The channels, which are used to transmit different levels of information of agents, are considered. The channel matrix is introduced to indicate the work state of the channels. An even ..."
Abstract
- Add to MetaCart
(Show Context)
The stabilization problem of networked distributed systems with partial and event-based couplings is investigated. The channels, which are used to transmit different levels of information of agents, are considered. The channel matrix is introduced to indicate the work state of the channels. An event condition is designed for each channel to govern the sampling instants of the channel. Since the event conditions are separately given for different channels, the sampling instants of channels are mutually independent. To stabilize the system, the state feedback controllers are implemented in the system. The control signals also suffer from the two communication constraints. The sufficient conditions in terms of linear matrix equalities are proposed to ensure the stabilization of the controlled system. Finally, a numerical example is given to demonstrate the advantage of our results.
Distributed Event-Triggered Control of Multiagent Systems with Time-Varying Topology
"... This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative st ..."
Abstract
- Add to MetaCart
(Show Context)
This paper studies the consensus of first-order discrete-time multiagent systems, where the interaction topology is time-varying. The event-triggered control is used to update the control input of each agent, and the event-triggering condition is designed based on the combination of the relative states of each agent to its neighbors. By applying the common Lyapunov function method, a sufficient condition for consensus, which is expressed as a group of linear matrix inequalities, is obtained and the feasibility of these linear matrix inequalities is further analyzed. Simulation examples are provided to explain the effectiveness of the theoretical results.
Distributed Event Triggered Control, Estimation, and Optimization for Cyber-Physical Systems
"... A cyber-physical system (CPS) is a system in which computational systems interact with physical processes. Control systems in a CPS application often include algorithms that react to sensor data by issuing control signals via actuators to the physical components of the CPS. Communication over wirele ..."
Abstract
- Add to MetaCart
(Show Context)
A cyber-physical system (CPS) is a system in which computational systems interact with physical processes. Control systems in a CPS application often include algorithms that react to sensor data by issuing control signals via actuators to the physical components of the CPS. Communication over wireless networks is the most energy-consuming function performed by the cyber components of a CPS; thus communication frequencies need to be minimized. Event triggered communication has been recognized as an efficient means to reduce communication rates between different cyber components. In this thesis, event triggered schemes serve as a communication protocol to mediate data exchange in distributed control, estimation, and optimization for CPSs. Firstly, it is established that event triggered communication outperforms time triggered communication based on a finite time quadratic optimal control problem for first order stochastic systems. Secondly, it is demonstrated that event triggered impulse control still outperforms periodic impulse control for second order systems in terms of mean-square state variations, while both having the same average control rate. Thirdly, a synchronization problem is considered