Results 1 - 10
of
411
End-to-End Internet Packet Dynamics,”
- Proc. SIGCOMM '97,
, 1997
"... Abstract We discuss findings from a large-scale study of Internet packet dynamics conducted by tracing 20,000 TCP bulk transfers between 35 Internet sites. Because we traced each 100 Kbyte transfer at both the sender and the receiver, the measurements allow us to distinguish between the end-to-end ..."
Abstract
-
Cited by 843 (19 self)
- Add to MetaCart
(Show Context)
Abstract We discuss findings from a large-scale study of Internet packet dynamics conducted by tracing 20,000 TCP bulk transfers between 35 Internet sites. Because we traced each 100 Kbyte transfer at both the sender and the receiver, the measurements allow us to distinguish between the end-to-end behaviors due to the different directions of the Internet paths, which often exhibit asymmetries. We characterize the prevalence of unusual network events such as out-of-order delivery and packet corruption; discuss a robust receiver-based algorithm for estimating "bottleneck bandwidth" that addresses deficiencies discovered in techniques based on "packet pair"; investigate patterns of packet loss, finding that loss events are not well-modeled as independent and, furthermore, that the distribution of the duration of loss events exhibits infinite variance; and analyze variations in packet transit delays as indicators of congestion periods, finding that congestion periods also span a wide range of time scales.
Grid Information Services for Distributed Resource Sharing
, 2001
"... Grid technologies enable large-scale sharing of resources within formal or informal consortia of individuals and/or institutions: what are sometimes called virtual organizations. In these settings, the discovery, characterization, and monitoring of resources, services, and computations are challengi ..."
Abstract
-
Cited by 712 (52 self)
- Add to MetaCart
Grid technologies enable large-scale sharing of resources within formal or informal consortia of individuals and/or institutions: what are sometimes called virtual organizations. In these settings, the discovery, characterization, and monitoring of resources, services, and computations are challenging problems due to the considerable diversity, large numbers, dynamic behavior, and geographical distribution of the entities in which a user might be interested. Consequently, information services are a vital part of any Grid software infrastructure, providing fundamental mechanisms for discovery and monitoring, and hence for planning and adapting application behavior. We present here an information services architecture that addresses performance, security, scalability, and robustness requirements. Our architecture defines simple low-level enquiry and registration protocols that make it easy to incorporate individual entities into various information structures, such as aggregate directories that support a variety of different query languages and discovery strategies. These protocols can also be combined with other Grid protocols to construct additional higher-level services and capabilities such as brokering, monitoring, fault detection, and troubleshooting. Our architecture has been implemented as MDS-2, which forms part of the Globus Grid toolkit and has been widely deployed and applied.
Wide-area Internet traffic patterns and characteristics
- IEEE NETWORK
, 1997
"... The Internet is rapidly growing in number of users, traffic levels, and topological complexity. At the same time it is increasingly driven by economic competition. These developments render the characterization of network usage and workloads more difficult, and yet more critical. Few recent studies ..."
Abstract
-
Cited by 518 (0 self)
- Add to MetaCart
(Show Context)
The Internet is rapidly growing in number of users, traffic levels, and topological complexity. At the same time it is increasingly driven by economic competition. These developments render the characterization of network usage and workloads more difficult, and yet more critical. Few recent studies have been published reporting Internet backbone traffic usage and characteristics. At MCI, we have implemented a high-performance, low-cost monitoring system that can capture traffic and perform analyses. We have deployed this monitoring tool on OC-3 trunks within internetMCIâs backbone and also within the NSF-sponsored vBNS. This paper presents observations on the patterns and characteristics of wide-area Internet traffic, as recorded by MCIâs OC-3 traffic monitors. We report on measurements from two OC-3 trunks in MCIâs commercial Internet backbone over two time ranges (24-hour and 7-day) in the presence of up to 240,000 flows. We reveal the characteristics of the traffic in terms of packet sizes, flow duration, volume, and percentage composition by protocol and application, as well as patterns seen over the two time scales.
Multicast-Based Inference of Network-Internal Characteristics: Accuracy of Packet Loss Estimation
- IEEE Transactions on Information Theory
, 1998
"... We explore the use of end-to-end multicast traffic as measurement probes to infer network-internal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique explo ..."
Abstract
-
Cited by 323 (40 self)
- Add to MetaCart
(Show Context)
We explore the use of end-to-end multicast traffic as measurement probes to infer network-internal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique exploits the inherent correlation between such observations to infer the performance of paths between branch points in the multicast tree spanning the probe source and its receivers. We evaluate through analysis and simulation the accuracy of our estimator under a variety of network conditions. In particular, we report on the error between inferred loss rates and actual loss rates as we vary the network topology, propagation delay, packet drop policy, background traffic mix, and probe traffic type. In all but one case, estimated losses and probe losses agree to within 2 percent on average. We feel this accuracy is enough to reliably identify congested links in a wide-area internetwork. Keywords---Internet performance, end-to-end measurements, Maximum Likelihood Estimator, tomography I.
What Do Packet Dispersion Techniques Measure?
- IN PROCEEDINGS OF IEEE INFOCOM
, 2001
"... The packet pair technique estimates the capacity of a path (bottleneck bandwidth) from the dispersion (spacing) experienced by two back-to-back packets [1][2][3]. We demonstrate that the dispersion of packet pairs in loaded paths follows a multimodal distribution, and discuss the queueing effects th ..."
Abstract
-
Cited by 313 (8 self)
- Add to MetaCart
(Show Context)
The packet pair technique estimates the capacity of a path (bottleneck bandwidth) from the dispersion (spacing) experienced by two back-to-back packets [1][2][3]. We demonstrate that the dispersion of packet pairs in loaded paths follows a multimodal distribution, and discuss the queueing effects that cause the multiple modes. We show that the path capacity is often not the global mode, and so it cannot be estimated using standard statistical procedures. The effect of the size of the probing packets is also investigated, showing that the conventional wisdom of using maximum sized packet pairs is not optimal. We then study the dispersion of long packet trains. Increasing the length of the packet train reduces the measurement variance, but the estimates converge to a value, referred to as Asymptotic Dispersion Rate (ADR), that is lower than the capacity. We derive the effect of the cross traffic in the dispersion of long packet trains, showing that the ADR is not the available bandwidth in the path, as was assumed in previous work. Putting all the pieces together, we present a capacity estimation methodology that has been implemented in a tool called pathrate.
The End-to-End Effects of Internet Path Selection
- IN PROCEEDINGS OF ACM SIGCOMM
, 1999
"... The path taken by a packet traveling across the Internet depends on a large number of factors, including routing protocols and pernetwork routing policies. The impact of these factors on the endto -end performance experienced by users is poorly understood. In this paper, we conduct a measurement-bas ..."
Abstract
-
Cited by 307 (10 self)
- Add to MetaCart
The path taken by a packet traveling across the Internet depends on a large number of factors, including routing protocols and pernetwork routing policies. The impact of these factors on the endto -end performance experienced by users is poorly understood. In this paper, we conduct a measurement-based study comparing the performance seen using the "default" path taken in the Internet with the potential performance available using some alternate path. Our study uses five distinct datasets containing measurements of "path quality", such as round-trip time, loss rate, and bandwidth, taken between pairs of geographically diverse Internet hosts. We construct the set of potential alternate paths by composing these measurements to form new synthetic paths. We find that in 30-80% of the cases, there is an alternate path with significantly superior quality. We argue that the overall result is robust and we explore two hypotheses for explaining it.
A Signal Analysis of Network Traffic Anomalies
- In Internet Measurement Workshop
, 2002
"... Abstract--Identifying anomalies rapidly and accurately is critical to the efficient operation of large computer networks. Accurately characterizing important classes of anomalies greatly facilitates their identification; how-ever, the subtleties and complexities of anomalous traffic can easily con-f ..."
Abstract
-
Cited by 306 (8 self)
- Add to MetaCart
Abstract--Identifying anomalies rapidly and accurately is critical to the efficient operation of large computer networks. Accurately characterizing important classes of anomalies greatly facilitates their identification; how-ever, the subtleties and complexities of anomalous traffic can easily con-found this process. In this paper we report results of signal analysis of four classes of network traffic anomalies: outages, flash crowds, attacks and measurement failures. Data for this study consists of IP flow and SNMP measurements collected over a six month period at the border router of a large university. Our results show that wavelet filters are quite effective at exposing the details of both ambient and anomalous traffic. Specifically, we show that a pseudo-spline filter tuned at specific aggregation levels will expose distinct characteristics of each class of anomaly. We show that an effective way of exposing anomalies is via the detection of a sharp increase in the local variance of the filtered data. We evaluate traffic anomaly sig-nals at different points within a network based on topological distance from the anomaly source or destination. We show that anomalies can be exposed effectively even when aggregated with a large amount of additional traffic. We also compare the difference between the same traffic anomaly signals as seen in SNMP and IP flow data, and show that the more coarse-grained SNMP data can also be used to expose anomalies effectively. I.
Practical Loss-Resilient Codes
, 1997
"... We present a randomized construction of linear-time encodable and decodable codes that can transmit over lossy channels at rates extremely close to capacity. The encoding and decoding algorithms for these codes have fast and simple software implementations. Partial implementations of our algorithms ..."
Abstract
-
Cited by 284 (25 self)
- Add to MetaCart
We present a randomized construction of linear-time encodable and decodable codes that can transmit over lossy channels at rates extremely close to capacity. The encoding and decoding algorithms for these codes have fast and simple software implementations. Partial implementations of our algorithms are faster by orders of magnitude than the best software implementations of any previous algorithm for this problem. We expect these codes will be extremely useful for applications such as real-time audio and video transmission over the Internet, where lossy channels are common and fast decoding is a requirement. Despite the simplicity of the algorithms, their design and analysis are mathematically intricate. The design requires the careful choice of a random irregular bipartite graph, where the structure of the irregular graph is extremely important. We model the progress of the decoding algorithm by a set of differential equations. The solution to these equations can then be expressed as p...
On Estimating End-to-End Network Path Properties
, 1999
"... The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements performed ..."
Abstract
-
Cited by 245 (14 self)
- Add to MetaCart
(Show Context)
The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements performed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for a reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better. 1
Evaluation and Characterization of Available Bandwidth Probing Techniques
- IEEE Journal on Selected Areas in Communications
, 2003
"... The packet pair mechanism has been shown to be a reliable method to measure the bottleneck link capacity on a network path, but its use for measuring available bandwidth is more challenging. In this paper, we use modeling, measurements, and simulations to better characterize the interaction between ..."
Abstract
-
Cited by 230 (10 self)
- Add to MetaCart
(Show Context)
The packet pair mechanism has been shown to be a reliable method to measure the bottleneck link capacity on a network path, but its use for measuring available bandwidth is more challenging. In this paper, we use modeling, measurements, and simulations to better characterize the interaction between probing packets and the competing network traffic. We first construct a simple model to understand how competing traffic changes the probing packet gap for a single-hop network. The gap model shows that the initial probing gap is a critical parameter when using packet pairs to estimate available bandwidth. Based on this insight, we present two available bandwidth measurement techniques, the initial gap increasing (IGI) method and the packet transmission rate (PTR) method. We use extensive Internet measurements to show that these techniques estimate available bandwidth faster than existing techniques such as Pathload, with comparable accuracy. Finally, using both Internet measurements and ns simulations, we explore how the measurement accuracy of active probing is affected by factors such as the probing packet size, the length of probing packet train, and the competing traffic on links other than the tight link.