Results 1 - 10
of
902
Directed diffusion: a scalable and robust communication paradigm for sensor networks.
- In Mobicom ’00: Proceedings of the 6th annual international conference on mobile computing and networking
, 2000
"... ..."
(Show Context)
A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless Networks
"... An ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discove ..."
Abstract
-
Cited by 1311 (3 self)
- Add to MetaCart
(Show Context)
An ad-hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad-hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines routing protocols for ad-hoc networks and evaluates these protocols based on a given set of parameters. The paper provides an overview of eight different protocols by presenting their characteristics and functionality, and then provides a comparison and discussion of their respective merits and drawbacks.
The broadcast storm problem in a mobile ad hoc network
- ACM Wireless Networks
, 2002
"... Broadcasting is a common operation in a network to resolve many issues. In a mobile ad hoc network (MANET) in par-ticular, due to host mobility, such operations are expected to be executed more frequently (such as finding a route to a particular host, paging a particular host, and sending an alarm s ..."
Abstract
-
Cited by 1237 (15 self)
- Add to MetaCart
(Show Context)
Broadcasting is a common operation in a network to resolve many issues. In a mobile ad hoc network (MANET) in par-ticular, due to host mobility, such operations are expected to be executed more frequently (such as finding a route to a particular host, paging a particular host, and sending an alarm signal). Because radio signals are likely to overlap with others in a geographical area, a straightforward broad-casting by flooding is usually very costly and will result in serious redundancy, contention, and collision, to which we refer as the broadcast storm problem. In this paper, we iden-tify this problem by showing how serious it is through anal-yses and simulations. We propose several schemes to reduce redundant rebroadcasts and differentiate timing of rebroad-casts to alleviate this problem. Simulation results are pre-sented, which show different levels of improvement over the basic flooding approach.
A Survey of Mobility Models for Ad Hoc Network Research
- WIRELESS COMMUNICATIONS & MOBILE COMPUTING (WCMC): SPECIAL ISSUE ON MOBILE AD HOC NETWORKING: RESEARCH, TRENDS AND APPLICATIONS
, 2002
"... In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of t ..."
Abstract
-
Cited by 1213 (8 self)
- Add to MetaCart
In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of the mobile users (i.e., a mobility model). This paper is a survey of mobility models that are used in the simulations of ad hoc networks. We describe several mobility models that represent mobile nodes whose movements are independent of each other (i.e., entity mobility models) and several mobility models that represent mobile nodes whose movements are dependent on each other (i.e., group mobility models). The goal of this paper is to present a number of mobility models in order to offer researchers more informed choices when they are deciding upon a mobility model to use in their performance evaluations. Lastly, we present simulation results that illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol. Specifically, we illustrate how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated.
SPINS: Security Protocols for Sensor Networks
, 2001
"... As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized ..."
Abstract
-
Cited by 1094 (30 self)
- Add to MetaCart
As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. We design a suite of security building blocks that are optimized for resource-constrained environments and wireless communication. SPINS has two secure building blocks: SNEP and TESLA. SNEP provides the following important baseline security primitives: Data con£dentiality, two-party data authentication, and data freshness. A particularly hard problem is to provide efficient broad-cast authentication, which is an important mechanism for sensor networks. TESLA is a new protocol which provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimalistic hardware: The performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.
Mitigating routing misbehavior in mobile ad hoc networks
- Proc. ACM/IEEE MOBICOM
, 2000
"... This paper describes two techniques that improve through-put in an ad hoc network in the presence of nodes that agree to forward packets but fail to do so. To mitigate this prob-lem, we propose categorizing nodes based upon their dynam-ically measured behavior. We use a watchdog that identifies misb ..."
Abstract
-
Cited by 1090 (4 self)
- Add to MetaCart
(Show Context)
This paper describes two techniques that improve through-put in an ad hoc network in the presence of nodes that agree to forward packets but fail to do so. To mitigate this prob-lem, we propose categorizing nodes based upon their dynam-ically measured behavior. We use a watchdog that identifies misbehaving nodes and a patl~rater that helps routing pro-tocols avoid these nodes. Through simulation we evaluate watchdog and pathrater using packet throughput, percent-age of overhead (routing) transmissions, and the accuracy of misbehaving node detection. When used together in a net-work with moderate mobility, the two techniques increase throughput by 17 % in the presence of 40 % misbehaving nodes, while increasing the percentage ofoverhead transmis-sions from the standard routing protocol's 9 % to 17%. Dur-ing extreme mobility, watchdog and pathrater can increase network throughput by 27%, while increasing the overhead transmissions from the standard routing protocol's 12 % to 24%. 1.
Geography-informed Energy Conservation for Ad Hoc Routing
- ACM MOBICOM
, 2001
"... We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GA ..."
Abstract
-
Cited by 1045 (21 self)
- Add to MetaCart
(Show Context)
We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity.
Ariadne: a secure on-demand routing protocol for ad hoc networks," in
- Proc. 8th ACM International Conf. Mobile Computing Networking ,
, 2002
"... Abstract An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing prob ..."
Abstract
-
Cited by 925 (12 self)
- Add to MetaCart
Abstract An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we present attacks against routing in ad hoc networks, and we present the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne. Ariadne prevents attackers or compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes, and also prevents many types of Denial-of-Service attacks. In addition, Ariadne is efficient, using only highly efficient symmetric cryptographic primitives.
Routing with Guaranteed Delivery in ad hoc Wireless Networks
, 2001
"... We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of ..."
Abstract
-
Cited by 849 (80 self)
- Add to MetaCart
We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A byproduct of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.
DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks”, in Ad Hoc Networking, edited by Charles E.
- Perkins, Chapter
, 2001
"... Abstract The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes. DSR allows the network to be completely self-organizing and self-configuring, without the need for any existing network ..."
Abstract
-
Cited by 764 (8 self)
- Add to MetaCart
Abstract The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes. DSR allows the network to be completely self-organizing and self-configuring, without the need for any existing network infrastructure or administration. The protocol is composed of the two mechanisms of Route Discovery and Route Maintenance, which work together to allow nodes to discover and maintain source routes to arbitrary destinations in the ad hoc network. The use of source routing allows packet routing to be trivially loop-free, avoids the need for up-to-date routing information in the intermediate nodes through which packets are forwarded, and allows nodes forwarding or overhearing packets to cache the routing information in them for their own future use. All aspects of the protocol operate entirely on-demand, allowing the routing packet overhead of DSR to scale automatically to only that needed to react to changes in the routes currently in use. We have evaluated the operation of DSR through detailed simulation on a variety of movement and communication patterns, and through implementation and significant experimentation in a physical outdoor ad hoc networking testbed we have constructed in Pittsburgh, and have demonstrated the excellent performance of the protocol. In this chapter, we describe the design of DSR and provide a summary of some of our simulation and testbed implementation results for the protocol.