Results 1 -
2 of
2
Distributed Algorithmic Mechanism Design: Recent Results and Future Directions
, 2002
"... Distributed Algorithmic Mechanism Design (DAMD) combines theoretical computer science’s traditional focus on computational tractability with its more recent interest in incentive compatibility and distributed computing. The Internet’s decentralized nature, in which distributed computation and autono ..."
Abstract
-
Cited by 283 (24 self)
- Add to MetaCart
(Show Context)
Distributed Algorithmic Mechanism Design (DAMD) combines theoretical computer science’s traditional focus on computational tractability with its more recent interest in incentive compatibility and distributed computing. The Internet’s decentralized nature, in which distributed computation and autonomous agents prevail, makes DAMD a very natural approach for many Internet problems. This paper first outlines the basics of DAMD and then reviews previous DAMD results on multicast cost sharing and interdomain routing. The remainder of the paper describes several promising research directions and poses some specific open problems.
Exploring user-provided connectivity – a simple model
, 2011
"... Abstract. The advent of cheap and ubiquitous wireless access has introduced a number of new connectivity paradigms. This paper investigates one of them, user-provided connectivity or UPC. In contrast to traditional infrastructure-based connectivity, e.g., connectivity through the up-front build-out ..."
Abstract
-
Cited by 3 (3 self)
- Add to MetaCart
(Show Context)
Abstract. The advent of cheap and ubiquitous wireless access has introduced a number of new connectivity paradigms. This paper investigates one of them, user-provided connectivity or UPC. In contrast to traditional infrastructure-based connectivity, e.g., connectivity through the up-front build-out of expensive base-stations, UPC realizes connectivity organically as users join and expand its coverage. The low(er) deployment cost this affords is one of its main attractions. Conversely, the disadvantages of connectivity sharing and a high barrier-to-entry from low initial penetration create strong disincentives to its adoption. The paper’s contributions are in formulating and solving a simple model that captures key aspects of UPC adoption, and in articulating guidelines to make it successful. For analytical tractability, the model is arguably simplistic, but the robustness of its findings is demonstrated numerically across a wide range of more general (and more realistic) configurations. 1