Results 1  10
of
356
Measurement and Analysis of Online Social Networks
 In Proceedings of the 5th ACM/USENIX Internet Measurement Conference (IMC’07
, 2007
"... Online social networking sites like Orkut, YouTube, and Flickr are among the most popular sites on the Internet. Users of these sites form a social network, which provides a powerful means of sharing, organizing, and finding content and contacts. The popularity of these sites provides an opportunity ..."
Abstract

Cited by 688 (15 self)
 Add to MetaCart
(Show Context)
Online social networking sites like Orkut, YouTube, and Flickr are among the most popular sites on the Internet. Users of these sites form a social network, which provides a powerful means of sharing, organizing, and finding content and contacts. The popularity of these sites provides an opportunity to study the characteristics of online social network graphs at large scale. Understanding these graphs is important, both to improve current systems and to design new applications of online social networks. This paper presents a largescale measurement study and analysis of the structure of multiple online social networks. We examine data gathered from four popular online social networks: Flickr, YouTube, LiveJournal, and Orkut. We crawled the publicly accessible user links on each site, obtaining a large portion of each social network’s graph. Our data set contains over 11.3 million users and 328 million links. We believe that this is the first study to examine multiple online social networks at scale. Our results confirm the powerlaw, smallworld, and scalefree properties of online social networks. We observe that the indegree of user nodes tends to match the outdegree; that the networks contain a densely connected core of highdegree nodes; and that this core links small groups of strongly clustered, lowdegree nodes at the fringes of the network. Finally, we discuss the implications of these structural properties for the design of social network based systems.
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) orO(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study.
A Brief History of Generative Models for Power Law and Lognormal Distributions
 INTERNET MATHEMATICS
"... Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying ..."
Abstract

Cited by 417 (8 self)
 Add to MetaCart
(Show Context)
Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying
A Random Graph Model for Massive Graphs
 STOC 2000
, 2000
"... We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from t ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from these parameters, various properties of the graph can be derived. For example, for certain ranges of the parameters, we will compute the expected distribution of the sizes of the connected components which almost surely occur with high probability. We will illustrate the consistency of our model with the behavior of some massive graphs derived from data in telecommunications. We will also discuss the threshold function, the giant component, and the evolution of random graphs in this model.
Structure and evolution of online social networks
 In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining
, 2006
"... In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the ..."
Abstract

Cited by 400 (4 self)
 Add to MetaCart
In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the life of the network. Our measurements expose a surprising segmentation of these networks into three regions: singletons who do not participate in the network; isolated communities which overwhelmingly display star structure; and a giant component anchored by a wellconnected core region which persists even in the absence of stars. We present a simple model of network growth which captures these aspects of component structure. The model follows our experimental results, characterizing users as either passive members of the network; inviters who encourage offline friends and acquaintances to migrate online; and linkers who fully participate in the social evolution of the network.
Stochastic Models for the Web Graph
, 2000
"... The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph m ..."
Abstract

Cited by 293 (12 self)
 Add to MetaCart
(Show Context)
The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph models differ from the traditional Gn;p models in two ways: 1. Independently chosen edges do not result in the statistics (degree distributions, clique multitudes) observed on the web. Thus, edges in our model are statistically dependent on each other. 2. Our model introduces new vertices in the graph as time evolves. This captures the fact that the web is changing with time. Our results are two fold: we show that graphs generated using our model exhibit the statistics observed on the web graph, and additionally, that natural graph models proposed earlier do not exhibit them. This remains true even when these earlier models are generalized to account for the arrival of vertices over time. In particular, the sparse random graphs in our models exhibit properties that do not arise in far denser random graphs generated by ErdosR'enyi models.
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 263 (16 self)
 Add to MetaCart
(Show Context)
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 242 (14 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Random Walks in PeertoPeer Networks
, 2004
"... We quantify the effectiveness of random walks for searching and construction of unstructured peertopeer (P2P) networks. For searching, we argue that random walks achieve improvement over flooding in the case of clustered overlay topologies and in the case of reissuing the same request several tim ..."
Abstract

Cited by 225 (3 self)
 Add to MetaCart
We quantify the effectiveness of random walks for searching and construction of unstructured peertopeer (P2P) networks. For searching, we argue that random walks achieve improvement over flooding in the case of clustered overlay topologies and in the case of reissuing the same request several times. For construction, we argue that an expander can be maintained dynamically with constant operations per addition. The key technical ingredient of our approach is a deep result of stochastic processes indicating that samples taken from consecutive steps of a random walk can achieve statistical properties similar to independent sampling (if the second eigenvalue of the transition matrix is bounded away from 1, which translates to good expansion of the network; such connectivity is desired, and believed to hold, in every reasonable network and network model). This property has been previously used in complexity theory for construction of pseudorandom number generators. We reveal another facet of this theory and translate savings in random bits to savings in processing overhead.