Results 1  10
of
368
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 2578 (7 self)
 Add to MetaCart
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
A Faster Algorithm for Betweenness Centrality
 Journal of Mathematical Sociology
, 2001
"... The betweenness centrality index is essential in the analysis of social networks, but costly to compute. Currently, the fastest known algorithms require #(n ) time and #(n ) space, where n is the number of actors in the network. ..."
Abstract

Cited by 540 (5 self)
 Add to MetaCart
(Show Context)
The betweenness centrality index is essential in the analysis of social networks, but costly to compute. Currently, the fastest known algorithms require #(n ) time and #(n ) space, where n is the number of actors in the network.
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) orO(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study.
A Brief History of Generative Models for Power Law and Lognormal Distributions
 INTERNET MATHEMATICS
"... Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying ..."
Abstract

Cited by 417 (8 self)
 Add to MetaCart
(Show Context)
Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying
A Random Graph Model for Massive Graphs
 STOC 2000
, 2000
"... We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from t ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from these parameters, various properties of the graph can be derived. For example, for certain ranges of the parameters, we will compute the expected distribution of the sizes of the connected components which almost surely occur with high probability. We will illustrate the consistency of our model with the behavior of some massive graphs derived from data in telecommunications. We will also discuss the threshold function, the giant component, and the evolution of random graphs in this model.
An Analysis of Internet Content Delivery Systems
, 2002
"... In the span of only a few years, the Internet has experienced an astronomical increase in the use of specialized content delivery systems, such as content delivery networks and peertopeer file sharing systems. Therefore, an understanding of content delivery on the Internet now requires a detailed ..."
Abstract

Cited by 323 (10 self)
 Add to MetaCart
(Show Context)
In the span of only a few years, the Internet has experienced an astronomical increase in the use of specialized content delivery systems, such as content delivery networks and peertopeer file sharing systems. Therefore, an understanding of content delivery on the Internet now requires a detailed understanding of how these systems are used in practice. This paper examines content delivery from the point of view of four content delivery systems: HTTP web traffic, the Akamai content delivery network, and Kazaa and Gnutella peertopeer file sharing traffic. We collected a trace of all incoming and outgoing network traffic at the University of Washington, a large university with over 60,000 students, faculty, and staff. From this trace, we isolated and characterized traffic belonging to each of these four delivery classes. Our results (1) quantify the rapidly increasing importance of new content delivery systems, particularly peertopeer networks, (2) characterize the behavior of these systems from the perspectives of clients, objects, and servers, and (3) derive implications for caching in these systems. 1
Stochastic Models for the Web Graph
, 2000
"... The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph m ..."
Abstract

Cited by 293 (12 self)
 Add to MetaCart
(Show Context)
The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph models differ from the traditional Gn;p models in two ways: 1. Independently chosen edges do not result in the statistics (degree distributions, clique multitudes) observed on the web. Thus, edges in our model are statistically dependent on each other. 2. Our model introduces new vertices in the graph as time evolves. This captures the fact that the web is changing with time. Our results are two fold: we show that graphs generated using our model exhibit the statistics observed on the web graph, and additionally, that natural graph models proposed earlier do not exhibit them. This remains true even when these earlier models are generalized to account for the arrival of vertices over time. In particular, the sparse random graphs in our models exhibit properties that do not arise in far denser random graphs generated by ErdosR'enyi models.
Graph evolution: Densification and shrinking diameters
 ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 263 (16 self)
 Add to MetaCart
(Show Context)
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in and outdegree distributions, communities, smallworld phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
RMAT: A recursive model for graph mining
 In Fourth SIAM International Conference on Data Mining (SDM’ 04
, 2004
"... How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer ..."
Abstract

Cited by 244 (17 self)
 Add to MetaCart
(Show Context)
How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer virus spread?”). The heart of the problem is finding the properties of real graphs that seem to persist over multiple disciplines. We list such “laws ” and, more importantly, we propose a simple, parsimonious model, the “recursive matrix ” (RMAT) model, which can quickly generate realistic graphs, capturing the essence of each graph in only a few parameters. Contrary to existing generators, our model can trivially generate weighted, directed and bipartite graphs; it subsumes the celebrated ErdősRényi model as a special case; it can match the power law behaviors, as well as the deviations from them (like the “winner does not take it all ” model of Pennock et al. [21]). We present results on multiple, large real graphs, where we show that our parameter fitting algorithm (AutoMATfast) fits them very well. 1