Results 1  10
of
53
Datalog and constraint satisfaction with infinite templates
 In Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS’06), LNCS 3884
, 2006
"... Abstract. On finite structures, there is a wellknown connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infin ..."
Abstract

Cited by 39 (21 self)
 Add to MetaCart
(Show Context)
Abstract. On finite structures, there is a wellknown connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates, i.e., for all computational problems that are closed under disjoint unions and whose complement is closed under homomorphisms. If the template Γ is ωcategorical, we obtain alternative characterizations of bounded Datalog width. We also show that CSP(Γ) can be solved in polynomial time if Γ is ωcategorical and the input is restricted to instances of bounded treewidth. Finally, we prove algebraic characterisations of those ωcategorical templates whose CSP has Datalog width (1, k), and for those whose CSP has strict Datalog width k.
Universal algebra and hardness results for constraint satisfaction problems
, 2007
"... Abstract. We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem CSP(Γ) for complexity classes L, NL, P, NP and ModpL. These criteria also give nonexpressibility results for various restrictions of Datalog. Furthermore, we show tha ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
Abstract. We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem CSP(Γ) for complexity classes L, NL, P, NP and ModpL. These criteria also give nonexpressibility results for various restrictions of Datalog. Furthermore, we show that if CSP(Γ) is not firstorder definable then it is Lhard. Our proofs rely on tame congruence theory and on a finegrain analysis of the complexity of reductions used in the algebraic study of CSP. The results pave the way for a refinement of the dichotomy conjecture stating that each CSP(Γ) lies in P or is NPcomplete and they match the recent classification of [2] for Boolean CSP. We also infer a partial classification theorem for the complexity of CSP(Γ) when the associated algebra of Γ is the full idempotent reduct of a preprimal algebra. Constraint satisfaction problems (CSP) provide a unifying framework to study various computational problems arising naturally in artificial intelligence, combinatorial optimization, graph homomorphisms and database theory. An in
A characterisation of firstorder constraint satisfaction problems
 LOGICAL METHODS COMPUT. SCI
, 2007
"... We describe simple algebraic and combinatorial characterisations of finite relational core structures admitting finitely many obstructions. As a consequence, we show that it is decidable to determine whether a constraint satisfaction problem is firstorder definable: we show the general problem to ..."
Abstract

Cited by 35 (11 self)
 Add to MetaCart
We describe simple algebraic and combinatorial characterisations of finite relational core structures admitting finitely many obstructions. As a consequence, we show that it is decidable to determine whether a constraint satisfaction problem is firstorder definable: we show the general problem to be NPcomplete, and give a polynomialtime algorithm in the case of cores. A slight modification of this algorithm provides, for firstorder definable CSP’s, a simple polytime algorithm to produce a solution when one exists. As an application of our algebraic characterisation of first order CSP’s, we describe a large family of Lcomplete CSP’s.
Homomorphism Preservation Theorems
, 2008
"... The homomorphism preservation theorem (h.p.t.), a result in classical model theory, states that a firstorder formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it is equivalent to an existentialpositive formula. Answering a longstanding question in fin ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
The homomorphism preservation theorem (h.p.t.), a result in classical model theory, states that a firstorder formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it is equivalent to an existentialpositive formula. Answering a longstanding question in finite model theory, we prove that the h.p.t. remains valid when restricted to finite structures (unlike many other classical preservation theorems, including the ̷Lo´sTarski theorem and Lyndon’s positivity theorem). Applications of this result extend to constraint satisfaction problems and to database theory via a correspondence between existentialpositive formulas and unions of conjunctive queries. A further result of this article strengthens the classical h.p.t.: we show that a firstorder formula is preserved under homomorphisms on all structures if and only if it is equivalent to an existentialpositive formula of equal quantifierrank.
Dualities for constraint satisfaction problems
"... In a nutshell, a duality for a constraint satisfaction problem equates the existence of one homomorphism to the nonexistence of other homomorphisms. In this survey paper, we give an overview of logical, combinatorial, and algebraic aspects of the following forms of duality for constraint satisfact ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
(Show Context)
In a nutshell, a duality for a constraint satisfaction problem equates the existence of one homomorphism to the nonexistence of other homomorphisms. In this survey paper, we give an overview of logical, combinatorial, and algebraic aspects of the following forms of duality for constraint satisfaction problems: finite duality, bounded pathwidth duality, and bounded treewidth duality.
On the power of kconsistency
 In Proceedings of ICALP2007
, 2007
"... Abstract. The kconsistency algorithm for constraintsatisfaction problems proceeds, roughly, by finding all partial solutions on at most k variables and iteratively deleting those that cannot be extended to a partial solution by one more variable. It is known that if the core of the structure encod ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
(Show Context)
Abstract. The kconsistency algorithm for constraintsatisfaction problems proceeds, roughly, by finding all partial solutions on at most k variables and iteratively deleting those that cannot be extended to a partial solution by one more variable. It is known that if the core of the structure encoding the scopes of the constraints has treewidth at most k, then the kconsistency algorithm is always correct. We prove the exact converse to this: if the core of the structure encoding the scopes of the constraints does not have treewidth at most k, then the kconsistency algorithm is not always correct. This characterizes the exact power of the kconsistency algorithm in structural terms. 1
Colouring, constraint satisfaction, and complexity
"... Constraint satisfaction problems have enjoyed much attention since the early seventies, and in the last decade have become also a focus of attention amongst theoreticians. Graph colourings are a special class of constraint satisfaction problems; they offer a microcosm of many of the considerations t ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Constraint satisfaction problems have enjoyed much attention since the early seventies, and in the last decade have become also a focus of attention amongst theoreticians. Graph colourings are a special class of constraint satisfaction problems; they offer a microcosm of many of the considerations that occur in constraint satisfaction. From the point of view of theory, they are well known to exhibit a dichotomy of complexity the kcolouring problem is polynomial time solvable when k ≤ 2, and NPcomplete when k ≥ 3. Similar dichotomy has been proved for the class of graph homomorphism problems, which are intermediate problems between graph colouring and constraint satisfaction
Symmetric Datalog and constraint satisfaction problems in Logspace
 IN LICS’07
, 2007
"... We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric monotone Krom SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
(Show Context)
We introduce symmetric Datalog, a syntactic restriction of linear Datalog and show that its expressive power is exactly that of restricted symmetric monotone Krom SNP. The deep result of Reingold [17] on the complexity of undirected connectivity suffices to show that symmetric Datalog queries can be evaluated in logarithmic space. We show that for a number of constraint languages Γ, the complement of the constraint satisfaction problem CSP(Γ) can be expressed in symmetric Datalog. In particular, we show that if CSP(Γ) is firstorder definable and Λ is a finite subset of the relational clone generated by Γ then ¬CSP(Λ) is definable in symmetric Datalog. Over the twoelement domain and under a standard complexitytheoretic assumption, expressibility of ¬CSP(Γ) in symmetric Datalog corresponds exactly to the class of CSPs solvable in logarithmic space. Finally, we describe a fairly general subclass of implicational (or 0/1/all) constraints for which the complement of the corresponding CSP is also definable in symmetric Datalog. Our results provide preliminary evidence that symmetric Datalog may be a unifying explanation for families of CSPs lying in L.