Results 1 -
2 of
2
Approximation Quality of the Hypervolume Indicator
, 2012
"... In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the do ..."
Abstract
-
Cited by 5 (5 self)
- Add to MetaCart
In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the dominated portion of the objective space bounded from below by a reference point. Though the hypervolume indicator is very popular, it has not been shown that maximizing the hypervolume indicator of sets of bounded size is indeed equivalent to the overall objective of finding a good approximation of the Pareto front. To address this question, we compare the optimal approximation ratio with the approximation ratio achieved by two-dimensional sets maximizing the hypervolume indicator. We bound the optimal multiplicative approximation ratio of n points by 1+Θ(1/n) for arbitrary Pareto fronts. Furthermore, we prove that the same asymptotic approximation ratio is achieved by sets of n points that maximize the hypervolume indicator. However, there is a provable gap between the two approximation ratios which is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator in two dimensions and prove that it achieves the optimal additive approximation ratio apart from a small ratio � n/(n−2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a good additive but not a good multiplicative approximation of a Pareto front. This motivates the introduction of a “logarithmic hypervolume indicator ” which provably achieves a good multiplicative approximation ratio.
Efficient Parent Selection for Approximation-Guided Evolutionary Multi-Objective Optimization
"... Abstract—The Pareto front of a multi-objective optimization problem is typically very large and can only be approximated. Approximation-Guided Evolution (AGE) is a recently presented evolutionary multi-objective optimization algorithm that aims at minimizing iteratively the approximation factor, whi ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
(Show Context)
Abstract—The Pareto front of a multi-objective optimization problem is typically very large and can only be approximated. Approximation-Guided Evolution (AGE) is a recently presented evolutionary multi-objective optimization algorithm that aims at minimizing iteratively the approximation factor, which measures how well the current population approximates the Pareto front. It outperforms state-of-the-art algorithms for problems with many objectives. However, AGE’s performance is not competitive on problems with very few objectives. We study the reason for this behavior and observe that AGE selects parents uniformly at random, which has a detrimental effect on its performance. We then investigate different algorithm-specific selection strategies for AGE. The main difficulty here is finding a computationally efficient selection scheme which does not harm AGEs linear runtime in the number of objectives. We present several improved selections schemes that are computationally efficient and substantially improve AGE on low-dimensional objective spaces, but have no negative effect in high-dimensional objective spaces. I.